Nongaseous Phase Etching Patents (Class 216/53)
  • Publication number: 20080245769
    Abstract: A method of making nanoparticles includes reacting a first material powder with a second material vapor to form a surface coating on particles of the first material powder, and selectively removing the first material powder to convert the surface coating to third material nanoparticles.
    Type: Application
    Filed: July 17, 2007
    Publication date: October 9, 2008
    Inventor: Partha S. Dutta
  • Patent number: 7420263
    Abstract: An array of grooves (23) is formed in a first side (12) of a wafer (10) during a wafer processing method. A back grinding tape (16) is adhered to the first side. An amount of material is removed from the second side (20) of the wafer. An adhesive layer (30) is applied to the second side. Dicing tape (24) is applied to the adhesive layer to create a first wafer assembly (32). The first wafer assembly is supported on a support surface (34) with the dicing tape facing the support surface and the back grinding tape exposed. The back grinding tape is removed and the adhesive layer is severed through the array of grooves to create individually removable die (28).
    Type: Grant
    Filed: March 13, 2006
    Date of Patent: September 2, 2008
    Assignee: ChipPAC, Inc.
    Inventors: Seung Wook Park, Hyun Jin Park
  • Patent number: 7410592
    Abstract: The stamp (10) for a lithographic process, such as patterning a surface layer, of the invention has a stamp body (5) with at least a first recess (11) formed therein, which recess defines a first aperture (15) in the printing face (3) of the stamp (10). The first recess (11) narrows with increasing distance to the printing face, while any cross-section of the first recess, when perpendicularly projected on the printing face (3), will lie within the aperture (15). The printing face may comprise small (11, 12) and large apertures (13) as well as small surfaces (14) in between apertures, while it is nevertheless able to produce prints which are accurate replicas of the printing face. Even details on a submicron scale can be adequately printed. The stamp (10) can be manufactured by a method which comprises anisotropic etching of a first body to make a mold and replicating the mold in the printing face (3) of the stamp (10).
    Type: Grant
    Filed: January 12, 2001
    Date of Patent: August 12, 2008
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: Martin Hillebrand Blees
  • Patent number: 7404988
    Abstract: Refinishing an exterior automotive lens having a damaged exterior surface in situ using a continuous movement and oscillating motion, with first, a 320 grit sanding disc, next a 600 grit sanding disc and finally a 1500 grit sanding pad while flushing the surface with water to prevent melting of the surface. Buffing the surface with a polishing compound until a high gloss is achieved. Finally, coating the surface with a transparent ultraviolet hardenable coating material, and hardening it by exposure to an ultraviolet light source. This method is accomplished using an oscillating tool having a remotely located drive.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: July 29, 2008
    Inventor: Terry Mitchell Kuta
  • Patent number: 7387742
    Abstract: Ophthalmic surgical blades are manufactured from either a crystalline or polycrystalline material, preferably in the form of a wafer. The method comprises preparing the crystalline or polycrystalline wafers by mounting them and machining trenches into the wafers. Methods for machining the trenches, which form the bevel blade surfaces, include a diamond blade saw, laser system, ultrasonic machine, a hot forge press and a router. The wafers are then placed in an etchant solution which isotropically etches the wafers in a uniform manner, such that layers of crystalline or polycrystalline material are removed uniformly, producing single, double or multiple bevel blades. Nearly any bevel angle can be machined into the wafer which remains after etching. The resulting radii of the blade edges is 5-500 nm, which is the same caliber as a diamond edged blade, but manufactured at a fraction of the cost.
    Type: Grant
    Filed: September 17, 2004
    Date of Patent: June 17, 2008
    Assignee: Becton, Dickinson and Company
    Inventors: Vadim M. Daskal, Joseph F. Keenan, James Joseph Hughes, Attila E. Kiss, Susan M. Chavez
  • Publication number: 20080121623
    Abstract: A process for selectively stripping a coating from a component of a turbomachine, and particularly a coating having a ceramic matrix that contains metallic particles dispersed therein that render the coating more difficult to remove from the component after the component has been subjected to elevated temperatures during operation of the turbomachine. The process generally includes immersing the component in an aqueous solution containing ferric chloride, nitric acid, and phosphoric acid, for a duration sufficient to attack the metallic particles in the coating. The component is then removed from the aqueous solution and its surface rinsed of the aqueous solution. The immersing and removing steps are then sequentially repeated a sufficient number of times to sufficiently attack the metallic particles to enable the coating to be mechanically removed from the component.
    Type: Application
    Filed: November 29, 2006
    Publication date: May 29, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: William Clarke Brooks
  • Patent number: 7368065
    Abstract: Compositions and methods are provided for preparing a metal substrate having a uniform textured surface with a plurality of indentations with a diameter in the nanometer and micrometer range. The textured surface is produced by exposing the substrate to an etching fluid comprising a hydrohalic acid and a mixture of a hydrohalic acid and an oxyacid, a chloride containing compound, and an oxidant. The etching solution can be used at ambient temperature. This textured surface enhances adherence of coatings or cells onto the textured surface, improves the retention of proteins on the surface, and encourages bone in-growth.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: May 6, 2008
    Assignee: DePuy Products, Inc.
    Inventors: Xiaofan Yang, Panjian Li, Todd Smith
  • Publication number: 20080099429
    Abstract: Methods for repairing patterned structure of electronic devices. A first substrate with a patterned structure thereon is provided, wherein the patterned structure includes at least one defect. The defect corresponds to a defect region while the patterned structure corresponds to a main region. A first surface treatment is performed on the defect region such that the surface characteristics on the defect region are different from those on the main region. The defect region is repaired by inkjet printing. A second surface treatment is performed on the defect region such that the surface characteristics on the defect region are the same as those on the main region.
    Type: Application
    Filed: July 25, 2007
    Publication date: May 1, 2008
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chao-Kai Cheng, Chieh-Yi Huang, Wan-Wen Chiu, Chun-Hung Lin, Chia-Chang Chang
  • Patent number: 7344988
    Abstract: Methods of manufacturing alumina abrasive for use in chemical mechanical polishing are described, wherein the abrasive is in a slurry having gamma alumina formed in a low temperature fuming process, water, an acid sufficient to maintain the pH below about 7, wherein the slurry does not settle appreciably in an 8 to 24 hour period. Advantageously, the alumina is wet-milled without the use of wet-milling salt additives.
    Type: Grant
    Filed: October 26, 2004
    Date of Patent: March 18, 2008
    Assignee: DuPont Air Products Nanomaterials LLC
    Inventor: Philippe H. Chelle
  • Patent number: 7329364
    Abstract: A method for manufacturing a bonded wafer with ultra-thin single crystal ferroelectric film is provided, comprising the following steps: providing a single crystal ferroelectric wafer and a carrier wafer while activating the surfaces of the single crystal ferroelectric wafer and the carrier wafer; bonding the activated surface of the single crystal ferroelectric wafer to the activated surface of the carrier wafer; and thinning the single crystal ferroelectric wafer for forming an ultra-thin single crystal ferroelectric film. Wherein, the thinning process in the aforesaid preferred embodiment is the method of polishing, grinding, chemical mechanical polishing, or etching. And the bonding force generated in the bonding process is strong enough to resist the shearing force.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: February 12, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Shih-Shian Ho, Hung-Yin Tsai, Chia-Jen Ting, Chun-Fa Lan, Chii-Chang Chen
  • Patent number: 7325299
    Abstract: A method of making a circuitized substrate. A conductive layer having a substantially planar upper surface is formed on and in direct mechanical contact with an upper surface of a substrate. A portion of the conductive layer is removed to form an interim side wall in the conductive layer. A layer of patternable material is formed on the substantially planar upper surface and on the interim side wall. A portion of the layer of patternable material on the conductive layer is removed to expose the interim side wall. A portion of the substantially planar upper surface is removed to form a side wall in the layer of patternable material. Portions of the interim side wall in the conductive layer are removed to form a second side wall and a bottom wall defined by the upper surface of the substrate. The second side wall is substantially perpendicular to the bottom wall.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: February 5, 2008
    Assignee: International Business Machines Corporation
    Inventors: Frank D. Egitto, Kevin T. Knadle, Andrew M. Seman
  • Publication number: 20080017611
    Abstract: An etching apparatus and an etching method, wherein pressure exerted on a substrate is minimized, and an entire surface of the substrate is uniformly pressed during an etching process. The breakage of the substrate is prevented, and the substrate is uniformly etched. Accordingly, the thickness of the substrate may be reduced.
    Type: Application
    Filed: April 5, 2007
    Publication date: January 24, 2008
    Inventors: Ho-Geun Choi, Yong-Woo Kim
  • Publication number: 20080014470
    Abstract: A method for manufacturing a glass substrate which has a uniform and minute pattern of stripes formed on the surface thereof by ultraprecision polishing, and which allows the recording capacity of a magnetic disk to be increased, includes an inspecting step before the glass substrate is subjected to ultraprecision polishing, whether the Young's modulus Es in topmost part as determined by the nanoindentation method and the Young's modulus Eg as determined by ultrasonic resonance fulfill the inequality 0.8 Eg<Es<1.2 Eg; or the hardness Hs in topmost part as determined by the nanoindentation method and the Vickers hardness Hv fulfill the inequality 0.8 Hv<Hs<1.2 Hv.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 17, 2008
    Inventor: Hideki Kawai
  • Patent number: 7108819
    Abstract: A tool for embossing high aspect ratio microstructures is provided, wherein the microstructures provide decreased surface reflection and increased transmission through an optical component even at high incident angles. The tool is fabricated by a process that comprises anisotropic etching of columnar pits in a silicon substrate using inductively coupled plasma, followed by isotropic reactive ion etching of the columnar pits to create relatively pointed obelisks. The silicon substrate is then preferably rinsed to remove remaining photoresist prior to vapor depositing a conductive layer thereon. Finally, a metal is electroformed over the conductive layer to form the embossing tool. The embossing tool is then pressed against an optical coating, for example a polymer sheet, to create microstructures having aspect ratios from 1 to 5.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: September 19, 2006
    Assignee: The Boeing Company
    Inventors: Alan B Harker, Jeffrey F DeNatale, Dennis R Strauss
  • Patent number: 7021487
    Abstract: A metal container to be filled with a halogen containing gas, with the inner surface processed with a polishing agent. The gas has a reduced purity decline by the increase of the water content or impurities from the inner surface of the container which is absorbed by the gas over the passage of time. The inner surface processing method is improved such that the value of dividing the area of the Si2s peak by the area of the Fe2p3/2 peak in the X-ray photoelectron spectrum of the gas container inner surface with the inner surface process with a polishing agent applied is 0.3 or less.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: April 4, 2006
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Akio Kikkawa, Shigeo Kanayama, Isao Harada
  • Patent number: 7010939
    Abstract: In a first polishing step, or in a first half of a super precision polishing, a surface of a glass substrate is polished with a first suspension. The first suspension contains particles and a dispersion agent in which the particles are dispersed. The main ingredient of the particles is silicon dioxide (SiO2), and the average size (D50) of the particles is equal to or less than 100 nm. The dispersion medium comprises an acid solution the pH of which is equal to or less than 4. In a second polishing step, or in a latter half of the super precision polishing, the surface of the glass substrate is continuously polished with a second suspension. The second suspension contains particles and a dispersion agent in which the particles are dispersed. The main ingredient of the particles is silicon dioxide (SiO2), and the average size (D50) of the particles is equal to or less than 100 nm. The dispersion medium comprises an alkaline solution the pH of which is equal to or more than 8.5.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: March 14, 2006
    Assignee: Hoya Corporation
    Inventors: Takamasa Yoshikawa, Koichi Suzuki
  • Patent number: 7005080
    Abstract: The invention is an improvement in the metal finishing processes disclosed in U.S. Pat. No. 4,818,333. The improvement arises in the use of nonabrasive media, such as stainless steel or plastic, in combination with chemicals that are reactive to the metal surface processed. The invention also includes metal articles finished using this process.
    Type: Grant
    Filed: October 13, 2003
    Date of Patent: February 28, 2006
    Assignee: REM Technologies, Inc.
    Inventors: Jerry Holland, Mark Michaud, Mike Solarno, Gary Sroka, Lane Winkelmann
  • Patent number: 6960307
    Abstract: The present invention discloses a method and apparatus for the directed formation of a re-entrant micro-jet formed upon the collapse of a cavitation bubble formed proximate to a work surface placed in a fluid. A mask containing an orifice, placed between the work surface and the cavitation bubble, is utilized to direct the re-entrant micro-jet to the work surface. The cavitation bubble may be formed in the desired location by focusing an energy flow proximate to the mask. The energy flow may be obtained by radiation from laser, x-ray, or electrical discharge sources.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: November 1, 2005
    Inventor: Mark L. LeClair
  • Patent number: 6939474
    Abstract: A method for fabricating microelectronic spring structures is disclosed. In an initial step of the method, a layer of sacrificial material is formed over a substrate. Then, a contoured surface is developed in the sacrificial material, such as by molding the sacrificial material using a mold or stamp. The contoured surface provides a mold for at least one spring form, and preferably for an array of spring forms. If necessary, the sacrificial layer is then cured or hardened. A layer of spring material is deposited over the contoured surface of the sacrificial material, in a pattern to define at least one spring form, and preferably an array of spring forms. The sacrificial material is then at least partially removed from beneath the spring form to reveal at least one free-standing spring structure. A separate conducting tip is optionally attached to each resulting spring structure, and each structure is optionally plated or covered with an additional layer or layers of material, as desired.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: September 6, 2005
    Assignee: FormFactor, Inc.
    Inventors: Benjamin N. Eldridge, Stuart W. Wenzel
  • Patent number: 6905622
    Abstract: Methods and apparatus are provided for forming a metal or metal silicide layer by an electroless deposition technique. In one aspect, a method is provided for processing a substrate including depositing an initiation layer on a substrate surface, cleaning the substrate surface, and depositing a conductive material on the initiation layer by exposing the initiation layer to an electroless solution. The method may further comprise etching the substrate surface with an acidic solution and cleaning the substrate of the acidic solution prior to depositing the initiation layer. The initiation layer may be formed by exposing the substrate surface to a noble metal electroless solution or a borane-containing solution. The conductive material may be deposited with a borane-containing reducing agent. The conductive material may be used as a passivation layer, a barrier layer, a seed layer, or for use in forming a metal silicide layer.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: June 14, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Joseph Yahalom, Sivakami Ramanathan, Chris R. McGuirk, Srinivas Gandikota, Girish Dixit
  • Patent number: 6899816
    Abstract: Methods and apparatus are provided for forming a metal or metal silicide layer by an electroless deposition technique. In one aspect, a method is provided for processing a substrate including depositing an initiation layer on a substrate surface, cleaning the substrate surface, and depositing a conductive material on the initiation layer by exposing the initiation layer to an electroless solution. The method may further comprise etching the substrate surface with an acidic solution and cleaning the substrate of the acidic solution prior to depositing the initiation layer. The initiation layer may be formed by exposing the substrate surface to a noble metal electroless solution or a borane-containing solution. The conductive material may be deposited with a borane-containing reducing agent. The conductive material may be used as a passivation layer, a barrier layer, a seed layer, or for use in forming a metal silicide layer.
    Type: Grant
    Filed: April 3, 2002
    Date of Patent: May 31, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Joseph Yahalom, Sivakami Ramanathan, Chris R. McGuirk, Srinivas Gandikota, Girish Dixit
  • Patent number: 6818139
    Abstract: In a method for forming a micro-pattern on a substrate (200), polymer material having a solvent is coated on the substrate, thereby forming a polymer film on the substrate. Then, a mold (204) having a predetermined shape is compressed into the polymer film (202) on the substrate by employing a predetermined compression technique to entail a plastic deformation of the polymer film, thereby patterning the polymer film. This compression procedure is performed at a room temperature, e.g., of about 10 to about 30° C. In the present invention, before the mold (204) is pressed into the polymer film (202), a free volume in the polymer film is previously increased so that a pressure applied on the polymer material needed to plastically deform the polymer film is reduced. Thereafter, etching is performed on the substrate through the use of the patterned polymer film as an etching mask, thereby forming a micro-pattern on the substrate.
    Type: Grant
    Filed: October 15, 2001
    Date of Patent: November 16, 2004
    Assignee: Minuta Technology Co., Ltd.
    Inventors: Hong Hie Lee, Dahl Young Khang
  • Publication number: 20040089543
    Abstract: The invention includes PVD targets having non-sputtered regions (such as, for example, sidewalls), and particle-trapping features formed along the non-sputtered regions. In particular aspects, the particle-trapping features can comprise a pattern of bent projections forming receptacles, and can comprise microstructures on the bent projections. The targets can be part of target/backing plate constructions, or can be monolithic. The invention also includes methods of forming particle-trapping features along sidewalls of a sputtering target or along sidewalls of a target/backing plate construction. The features can be formed by initially forming a pattern of projections along a sidewall. The projections can be bent and subsequently exposed to particles to form microstructures on the bent projections.
    Type: Application
    Filed: July 9, 2003
    Publication date: May 13, 2004
    Inventor: Jaeyeon Kim
  • Patent number: 6726829
    Abstract: Disclosed herewithin is an apparatus for fabricating a stent which involves processing a tubular member whereby no connection points to join the edges of a flat pattern are necessary. The process includes the steps of: a) preparing the surface of a tubular member, b) coating the outside surface of the tubular member with a photo-sensitive resist material, c) placing the tubular member in an apparatus designed to simultaneously rotate the tubular member while passing a specially configured photographic frame negative between a light source and the tubular member, d) exposing the tubular member to a photoresist developer, e) rinsing the excess developer and uncured resist from the exposed tubular member, f) sealing the inner lumen of the tubular member, and g) treating the tubular member with a chemical or electro-chemical process to remove uncovered metal. By modifying the photographic negative, this process can be employed to fabricate a virtually unlimited number of stent designs and configurations.
    Type: Grant
    Filed: November 1, 2001
    Date of Patent: April 27, 2004
    Assignee: SciMed Life Systems, Inc.
    Inventor: Thomas Trozera
  • Patent number: 6712985
    Abstract: A method and apparatus for the manufacture of thin film magnetic transducers using a compliant pad or mat or surface in a lapping process is disclosed. The lapping process is applied to heads to eliminate both ductile element connections between the MR and shields and poletip and shield protrusion. A lapping media is dispensed onto an interface surface of a compliant pad. Then, the interface surface is engaged to the surface of a head outside a region comprising transducers defining a head gap. The pad is then moved over the head in a direction parallel to the head gap while using a head rail to guide the pad. The soft, compliant pad conforms to the head rail to ensure parallel movement. The pad is typically not stopped at the elements, but rather moves from one end of the head to the other to prevent bridging and damage that might occur during start/stop on the delicate elements.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: March 30, 2004
    Assignee: Hitachi Global Storage Technologies
    Inventor: Robert Glenn Biskeborn
  • Patent number: 6706205
    Abstract: A semiconductor processing article is characterized by extended useful life. The article is used in a semiconductor furnace system, particularly in a low pressure chemical vapor deposition furnace for prolonged periods without requiring cleaning to remove build-up film. The semiconductor processing article is a quartz body characterized by a surface roughness having a first component with an average deviation from a first mean surface of about 2.5 to 50 microns, and a second component with an average deviation from a second mean surface of about 0.25 to 5 microns.
    Type: Grant
    Filed: February 7, 2002
    Date of Patent: March 16, 2004
    Assignee: General Electric Company
    Inventors: Thomas Bert Gorczyca, Udo Heinz Retzlaff, Stephan Popp
  • Patent number: 6645308
    Abstract: A method and apparatus for cleaning the slider air bearing surface of a head gimbal assembly is disclosed. A plurality of carriers may position and hold a plurality of head gimbal assemblies to be polished. A cloth strip may be rubbed against the slider air bearing surface. A movable cylinder unit coupled to the plurality of carriers may move the carriers. A polish tank may provide cleaning solution to the movable cylinder unit. A pump may recirculate the cleaning solution. A filter canister with a filter cartridge may filter the cleaning solution.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: November 11, 2003
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Mingbing Wong, Fuhong Yu, Liang Qian, Feng Xie
  • Patent number: 6641745
    Abstract: A method of forming a manifold through a substrate of a printhead substructure is disclosed. The substrate has an ink reservoir-facing side and an opposing transducer-supporting side. The transducer-supporting side of the substrate is introduced to an etchant. A laser beam is used to irradiate the etchant contacting side of the substrate. The irradiated areas of the substrate are thereby etched to define a first portion of the manifold therein. A second portion of the manifold is formed, preferably by sand blasting, to connect to the first portion. A printhead substructure that includes a substrate having a manifold formed according to the method is also disclosed.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: November 4, 2003
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Kee Cheong Tan, Pean Lim, Kiong Chin Chng
  • Patent number: 6602430
    Abstract: Methods for finishing or refurbishing surfaces on protective covers encapsulating microelectronic dies. In one embodiment, a method for fishing a surface of a protective package on a microelectronic device includes abrading the surface of the package by engaging an abrasive media with the surface of the package, terminating the abrasion when a surface blemish has been at least partially removed from the package, and cleaning residual materials from the package after terminating the abrasion of the package surface. The abrasive media can include a fixed-abrasive member, a fixed-abrasive member and a solution, a non-abrasive member and a chemical solution having abrasive particles, or an abrasive blasting media.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: August 5, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Steven P. Nally, Vernon M. Williams, Ford B. Grigg
  • Publication number: 20030080472
    Abstract: The addition of thin coatings (less than and approaching monomolecular coatings) of persistent release materials comprising preferred compounds of the formula:
    Type: Application
    Filed: September 16, 2002
    Publication date: May 1, 2003
    Inventor: Stephen Y. Chou
  • Publication number: 20030080471
    Abstract: The addition of thin coatings (less than and approaching monomolecular coatings) of persistent release materials comprising preferred compounds of the formula:
    Type: Application
    Filed: September 16, 2002
    Publication date: May 1, 2003
    Inventor: Stephen Y. Chou
  • Patent number: 6547974
    Abstract: A printed circuit board is produced by patterning a resist layer according to a circuit mask that defines desired circuit paths. The resist pattern layer is formed by removing the resist from the board in the desired circuit paths and a conductive material is plated onto the board in the resist voids defined by the circuit mask so that the height of the conductive material relative to the substrate equals or exceeds the height of the resist layer relative to the substrate. A low-reactive solution is applied over the conductive material and removes a surface portion of the conductive material. As the solution removes the conductive layer, it forms a film barrier and the solution composition changes, both of which substantially inhibits any further removal of the conductive material. Next, the film barrier is removed from the board allowing another film barrier to form stimulating the removal of further conductive material.
    Type: Grant
    Filed: June 27, 1995
    Date of Patent: April 15, 2003
    Assignee: International Business Machines Corporation
    Inventors: Stanley Michael Albrechta, Christina Marie Boyko, Kathleen Lorraine Covert, Natalie Barbara Feilchenfeld, Voya Rista Markovich, William Earl Wilson, Michael Wozniak
  • Patent number: 6547858
    Abstract: A hydrogen-permeable metal membrane with increased hydrogen flux compared to conventional metal membranes is disclosed. Without sacrificing selectivity, the membrane enables a greater throughput of purified hydrogen. A method for preparing the invention includes at least one etching step in which a controlled volume of etchant is used to selectively remove material from the membrane's surface. Methods for repairing holes or other defects in the membrane are also disclosed. The invention also includes a membrane module adapted for use in purifying hydrogen streams, such as those produced by fuel processors.
    Type: Grant
    Filed: July 19, 2000
    Date of Patent: April 15, 2003
    Assignee: IdaTech, LLC
    Inventors: David J. Edlund, William A. Pledger, Todd Studebaker
  • Patent number: 6530381
    Abstract: A process for the wet-chemical surface treatment of a semiconductor wafer following a mechanical surface treatment, in particular following a mechanical surface treatment in a lapping machine, includes a sequence of treatment steps. The process essentially includes a wet-chemical surface cleaning, preferably for neutralizing and eliminating the lapping slurry, an acid etching treatment, preferably for eliminating the mechanically imposed damage and for surface smoothing and removal of metals. There is a final step of drying and rendering the cleaned and etched surface hydrophilic.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: March 11, 2003
    Assignee: Wacker Siltronic Gesellschaft Für Halbleitermaterialien AG
    Inventors: Günter Schwab, Karlheinz Langsdorf, Maximilian Stadler, Edeltraut Pichelmeier
  • Publication number: 20030034329
    Abstract: The addition of thin coatings (less than and approaching monomolecular coatings) of persistent release materials comprising preferred compounds of the formula:
    Type: Application
    Filed: September 16, 2002
    Publication date: February 20, 2003
    Inventor: Stephen Y. Chou
  • Patent number: 6514423
    Abstract: A method for processing a semiconductor wafer to reduce surface roughness. The wafer has two flat, opposite faces with a peripheral edge extending around a circumference of the wafer between the faces. The method includes, in the following order, the steps of burnishing the edge, and etching the edge. The step of burnishing is defined by a relative rubbing motion between the edge and an abrasive appliance to remove damage from the edge, the rubbing motion occurring free from any polishing solution or chemical slurry. The step of etching includes exposing the wafer to a liquid chemical etchant for a period of time to remove additional damage from the edge. The method may also include, before the other steps, a step of lapping at least one face of the wafer to remove semiconductor matter through a relative rubbing motion between the face and an abrasive lapping plate in the presence of an abrasive liquid slurry.
    Type: Grant
    Filed: February 22, 2000
    Date of Patent: February 4, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Kan-Yin Ng, Brent Teasley
  • Publication number: 20030006213
    Abstract: A method and apparatus for the manufacture of thin film magnetic transducers using a compliant pad or mat or surface in a lapping process is disclosed. The lapping process is applied to heads to eliminate both ductile element connections between the MR and shields and poletip and shield protrusion. A lapping media is dispensed onto an interface surface of a compliant pad. Then, the interface surface is engaged to the surface of a head outside a region comprising transducers defining a head gap. The pad is then moved over the head in a direction parallel to the head gap while using a head rail to guide the pad. The soft, compliant pad conforms to the head rail to ensure parallel movement. The pad is typically not stopped at the elements, but rather moves from one end of the head to the other to prevent bridging and damage that might occur during start/stop on the delicate elements.
    Type: Application
    Filed: July 3, 2001
    Publication date: January 9, 2003
    Applicant: International Business Machines Corporation
    Inventor: Robert Glenn Biskeborn
  • Patent number: 6503405
    Abstract: A non-magnetic substrate having a super-clean and defect-free smooth surface for ultra high-density GMR recording is produced by a surface treatment called a “ZP” process. The term “ZP” means zap cutting with photon ozone treatment of the cut surface. “Zap cutting” is a process for cutting asperity of the non-magnetic substrate's surface. The ZP process could be applied to the whole substrate or certain areas of the non-magnetic substrate. The non-magnetic substrate could be used for disk drives that use either a landing zone design or a load/unload mechanism. The resulting magnetic recording medium exhibits improved flying stability, glide performance, reliability, tribology and long term durability for providing zero glide hits.
    Type: Grant
    Filed: February 2, 2000
    Date of Patent: January 7, 2003
    Assignee: Seagate Technology LLC
    Inventor: Ga-Lane Chen
  • Patent number: 6497825
    Abstract: A method of manufacturing a thin-film magnetic head, includes a first step of forming a second magnetic pole layer (an upper magnetic pole layer) on a magnetic gap layer formed on a first magnetic pole layer (a lower magnetic pole layer) so that the second magnetic pole layer opposes to the first magnetic pole layer via the magnetic gap layer, and a second step of dry etching a part of an upper surface of the first magnetic pole layer surrounding the second magnetic pole layer used as an etching mask to make a width of the dry-etched part of the first magnetic pole layer equal to a width of the second magnetic pole layer. The first step includes shaping at least part of the second magnetic pole layer so that the width of the second magnetic pole layer increases as a throat height becomes large.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: December 24, 2002
    Assignee: TDK Corporation
    Inventor: Akifumi Kamijima
  • Publication number: 20020167117
    Abstract: The addition of thin coatings (less than and approaching monomolecular coatings) of persistent release materials comprising preferred compounds of the formula:
    Type: Application
    Filed: October 29, 2001
    Publication date: November 14, 2002
    Applicant: Regents of the University of Minnesota
    Inventor: Stephen Y. Chou
  • Patent number: 6465117
    Abstract: A transparent conductive film having a transparent oxide layer and a metal layer containing Ag, laminated in this order from a substrate side in a total of (2n+1) layers), wherein n is an integer of at least 1, wherein the transparent oxide layer contains ZnO and further contains In within a range of from 9 to 98 atomic % based on the sum of Zn and In, and a process for forming a transparent electrode.
    Type: Grant
    Filed: February 15, 2001
    Date of Patent: October 15, 2002
    Assignee: Asahi Glass Company Ltd.
    Inventors: Satoru Takaki, Kazuo Sato, Masami Miyazaki, Yuki Kawamura, Hiromichi Nishimura
  • Patent number: 6454957
    Abstract: A method for removing at least a portion of a structure, such as a layer, film, or deposit, including ruthenium metal and/or ruthenium dioxide includes contacting the structure with a material including ceric ammonium nitrate. A material for removing ruthenium metal and amorphous ruthenium dioxide includes ceric ammonium nitrate and may be in the form of an aqueous solution including ceric ammonium nitrate and, optionally, other solid or liquid solutes providing desired properties. In one application, the method and material may be utilized to etch, shape, or pattern layers or films of ruthenium metal and/or ruthenium dioxide in the fabrication of semiconductor systems and their elements, components, and devices, such as wires, electrical contacts, word lines, bit lines, interconnects, vias, electrodes, capacitors, transistors, diodes, and memory devices.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: September 24, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Donald L. Westmoreland
  • Patent number: 6454956
    Abstract: A method for structuring at least one layer to be structured. First, a mask is applied to the layer and the layer is structured using the mask. After the structuring step, the mask is then removed, while leaving behind redepositions of the material of the layer. The redepositions of the material of the layer are removed by mechanical polishing or chemical-mechanical polishing.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: September 24, 2002
    Assignee: Infineon Technologies AG
    Inventors: Manfred Engelhardt, Volker Weinrich
  • Patent number: 6436302
    Abstract: Cu metallization is treated to reduce defects and effect passivation, and to reduce leakage between lines, by removing surface defects subsequent to CMP and barrier layer removal. Embodiments include the sequential steps of: CMP and barrier layer removal; buffing with a solution comprising citric acid, ammonium hydroxide and deionized water to remove copper oxide; rinsing with deionized water or an inhibitor solution, e.g., benzotriazole or 5-methyl triazole in deionized water; buffing with an abrasive slurry; and rinsing with deionized water or an inhibitor solution.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: August 20, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Juy-Lung Li, Tse-Yong Yao, Fred C. Redeker, Rajeev Bajaj, Yutao Ma
  • Patent number: 6428716
    Abstract: A method of etching comprising subjecting a material under plasma etching conditions to an etching composition comprising at least an etchant compound having the formula CXHCFZ wherein: x=3, 4 or 5; 2x≧z≧y; and y+z=2x+2; and further including an etching composition which includes said etchant compound and a second material different from the etchant compound that enhances or modifies plasma etching.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: August 6, 2002
    Assignee: AlliedSignal Inc.
    Inventors: Timothy R. Demmin, Matthew H. Luly, Mohammed A. Fathimulla
  • Publication number: 20020100743
    Abstract: A multistep method of polishing a semiconductor substrate with a polishing fluid to remove a selected amount of material from the substrate. In one embodiment the method includes polishing the substrate to remove a first portion of the selected amount of material by holding the substrate against a polishing pad with a polishing force and applying a polishing solution to the polishing pad. Next the polishing pad is rinsed with a rinsing fluid, and afterwards the substrate is further polished to remove a second portion of the selected amount of material by holding the substrate against the polishing pad with a polishing force and applying the polishing fluid to the polishing pad.
    Type: Application
    Filed: December 5, 2000
    Publication date: August 1, 2002
    Inventors: Benjamin A. Bonner, Thomas H. Osterheld, Peter McKeever, Jeffrey Drue David
  • Patent number: 6419728
    Abstract: A hydrogen-permeable metal membrane with increased hydrogen flux compared to conventional metal membranes is disclosed. Without sacrificing selectivity, the membrane enables a greater throughput of purified hydrogen. A method for preparing the invention includes at least one etching step in which a controlled volume of etchant is used to selectively remove material from the membrane's surface. Methods for repairing holes or other defects in the membrane are also disclosed.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: July 16, 2002
    Assignee: IdaTech, LLC
    Inventor: David J. Edlund
  • Patent number: 6398420
    Abstract: The material of inner ring, outer ring and rolling element is formed by a steel material having a chromium (Cr) content of 5% by weight or more. The material is then subjected to cutting. Thereafter, the material thus cut is subjected to heat treatment so that the surface hardness HRC of the worked material is 58 or more. Subsequently, the worked material is subjected to grinding. A working denatured layer present on the surface of the worked material is then removed. Subsequently, an oxide film comprising chromium atom and iron atom at a ratio (Cr/Fe) of 0.5 or more is formed on the surface of the worked material. Accordingly, it is possible to provide a rolling bearing excellent in corrosion resistance and fretting resistance.
    Type: Grant
    Filed: May 31, 2001
    Date of Patent: June 4, 2002
    Assignee: NSK, Ltd.
    Inventors: Susumu Tanaka, Hiroyuki Ito
  • Patent number: 6391137
    Abstract: An object of the present invention is to provide a method for producing a display device by which a substrate is thinned efficiently. Onto one original substrate having an area for a plurality of display devices, the other original substrate is bonded via a sealing resin layer, the pair of bonded original substrates is divided and separated into a plurality of pairs of substrates of a size of each individual display device, and thereafter a substrate thinning process of thinning the substrates is performed in a state where the substrates are held by substrate holding means.
    Type: Grant
    Filed: September 30, 1999
    Date of Patent: May 21, 2002
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yasuhiro Matsushima
  • Patent number: RE39413
    Abstract: The present invention is a semiconductor wafer that enhances polish-stop endpointing in chemical-mechanical planarization processes. The semiconductor wafer has a substrate with a device feature formed on the substrate, a stratum of low friction material positioned over the substrate, and an upper layer deposited on the low friction material stratum. The low friction stratum has a polish-stop surface positioned at a level substantially proximate to a desired endpoint of the chemical-mechanical planarization process. The upper layer, which is made from either a conductive material or an insulative material, has a higher polishing rate than that of the low friction stratum. In operation, the low friction stratum resists chemical-mechanical planarization with either hard or soft polishing pads to stop the planarization process at the desired endpoint.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: November 28, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Guy F. Hudson, Renee Zahorik, Russell C. Zahorik