Using Ion Beam, Ultraviolet, Or Visible Light Patents (Class 216/66)
  • Publication number: 20110315655
    Abstract: A method of processing a graphene sheet material includes irradiating UV ray to a graphene sheet material in an atmosphere containing a first substance to inactivate an edge of the graphene sheet material by substituting an end group connected to the edge of the graphene sheet material with more stable functional group generated from the first substance, and irradiating UV ray to a surface of the graphene sheet material in an atmosphere containing a second substance containing oxygen to activate the second substance, and oxidize and remove a graphene sheet contained in the graphene sheet material sequentially from a surface side.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 29, 2011
    Applicant: FUJITSU LIMITED
    Inventor: Koji Asano
  • Patent number: 8083962
    Abstract: A method for forming a minute pattern includes depositing a material layer on a semiconductor substrate having a conductive region, forming a first mask layer on the material layer, forming a recess region in the first mask layer, performing layer processing to form a first mask pattern in the recess region, and etching the material layer to form a material layer pattern.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: December 27, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jang-Eun Lee, Kyung-Tae Nam, Se-Chung Oh, Jun-Ho Jeong
  • Patent number: 8079135
    Abstract: A method for providing a perpendicular magnetic recording (PMR) transducer is described. The PMR transducer provided includes a PMR pole and yoke structure coupled with the PMR pole. The method includes providing a hard mask and an intermediate layer. A first portion of the hard mask resides on the PMR pole. A second portion of the hard mask resides on another structure. The intermediate layer surrounds at least the PMR pole. The method also includes performing a planarization on at least the intermediate layer, removing the first portion of the hard mask on the PMR pole without completely removing the second portion of the hard mask on the other structure. The method further includes removing a remaining portion of the hard mask on the other structure, providing a write gap on the PMR pole, and providing a shield on the write gap.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: December 20, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yong Shen, Liubo Hong, Guanghong Luo, Honglin Zhu, Lei Wang, Yingjian Chen
  • Patent number: 8074345
    Abstract: A method of measuring a bevel angle in a write pole comprises the step of providing a mask over a wafer containing the write pole. The mask has a first opening over the write pole and a second opening over a sacrificial region of the wafer. The sacrificial region comprises a same material as the write pole. The method further comprises the steps of performing a beveling operation on the write pole and the sacrificial region to form a first bevel in the write pole and a second bevel in the sacrificial region, and measuring an angle of the second bevel in the sacrificial region to determine the bevel angle of the write pole.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: December 13, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Alexandre Anguelouch, Donghong Li
  • Patent number: 8070969
    Abstract: A method of fabricating microelectromechanical systems devices is disclosed. A silicon substrate having a plurality of microelectromechanical systems elements formed on a first surface thereof is provided. A guard layer defining a plurality of recesses is applied to the silicon substrate such that respective microelectromechanical systems elements are located within respective recesses. The silicon substrate is then segmented into discrete parts and an adhesive layer is bonded to a second surface of the silicon substrate. The guard layer is next segmented into discrete parts corresponding to the discrete parts of the silicon substrate, thereby forming individual microelectromechanical systems devices. Finally, the adhesive layer is selectively exposed to a light source allowing removal of individual microelectromechanical systems devices.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: December 6, 2011
    Assignee: Silverbrook Research Pty Ltd
    Inventor: Kia Silverbrook
  • Patent number: 8065798
    Abstract: A fabrication method which can improve electrical properties, shorten processing time, and reduce the thickness of a chip package by achieving an ultra-thin fine circuit pattern. The method for fabricating a printed circuit board includes: providing an insulating material; forming in the insulating material at least one via-hole for interlayer electrical connection; ion beam treating the surface of the insulating material having the via-hole formed therein; forming a copper seed layer on the surface-treated insulating material using a vacuum deposition process; and plating a copper pattern on the copper seed layer to form a circuit pattern.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: November 29, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Dong Sun Kim, Taehoon Kim, Jong Seok Song, Sam Jin Her, Jun Heyoung Park
  • Patent number: 8056214
    Abstract: A magnetic head includes a pole layer, first and second side shields, and an encasing layer having a pole groove that accommodates the pole layer and first and second side shield grooves that accommodate the first and second side shields. In a manufacturing method for the magnetic head, the pole groove and first and second initial side shield grooves are formed in a nonmagnetic layer using an etching mask layer having first to third openings. In the manufacturing method, a wall face of the first initial side shield groove that is closer to the pole groove and a wall face of the second initial side shield groove that is closer to the pole groove are etched by dry etching to thereby complete the first and second side shield grooves.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: November 15, 2011
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Kazuo Ishizaki, Hironori Araki, Hiroyuki Ito, Shigeki Tanemura, Atsushi Iljima
  • Patent number: 8056213
    Abstract: A PMR head comprises a substrate, a magnetic pole formed over the substrate, the pole having a pole tip having a cross-sectional tapered shape wherein the pole tip is surrounded by a write gap layer, an integrated shield comprising side shields on the substrate laterally surrounding the pole tip and a trailing shield overlying the pole tip and integral with the side shields.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: November 15, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Lijie Guan, Joe Smyth, Moris Dovek
  • Patent number: 8051551
    Abstract: A method for fabricating a magnetic head having multiple readers includes forming a plurality of generally laterally positioned lower shields; forming a lower gap layer above each lower shield; forming a sensor above each lower gap layer; forming an upper gap layer above each sensor; and forming an upper shield above each upper gap layer; wherein an overall gap thickness is defined between vertically aligned pairs of the upper and lower shields, wherein the overall gap thickness between one of the pairs of upper and lower shields is thicker than the overall gap thickness between another of the pairs of upper and lower shields.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: November 8, 2011
    Assignee: International Business Machines Corporation
    Inventor: Peter Vandersalm Koeppe
  • Patent number: 8051552
    Abstract: A wrap around shield of a write head is fabricated in multiple processes, with side shields fabricated in one process, and a trailing shield formed in another process. These multiple processes form a stitched wrap around shield, resulting in more flexible and accurate placement of the trailing shield and side shields with respect to the write pole. These processes also independently form the dimensions (shapes and sizes) of the side shields and the trailing shield which allows better control of writeability, saturation, and adjacent track interference of the perpendicular recording write head.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: November 8, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Ming Jiang, Yi Zheng
  • Patent number: 8042259
    Abstract: A magnetic recording head and a method of manufacturing the same. The magnetic recording head includes a stack containing a main pole and a return pole. The stack includes a first magnetic layer having a groove formed therein; an insulating layer covering a surface of the groove; and a second magnetic layer pattern filling the groove covered with the insulating layer.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoo-san Lee, Young-hun Im, Yong-su Kim
  • Patent number: 8042260
    Abstract: The claimed invention pertains to methods of forming one or more inductors on a semiconductor substrate. In one embodiment, a method of forming an array of inductor core elements on a semiconductor substrate that includes integrated circuits is disclosed. A first set of spaced apart metallic core elements are formed over the substrate. Isolation sidewalls are then formed on side surfaces of the core elements. Afterward, a second set of metallic core elements are formed over the substrate. The first and second sets of core elements are substantially co-planar and interleaved such that only the isolation sidewalls separate adjacent core elements. Particular embodiments involve other processing operations, such as the selective electroplating of different types of metal to form core elements and/or the deposition and etching away of an isolation layer to form isolation sidewalls on the core elements.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: October 25, 2011
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Peter Johnson, Peter Smeys, Andrei Papou
  • Patent number: 8028399
    Abstract: Write elements and methods of fabricating magnetic write poles are described. For one method, a vertical mask structure is formed on a magnetic layer in locations of a pole tip and a yoke of a write pole. The vertical mask structure may be formed by coating vertical surfaces of resists with an atomic layer deposition (ALD) process or a similar process. A removal process is then performed around the vertical mask structure to define the pole tip and part of the yoke of the write pole, and the vertical mask structure is removed. A lower portion of the pole tip is them masked while the upper portion of the pole tip and the part of the yoke is exposed. The upper portion of the pole tip and the part of the yoke are then expanded with magnetic material, such as with a plating process.
    Type: Grant
    Filed: December 16, 2007
    Date of Patent: October 4, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Amanda Baer, Jeffrey S. Lille, Aron Pentek
  • Patent number: 8030620
    Abstract: A method is provided for creating a plurality of substantially uniform nano-scale features in a substantially parallel manner in which an array of micro-lenses is positioned on a surface of a substrate, where each micro-lens includes a hole such that the bottom of the hole corresponds to a portion of the surface of the substrate. A flux of charged particles, e.g., a beam of positive ions of a selected element, is applied to the micro-lens array. The flux of charged particles is focused at selected focal points on the substrate surface at the bottoms of the holes of the micro-lens array. The substrate is tilted at one or more selected angles to displace the locations of the focal points across the substrate surface. By depositing material or etching the surface of the substrate, several substantially uniform nanometer sized features may be rapidly created in each hole on the surface of the substrate in a substantially parallel manner.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: October 4, 2011
    Assignee: University of Houston
    Inventors: Vincent M. Donnelly, Demetre J. Economou, Paul Ruchhoeft, Lin Xu, Sri Charan Vemula, Manish Kumar Jain
  • Patent number: 8028400
    Abstract: A method for forming a tapered, electroplated structure. The method involves forming a first mask structure having an opening. A shrink material is deposited into the opening, such that the thickness of the shrink material is less than the thickness of the first mask structure. The first mask structure and the shrink material are then heated causing the sides of the opening in the mask structure to bulge inward. The shrink material is then removed, and a first electrically conductive material can then be electroplated into the opening to a thickness that is much less than the thickness of the mask. The bulbous shaped of the deformed photoresist mask forms a taper on the first electrically conductive material. The first mask can then be removed and a second electrically conductive material can be electroplated over the first electrically conductive material.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: October 4, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Christian Rene Bonhote, Jeffrey S. Lille, Scott Arthur MacDonald
  • Patent number: 8015692
    Abstract: A method for providing a perpendicular magnetic recording head includes providing a metal underlayer and forming a trench in the metal underlayer. The trench has a bottom and a top wider than the bottom. The method also includes providing a PMR pole. At least a portion of the PMR pole resides in the trench. The method also includes providing a write gap on the PMR pole and providing a top shield on at least the write gap.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: September 13, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Larry Zhang, Yong Shen, Honglin Zhu, Yizhong Wang
  • Patent number: 8015694
    Abstract: A “scissoring-type” current-perpendicular-to-the-plane (CPP) magnetoresistive sensor with dual ferromagnetic sensing or free layers separated by a nonmagnetic spacer layer has improved stability as a result of etch-induced uniaxial magnetic anisotropy in each of the free layers. Each of the two ferromagnetic free layers has an etch-induced uniaxial magnetic anisotropy and an in-plane magnetic moment substantially parallel to its uniaxial anisotropy in the quiescent state, i.e., the absence of an applied magnetic field. The etch-induced uniaxial anisotropy of each of the free layers is achieved either by direct ion etching of each of the free layers, and/or by ion etching of the layer on which each of the free layers is deposited. A strong magnetic anisotropy is induced in the free layers by the etching, which favors generally orthogonal orientation of the two free layers in the quiescent state.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: September 13, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew J. Carey, Jeffrey R. Childress, Stefan Maat, Neil Smith
  • Patent number: 8017023
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a resist on a magnetic recording layer, imprinting a stamper to the resist to transfer patterns of protrusions and recesses, and partially etching the magnetic recording layer in areas not covered with patterns of the resist used as masks by ion beam etching using a mixed gas of He and N2 as well as modifying a remainder of the magnetic recording layer to leave behind a nonmagnetic layer having a reduced thickness.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: September 13, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiyuki Kamata, Kaori Kimura, Yousuke Isowaki, Masatoshi Sakurai
  • Patent number: 8011084
    Abstract: A method for manufacturing a manufacturing a magnetoresistive sensor that allows the sensor to be constructed with a very narrow and well controlled track width. The method includes depositing a layer of diamond like carbon over a series of sensor layers. A first mask is then formed to define a sensor, and an ion milling is performed to remove sensor material not protected by the first mask. Then, a second mask is formed, and a hard bias layer is deposited to the thickness of the sensor layers. The second mask is then lifted off and a CMP is performed to remove the first mask structure. Because all areas other than the area directly over the sensor are substantially planar a quick, gentle CMP can be used to remove the first mask layer even if the first mask is small, such as for definition of a very narrow track-width sensor.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: September 6, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Quang Le, Jui-Lung Li
  • Patent number: 8002997
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a resist on a magnetic recording layer, imprinting a stamper to the resist to transfer patterns of protrusions and recesses, and partially etching the magnetic recording layer in areas not covered with patterns of the resist used as masks by ion beam etching using a mixed gas of He and N2 as well as modifying a remainder of the magnetic recording layer to leave behind a nonmagnetic layer having a reduced thickness.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: August 23, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiyuki Kamata, Kaori Kimura, Yousuke Isowaki, Masatoshi Sakurai
  • Publication number: 20110163068
    Abstract: A multibeam system in which a charged particle beam and one or more additional beams can be directed to the target within a single vacuum chamber. A first beam colunm preferably produces a beam for rapid processing, and a second beam column produces a beam for more precise processing. A third beam column can be used to produce a beam useful for forming an image of the sample while producing little or no change in the sample.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 7, 2011
    Inventors: Mark Utlaut, Noel Smith, Paul P. Tesch, Tom Miller, David H. Narum, David Tuggle, Lawrence Scipioni
  • Patent number: 7972523
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a magnetic recording layer, an oxidation inhibiting layer, a hard mask layer includes carbon on a substrate, coating the hard mask layer with a resist, transferring patterns of protrusions and recesses to the resist by imprinting to form resist patterns, sequentially performing etching of the hard mask layer using the resist patterns as masks, etching of the oxidation inhibiting layer, and etching and/or magnetism deactivation of the magnetic recording layer to form patterns of the magnetic recording layer, and sequentially performing stripping of the resist patterns, stripping of the hard mask layer and stripping of the oxidation inhibiting layer, in which ion beam etching is used for stripping the oxidation inhibiting layer.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: July 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kaori Kimura, Yousuke Isowaki, Yoshiyuki Kamata, Masatoshi Sakurai
  • Patent number: 7967993
    Abstract: According to one embodiment, a method of manufacturing a magnetic recording medium includes forming a hard mask and a resist on a magnetic recording layer, imprinting a stamper on the resist to transfer patterns of protrusions and recesses, removing resist residues left in the recesses of the patterned resist, etching the hard mask using the patterned resist as a mask to transfer the patterns of protrusions and recesses, stripping the resist, and performing ion beam etching to remove the remaining hard mask and to modify a surface of the magnetic recording layer uncovered with the remaining hard mask.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: June 28, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yousuke Isowaki, Kaori Kimura, Yoshiyuki Kamata, Masatoshi Sakurai
  • Patent number: 7963024
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic data recording. The method allows an upper write coil to be formed directly on a conformally deposited layer of non-magnetic material such as alumina which has been deposited over a magnetic shaping layer and write pole. The method allows the write coil to be constructed without the need for the deposition of a thick alumina fill layer and subsequent chemical mechanical polishing. This, therefore, avoids the necessity of such a chemical mechanical polishing step.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: June 21, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Aaron Neuhaus
  • Patent number: 7951303
    Abstract: By working a grabbing portion by a charged particle beam of FIB or the like, the grabbing portion in parallel with the beam can be formed, and also dust adhered to the grabbing portion is removed. When a small sample represented by a TEM sample is fabricated by being cut out by etching by a charged particle beam and is carried at inside of an apparatus of irradiating a charged particle beam, the sample is etched in a direction of irradiating the charged particle beam, and therefore, a mechanism pinched by a grabbing face of a grabbing portion can be worked in a direction the same as that in working the sample, and therefore, a change in an attitude can be reduced when the sample and the grabbing face are fabricated by parallel faces.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: May 31, 2011
    Assignee: Sii Nanotechnology Inc.
    Inventor: Masanao Munekane
  • Patent number: 7950138
    Abstract: A main pole layer is deposited within an opening in a patterned photoresist layer on a substrate. The photoresist is thinned to expose an upper portion of a pole tip region that is then trimmed to a rectangular shape while a lower portion retains an inverted trapezoidal shape. Thereafter, a second trimming process forms a pole tip with a first width in the upper rectangular portion and a second thickness and second width which is less than the first width in the lower portion. A CMP step subsequently thins the upper portion to a first thickness of 0.04 to 0.08 microns while the second thickness remains at 0.16 to 0.32 microns. The bottom surface of the lower portion along the ABS becomes the trailing edge in a recording operation. The pole tip has a consistent first width (track width) that is not influenced by CMP process variations.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: May 31, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Donghong Li, Yoshitaka Sasaki
  • Patent number: 7938975
    Abstract: A method of etching a semiconductor substrate. The method includes the steps of applying a photoresist etch mask layer to a device surface of the substrate. A select first area of the photoresist etch mask is masked, imaged and developed. A select second area of the photoresist etch mask layer is irradiated to assist in post etch stripping of the etch mask layer from the select second area. The substrate is etched to form fluid supply slots through a thickness of the substrate. At least the select second area of the etch mask layer is removed from the substrate, whereby mask layer residue formed from the select second area of the etch mask layer is significantly reduced.
    Type: Grant
    Filed: July 19, 2007
    Date of Patent: May 10, 2011
    Assignee: Lexmark International, Inc.
    Inventors: John W. Krawczyk, James M. Mrvos, Girish S. Patil, Jason T. Vanderpool, Brian C. Hart, Christopher J. Money, Jeanne M. Saldanha Singh, Karthik Vaideeswaran
  • Patent number: 7921544
    Abstract: A thin-film magnetic head structure has a configuration adapted to manufacture a thin-film magnetic head configured such that a main magnetic pole layer including a magnetic pole end part on a side of a medium-opposing surface opposing a recording medium, a write shield layer opposing the magnetic pole end part so as to form a recording gap layer on the medium-opposing surface side, and a thin-film coil wound about the write shield layer or main magnetic pole layer are laminated. The main magnetic pole layer has an end face joint structure where respective end faces of the magnetic pole end part and a yoke magnetic pole part having a size greater than that of the magnetic pole end part are joined to each other, and a surface with a flat structure on a side closer to the thin-film coil.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: April 12, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hironori Araki, Shigeki Tanemura, Hiroyuki Ito, Lijie Guan
  • Patent number: 7917241
    Abstract: A method and system of location specific processing on a plurality of substrates is described. The method comprises measuring metrology data for the plurality of substrates. Thereafter, the method comprises computing correction data for a first substrate using the metrology data, followed by computing correction data for a second substrate using the metrology data. While computing the correction data for a second substrate, the method comprises applying the correction data for a first substrate to the first substrate using a gas cluster ion beam (GCIB).
    Type: Grant
    Filed: August 1, 2007
    Date of Patent: March 29, 2011
    Assignee: TEL Epion Inc.
    Inventors: Nicolaus J. Hofmeester, Steven P. Caliendo
  • Patent number: 7910011
    Abstract: A magnetic head includes: a pole layer including a track width defining portion and a wide portion; and an encasing layer disposed on a bottom forming layer and having a groove that accommodates the pole layer. The groove includes a first portion for accommodating at least part of the track width defining portion, and a second portion for accommodating at least part of the wide portion. A manufacturing method for the magnetic head includes: the step of etching a nonmagnetic layer that will become the encasing layer later, such that an initial groove including the first portion is formed in the nonmagnetic layer; the step of forming an initial groove mask covering the first portion; and a second etching step for etching the nonmagnetic layer so as to complete the groove. When the second etching step starts, a portion of the top surface of the bottom forming layer located in a region in which the second portion is to be formed is covered with the nonmagnetic layer or the initial groove mask.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 22, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Hironori Araki, Yoshitaka Sasaki, Hiroyuki Itoh, Shigeki Tanemura, Kazuo Ishizaki
  • Patent number: 7900342
    Abstract: Magnetoresistance sensors with magnetic pinned layers that are pinned by anisotropic etch induced magnetic anisotropies and methods for fabricating the magnetoresistance sensors are provided. The method comprises forming a seed layer structure. The seed layer is etched to form an anisotropic etch along a top surface of the seed layer. A magnetic pinned layer is formed on the top surface of the seed layer structure. The anisotropic etch on the top surface of the seed layer structure induces a magnetic anisotropy in the magnetic pinned layer, which pins the magnetization of the magnetic pinned layer structure.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: March 8, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: James M. Freitag, Mustafa M. Pinarbasi
  • Patent number: 7895732
    Abstract: An embodiment of the present invention relates to a method of manufacturing a perpendicular magnetic recording having a main pole, return pole and trailing side shield disposed on the trailing side and the cross track direction side of said main pole. A process is described where the main pole has an etching layer in the upper part. The top and sides of the main pole having the etching signal layer in the upper part are covered with a nonmagnetic gap layer while leaving open a region forming the side shield. The nonmagnetic gap layer is then etched until a signal from the etching signal layer is detected by an etching signal detector. The trailing side shield on the top and sides of the nonmagnetic gap layer are then formed after the etching is halted.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 1, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Tomohiro Okada, Isao Nunokawa, Kimitoshi Etoh, Kikuo Kusukawa
  • Patent number: 7897201
    Abstract: A method is for manufacturing a magnetoresistance effect element having a magnetization fixed layer, a non-magnetic intermediate layer, and a magnetization free layer being sequentially stacked. The method includes: forming at least a part of a magnetic layer that is to become either one of the magnetization fixed layer and the magnetization free layer; forming a function layer including at least one of an oxide, a nitride, and a fluoride on the part of the magnetic layer; and removing a part of the function layer by exposing the function layer to either one of an ion beam and plasma irradiation.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: March 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiromi Yuasa, Hideaki Fukuzawa, Yoshihiko Fuji, Hitoshi Iwasaki
  • Publication number: 20110042353
    Abstract: Ablation of holes having diameters as small as 82 nm and having clean walls was obtained in a poly(methyl methacrylate) on a silicon substrate by focusing pulses from a Ne-like Ar, 46.9 nm wavelength, capillary-discharge laser using a freestanding Fresnel zone plate diffracting into third order is described. Spectroscopic analysis of light from the ablation has also been performed. These results demonstrate the use of focused coherent EUV/SXR light for the direct nanoscale patterning of materials.
    Type: Application
    Filed: August 23, 2010
    Publication date: February 24, 2011
    Applicants: Colorado State University Research Foundation, JMAR Technologies, Inc., The Regents of University of California
    Inventors: Carmen S. Menoni, Jorge J. Rocca, Georgiy Vaschenko, Scott Bloom, Erik H. Anderson, Weilun Chao, Oscar Hemberg
  • Publication number: 20110036810
    Abstract: An electron gun with a truncated-cone-shaped cathode with uniform emission current density is efficiently manufactured. A manufacturing method of a cathode electron gun equipped with a supply source for diffusing oxide of a metal element on a single crystal needle of tungsten or molybdenum includes steps of forming a truncated-cone-shape having a flat plane at a single crystal edge serving as the cathode by machining beforehand, thereafter thinning and removing a front layer of the flat plane by a focused gallium ion beam, and re-flattening it.
    Type: Application
    Filed: March 25, 2008
    Publication date: February 17, 2011
    Inventors: Fumihiro Nakahara, Ryozo Nonogaki, Yoshinori Terui
  • Patent number: 7882618
    Abstract: Methods of fabricating magnetic read heads are provided which reduce the width of the scratch exposure region of a read head. During normal fabrication processes, a read head is formed with a first shield, a read element formed on the first shield, and hard bias layers formed on either side of the read element. The width of the read elements and the hard bias layers define an initial scratch exposure region. According to embodiments herein, a mask structure is formed to protect the read element and first portions of the hard bias layers proximate to the read element. A removal process is then performed to remove second portions of the hard bias layers that are not protected by the mask structure, which defines a final scratch exposure region that is smaller than the initial scratch exposure region.
    Type: Grant
    Filed: December 16, 2007
    Date of Patent: February 8, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: David P. Druist, Mohamad T. Krounbi, David J. Seagle
  • Patent number: 7883839
    Abstract: A method is provided for creating a plurality of substantially uniform nano-scale features in a substantially parallel manner in which an array of micro-lenses is positioned on a surface of a substrate, where each micro-lens includes a hole such that the bottom of the hole corresponds to a portion of the surface of the substrate. A flux of charged particles, e.g., a beam of positive ions of a selected element, is applied to the micro-lens array. The flux of charged particles is focused at selected focal points on the substrate surface at the bottoms of the holes of the micro-lens array. The substrate is tilted at one or more selected angles to displace the locations of the focal points across the substrate surface. By depositing material or etching the surface of the substrate, several substantially uniform nanometer sized features may be rapidly created in each hole on the surface of the substrate in a substantially parallel manner.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: February 8, 2011
    Assignee: University of Houston
    Inventors: Vincent M Donnelly, Demetre J. Economou, Paul Ruchhoeft, Lin Xu, Sri Charan Vemula, Manish Kumar Jain
  • Patent number: 7877860
    Abstract: A method of manufacturing a magnetic head includes the steps of forming an underlying layer, forming a pole layer including a track width defining portion at least by plating, using the underlying layer as an electrode, such that the track width defining portion is disposed on the underlying layer, and removing the underlying layer except a portion below the pole layer by ion beam etching. The underlying layer is made of a conductive material whose etching rate of ion beam etching is higher than that of the magnetic alloy used to make the pole layer.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 1, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Shigeki Tanemura, Hironori Araki
  • Patent number: 7877855
    Abstract: A method for forming a vertical coupling structure for non-adjacent resonators is provided to have a first and a second resonators, a dielectric material layer, a first and a second high-frequency transmission lines and at least one via pole. The first and the second resonators respectively have a first and a second opposite metal surfaces. The dielectric material layer is disposed between the opposite second metal surfaces of the first and the second resonators. The first and the second transmission lines are respectively arranged at sides of the first metal surfaces of the first resonator and the second resonator. The first high-frequency transmission line is vertically connected to the second high-frequency transmission line by the via pole.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: February 1, 2011
    Assignees: Industrial Technology Research Institute, National Taiwan University
    Inventors: Chia-Cheng Chuang, Ruey-Beei Wu, Tze-Min Shen
  • Patent number: 7867406
    Abstract: Patterned magnetic recording media and associated methods of fabrication are described. The patterned magnetic recording media includes a perpendicular magnetic recording layer that is patterned into a plurality of discrete magnetic islands. The patterned magnetic recording media also includes an exchange bridge structure formed from magnetic material that connects the islands of the perpendicular magnetic recording layer. Connecting the islands with magnetic material increases exchange coupling between the islands, which makes the islands more magnetically stable.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: January 11, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Thomas R. Albrecht, Manfred E. Schabes
  • Patent number: 7866029
    Abstract: A method for forming a pattern film with a narrower width than the resolution of an exposure machine and a resist used independently of etching is provided. The method comprises the steps of: forming a first frame layer having end surfaces facing each other across a space having a width W1; forming a second frame layer having end surfaces facing each other across a space having a width W2 that is larger than the width W1, the space having the width W2 being located right above the space having the width W1; forming a trench-forming film provided with a trench having a minimum width W3 that is smaller than the width W1 so as to fill at least a part of the spaces having the width W1 and the width W2 respectively; and forming a pattern film so as to fill at least a part of the trench.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: January 11, 2011
    Assignee: TDK Corporation
    Inventors: Hirotaka Gomi, Mitsuharu Isobe, Noriyuki Ito, Hiroaki Funada, Takeshi Yamana, Makoto Terasawa, Yasuhiro Hasegawa
  • Patent number: 7861401
    Abstract: A high performance TMR element is fabricated by inserting an oxygen surfactant layer (OSL) between a pinned layer and AlOx tunnel barrier layer in a bottom spin valve configuration. The pinned layer preferably has a SyAP configuration with an outer pinned layer, a Ru coupling layer, and an inner pinned layer comprised of CoFeXBY/CoFeZ wherein x=0 to 70 atomic %, y=0 to 30 atomic %, and z=0 to 100 atomic %. The OSL is formed by treating the CoFeZ layer with oxygen plasma. The AlOx tunnel barrier has improved uniformity of about 2% across a 6 inch wafer and can be formed from an Al layer as thin as 5 Angstroms. As a result, the Hin value can be decreased by ? to about 32 Oe. A dR/R of 25% and a RA of 3 ohm-cm2 have been achieved for TMR read head applications.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: January 4, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Hui-Chuan Wang, Tong Zhao, Min Li, Kunliang Zhang
  • Patent number: 7849586
    Abstract: A method for making a power inductor comprises providing a first magnetic core comprising a ferrite bead core material, cutting a first cavity and a first air gap in said first magnetic core, and attaching a second magnetic core to said first magnetic core at least one of in and adjacent to said air gap.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: December 14, 2010
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Publication number: 20100294654
    Abstract: The present invention relates to a micro metal mold for manufacturing micro metal sheet products provided with a fine or micro opening(s) or an aperture(s) together with or independently of a groove(s) and/or a protrusion(s), a method for making the mold by the electroforming or electroplating method, a method for making the mold and micro metal sheet products manufactured by using the micro metal mold. According to the invention, it is possible to manufacture micro metal sheet products, provided with fine and precise dimensions of an opening(s) as well as a groove(s) and/or a protrusion(s), under a mass production.
    Type: Application
    Filed: August 24, 2007
    Publication date: November 25, 2010
    Inventors: Tae Heum Park, Chang Hee Han
  • Patent number: 7832084
    Abstract: A method of recording servo information includes writing servo information in a data storage medium using a compound magnetic recording head. The compound magnetic recording head has a substrate including first and second magnetically permeable substrate portions and a substantially non-magnetic member interposed between the first and second magnetically permeable substrate portions. A magnetically permeable layer is provided over the first and second magnetically permeable substrate portions of the substrate and includes first and second writing gap features associated with the first and second substrate portions. The writing gap features are formed using a patterned mask layer over the magnetically permeable layer, wherein the patterned mask layer comprises first and second patterned gap features corresponding to the first and second writing gap features.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: November 16, 2010
    Assignee: Advanced Research Corporation
    Inventors: Matthew P. Dugas, Theodore A. Schwarz, Gregory L. Wagner
  • Patent number: 7833388
    Abstract: A method for manufacturing a magnetic layer with a magnetic anisotropy. The method includes an endpoint detection process for determining an end point to carefully control the final thickness of the magnetic layer. The method includes depositing a magnetic layer and then depositing a sacrificial layer over the magnetic layer. A low power angled ion milling is then performed until the magnetic layer has been reached. The angled ion milling can be performed at an angle relative to normal and without rotation in order to form an anisotropic surface texture that induces a magnetic anisotropy in the magnetic layer. An indicator layer may be included between the magnetic layer and the sacrificial layer in order to further improve endpoint detection.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 16, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Matthew Joseph Carey, Jeffrey Robinson Childress, Stefan Maat
  • Patent number: 7832082
    Abstract: A method for manufacturing an integrated lead suspension component. One or more first conductive ground planes are formed on a stainless steel base layer. One or more second conductive ground planes, including portions on the surface of the first conductive ground planes, are formed at void portions and backed portions of the stainless steel base layer. The material of the second conductive ground planes is non-reactive to a first etchant. An insulating layer is formed on the second ground planes on the side opposite the stainless steel base layer and on the stainless steel base layer. Traces are formed on the insulating layer. Voids are formed in void portions of the stainless steel base layer using the first etchant and the second conductive ground planes at the void portions as etch stops.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: November 16, 2010
    Assignee: Hutchinson Technology Incorporated
    Inventors: Reed T. Hentges, Kurt C. Swanson, Peter F. Ladwig
  • Patent number: 7827674
    Abstract: A method for providing a giant magneto-resistive (GMR) sensor for use in sensing magnetic flux is provided. The method comprises positioning a layer of Cu material between first and second layers of a specified ferromagnetic material. The respective end surfaces of the Cu layer and the first and second layers are initially located in a common plane and in a co-planar relationship with one another. The method further comprises removing an amount of material from the copper layer to form a new end surface thereof that is selectively spaced apart from the common plane and applying a protective coating to the new end surface of the Cu layer to inhibit corrosion of the Cu layer.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: November 9, 2010
    Assignee: Oracle America, Inc.
    Inventors: John P. Nibarger, Herbert House
  • Publication number: 20100264111
    Abstract: Silicon, silicon dielectrics and low-k dielectrics are etched in a focused ion beam process using gaseous fluorinating etchants selected from the group of triethylamine trihydrofluoride (TEATHF) and xenon fluoride. Xenon fluoride is combined with a secondary protecting agent to avoid undesired corrosion of bare silicon. The protecting agent may be an oxidizing agent such as oxygen, perfluorotripentylamine (PFTPA), or a heavy completely fluorinated hydrocarbon.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 21, 2010
    Inventor: Vladimir V. Makarov
  • Patent number: 7810227
    Abstract: Using a beam of xenon ions together with a suitable mask, a GMR stack is ion milled until a part of it, no more than about 0.1 microns thick, has been removed so that a pedestal, having sidewalls comprising a vertical section that includes all of the free layer, has been formed. This is followed by formation of the dielectric and conductive lead layers in the usual way. Using xenon as the sputtering gas enables the point at which milling is terminated to be more precisely controlled.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: October 12, 2010
    Assignees: Headway Technologies, Inc., TDK Corporation
    Inventors: Stuart Kao, Chunping Luo, Chaopeng Chen, Takahiko Machita, Daisuke Miyauchi, Jeiwei Chang