Diffusion Type Patents (Class 228/193)
  • Patent number: 10399191
    Abstract: A method for producing heat exchangers having at least two fluid circuits each having channels, including the following steps: producing one or a plurality of elements of a first fluid circuit, each element having at least two metal plates, at least one of which has first grooves; stacking the at least two metal plates of each element in such a way that the first grooves form the channels of the first circuit; assembling each element of the first circuit by diffusion welding between the two stacked metal plates; producing one or a plurality of elements of at least one second fluid circuit, each element of the second circuit having at least a portion of the channels of the second circuit; assembling, either by diffusion welding, or by brazing, or by diffusion brazing between the element or elements of the first circuit and the element or elements of the second circuit.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: September 3, 2019
    Assignee: COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Emmanuel Rigal, Lionel Cachon, Jean-Marc Leibold, Isabelle Moro-Le Gall, Fabien Vidotto
  • Patent number: 10396235
    Abstract: Indentation approaches for foil-based metallization of solar cells, and the resulting solar cells, are described. For example, a method of fabricating a solar cell includes forming a plurality of alternating N-type and P-type semiconductor regions in or above a substrate. The method also includes locating a metal foil above the alternating N-type and P-type semiconductor regions. The method also includes forming a plurality of indentations through only a portion of the metal foil, the plurality of indentations formed at regions corresponding to locations between the alternating N-type and P-type semiconductor regions. The method also includes, subsequent to forming the plurality of indentations, isolating regions of the remaining metal foil corresponding to the alternating N-type and P-type semiconductor regions.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: August 27, 2019
    Assignees: SunPower Corporation, Total Marketing Services
    Inventors: Richard Hamilton Sewell, Nils-Peter Harder
  • Patent number: 10325805
    Abstract: According to one embodiment, a method for manufacturing a semiconductor device is disclosed. The method includes forming a co-catalyst layer and catalyst layer above a surface of a semiconductor substrate. The co-catalyst layer and catalyst layer have fcc structure. The fcc structure is formed such that (111) face of the fcc structure is to be oriented parallel to the surface of the semiconductor substrate. The catalyst includes a portion which contacts the co-catalyst layer. The portion has the fcc structure. An exposed surface of the catalyst layer is planarized by oxidation and reduction treatments. A graphene layer is formed on the catalyst layer.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: June 18, 2019
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masayuki Kitamura, Atsuko Sakata, Makoto Wada, Yuichi Yamazaki, Masayuki Katagiri, Akihiro Kajita, Tadashi Sakai, Naoshi Sakuma, Ichiro Mizushima
  • Patent number: 10307870
    Abstract: An aluminum alloy brazing sheet achieves a stable brazability equal to by brazing using a flux, even if an etching treatment is not performed on the brazing site. The aluminum alloy brazing sheet is used to braze aluminum in an inert gas atmosphere without using a flux and includes a core material and a filler metal, one side or each side of the core material being clad with the filler metal, the core material being formed of an aluminum alloy that includes 0.2 to 1.3 mass % of Mg, the filler metal including 6 to 13 mass % of Si and 0.004 to 0.1 mass % of Li, with the balance being aluminum and unavoidable impurities, a surface oxide film having been removed from the brazing sheet, and an oil solution that decomposes when heated at 380° C. or less in an inert gas having been applied to the brazing sheet.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: June 4, 2019
    Assignee: UACJ CORPORATION
    Inventors: Yasunaga Itoh, Tomoki Yamayoshi
  • Patent number: 10226820
    Abstract: A method for manufacturing a cemented carbide body includes the steps of forming a first part of a first powder composition comprising a first carbide and a first binder phase, sintering the first part to full density in a first sintering operation, forming a second part of a second powder composition comprising a second carbide and a second binder phase, sintering the second part to full density in a second sintering operation, bringing a first surface of the first part and a second surface of the second part in contact, and joining the first and second surface in a heat treatment operation.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: March 12, 2019
    Assignee: SECO TOOLS AB
    Inventors: Bo Jansson, Per Jonsson, Tomas Persson
  • Patent number: 10163681
    Abstract: A method for bonding of a first solid substrate to a second solid substrate which contains a first material with the following steps, especially the following sequence: formation or application of a function layer which contains a second material to the second solid substrate, making contact of the first solid substrate with the second solid substrate on the function layer, pressing together the solid substrates for forming a permanent bond between the first and second solid substrate, at least partially reinforced by solid diffusion and/or phase transformation of the first material with the second material, an increase of volume on the function layer being caused.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: December 25, 2018
    Assignee: EV Group E. Thallner GmbH
    Inventors: Klaus Martinschitz, Markus Wimplinger, Bernhard Rebhan, Kurt Hingerl
  • Patent number: 9878396
    Abstract: A bearing component and a method to form a bearing component. The bearing component comprises a first and a second metallic material wherein the first material presents a first carbon content and the second material presents a second carbon content, wherein the first material and the second material have been joined by a diffusion welding process. The diffusion welding process has resulted in a transition zone with a varying carbon content between the first material and the second material. The varying carbon content in the transition zone is essentially within an interval, wherein the interval end points are defined by the carbon content of the first material and the second material.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: January 30, 2018
    Assignee: AKTIEBOLAGET SKF
    Inventor: Ingemar Strandell
  • Patent number: 9677170
    Abstract: Provided is a target formed of a sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride or high-melting point metal boride comprising a structure in which a target material formed of a sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride or high-melting point metal boride and a high-melting point metal plate other than the target material are bonded. Additionally provided is a production method of such a target capable of producing, with relative ease, a target formed of a sintering-resistant material of high-melting point metal alloy, high-melting point metal silicide, high-melting point metal carbide, high-melting point metal nitride or high-melting point metal boride, which has poor machinability, can relatively easily produced.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: June 13, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventor: Yasuhiro Yamakoshi
  • Patent number: 9643283
    Abstract: An aluminum alloy brazing sheet achieves a stable brazability equal to by brazing using a flux, even if an etching treatment is not performed on the brazing site. The aluminum alloy brazing sheet is used to braze aluminum in an inert gas atmosphere without using a flux and includes a core material and a filler metal, one side or each side of the core material being clad with the filler metal, the core material being formed of an aluminum alloy that includes 0.2 to 1.3 mass % of Mg, the filler metal including 6 to 13 mass % of Si and 0.004 to 0.1 mass % of Li, with the balance being aluminum and unavoidable impurities, a surface oxide film having been removed from the brazing sheet, and an oil solution that decomposes when heated at 380° C. or less in an inert gas having been applied to the brazing sheet.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: May 9, 2017
    Assignee: UACJ CORPORATION
    Inventors: Yasunaga Itoh, Tomoki Yamayoshi
  • Patent number: 9598111
    Abstract: A vehicle structural member, such as a rocker panel, including a micro-truss core. The structural member includes specially configured and opposing outer panels that are welded together to define a channel therein, where the micro-truss core is placed in one of the panels or is fabricated to one of the panels during the micro-truss fabrication process before the panels are secured together. The micro-truss core can include separate individual sections, where each section has a tailored stiffness for that location in the member, or the micro-truss core can be a continuous core, where different sections along the length of the core are fabricated with different stiffnesses.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: March 21, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Steven C. Lang, Nilesh D. Mankame, Joseph M. Polewarczyk
  • Patent number: 9422933
    Abstract: A conductive coating layer 2a, 2b is formed on at least one of an inner peripheral side and an outer peripheral side of a base body 2 of bellows 1 by diffusion-bonding. Regarding the diffusion-bonding, the flat conductive coating layer 2a, 2b is layered on at least one end surface side of the plate-shaped base body 2, and these base body 2 and conductive coating layer 2a, 2b are diffusion-bonded. After forming this diffusion-bonded multilayer member into a tubular body by a drawing process, a side wall of the tubular body is formed into a bellows shape. With these processes, it is possible to obtain the bellows that has the conductive coating layer having a more uniform thickness on the base body of the bellows and has extremely good characteristics (the mechanical characteristics and the electric characteristics).
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: August 23, 2016
    Assignee: MEIDENSHA CORPORATION
    Inventors: Toshinori Tatsumi, Eiichi Takahashi
  • Patent number: 9289847
    Abstract: A manufacturing method for a module having a hollow region, including: making an assembly including at least one recessed plate having a recess open at one face, defining thereon a recess outline and, between the face and the immediately adjacent plate of the assembly, a strand of material lying along the recess outline; treating the assembly, aiming to obtain diffusion bonding of the strand to the plate(s) with which it is in contact, to constitute, along its associated recess outline, a gas-tight connection of the two plates between which it is placed; and consolidating the assembly by hot isostatic pressing.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: March 22, 2016
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Emmanuel Rigal, Philippe Bucci
  • Patent number: 9216468
    Abstract: Provided are: a method for brazing an aluminum alloy, which is characterized in that brazing is carried out by heating an aluminum brazing sheet without using flux in a furnace that is in an argon gas-containing atmosphere, said aluminum brazing sheet comprising a core material that is composed of aluminum or an aluminum alloy and a brazing filler material that is composed of an aluminum alloy and clad on one surface or both surfaces of the core material, and said core material and/or said brazing filler material containing Mg; and a brazing apparatus which is used in the method for brazing an aluminum alloy. The brazing method has good and stable brazing properties and is applicable in industrial practice.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: December 22, 2015
    Assignees: Kanto Yakin Kogyo Co., Ltd., Furukawa-Sky Aluminum Corp.
    Inventors: Kiichi Kanda, Kenichi Watanabe, Yutaka Yanagawa
  • Patent number: 9073787
    Abstract: The present invention provides a ceramic to ceramic joint and methods for making such a joint. Generally, the joint includes a first ceramic part and a second ceramic part, wherein the first and second ceramic parts each include a ceramic-carbide or a ceramic-nitride material. In some cases, an aluminum-initiated joint region joins the first and second ceramic parts. This joint region typically includes chemical species from the first and second ceramic parts that have diffused into the joint region. Additionally, the first and second ceramic parts each typically include a joint diffusion zone that is disposed adjacent to the joint region and which includes aluminum species from the joint region that have diffused into the joint diffusion zone. Other implementations are also described.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: July 7, 2015
    Assignee: CERAMATEC, INC.
    Inventors: Fellows Joseph, Merrill Wilson
  • Patent number: 9034078
    Abstract: A method and apparatus are described for swing adsorption processes. The method includes obtaining different plates, wherein the plates have gaseous openings and a utility fluid opening. Then, the gaseous openings are substantially oriented along a common axis for gaseous openings and the plates are diffusion bonded. Once diffusion bonded, the gaseous openings within the module are wash coated with an adsorbent material.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: May 19, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Amar S. Wanni, Chithranjan Nadarajah, Jeffrey W. Frederick, Narasimhan Sundaram
  • Patent number: 9018605
    Abstract: A nuclear fusion reactor first wall component includes a copper alloy element, an intermediate metal layer made from niobium and a beryllium element, directly in contact with the intermediate metal layer. The intermediate niobium layer is further advantageously associated with a mechanical stress-reducing layer formed by a metal chosen from copper and nickel. This mechanical stress-reducing layer is in particular arranged between the intermediate niobium layer and the copper alloy element. Furthermore, when the mechanical stress-reducing layer is made from pure copper, a layer of pure nickel can be inserted between the niobium and the pure copper before diffusion welding. Such a component presents the advantage of having an improved thermal fatigue behavior while at the same time preventing the formation of intermetallic compounds at the junction between the beryllium and the copper alloy.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 28, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Pierre-Eric Frayssines, Philippe Bucci, Jean-Marc Leibold, Emmanuel Rigal
  • Publication number: 20150110637
    Abstract: A method of manufacturing a hollow component, such as a fan blade for a gas turbine engine, includes the steps of: (a) providing first and second panels and a membrane; (b) providing a stop-off material on at least one of the first and second panels and the membrane to define regions where no diffusion bonding is to take place; (c) assembling the panels and the membrane together so the membrane is between the panels; (d) diffusion bonding the panels and the membrane together. The method is such that when assembled in step (c) the membrane does not extend to at least one edge of the first and second panels, so that in that region the first and second panels are diffusion bonded directly to each other.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 23, 2015
    Inventors: Ian John ANDREWS, Michael James WALLIS, Ian FEARN
  • Patent number: 8991683
    Abstract: A method of forming a pack in a die by superplastic formation and diffusion bonding comprises applying a forming pressure within the pack to expand the pack within the die; and supplying gas between the die and the pack to apply a back pressure around an outside of the pack while the pack is being expanded to counteract the forming pressure to reduce surface mark off.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: March 31, 2015
    Assignee: The Boeing Company
    Inventors: Daniel G. Sanders, Larry D. Hefti, Gregory L. Ramsey
  • Patent number: 8973810
    Abstract: According to one aspect of the present disclosure, a part for an article of equipment includes a fluid conducting first region including a corrosion resistant first material, and a fluid conducting second region including a second material. The first region and the second region are either directly or indirectly joined by solid state welding to form a unitary fluid conducting part. According to another aspect of the present disclosure, a method for replacing at least one fluid conducting part of an article of equipment is disclosed wherein a replacement part is provided that includes a fluid conducting first region including a corrosion resistant first material, and a fluid conducting second region including a second material. The second material is substantially identical to the material of a region of the equipment on which the replacement part is mounted. The first and second regions are either directly or indirectly joined by solid state welding to form a unitary fluid conducting replacement part.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 10, 2015
    Assignee: ATI Properties, Inc.
    Inventors: Richard C. Sutherlin, Brett J. Herb, Ronald A. Graham
  • Publication number: 20150056467
    Abstract: The invention relates to a method for producing a nickel aluminide coating on a metal substrate. Said method includes the following steps: a) coating the substrate with a nickel deposit; b) applying an aluminum sheet onto the nickel deposit from step a) so as to form an assembly made up of the substrate coated with the nickel deposit and the aluminum sheet; and c) subjecting said assembly to heat treatment at a temperature that is lower than the melting point of aluminum, and at a low pressure so as to induce a reaction between the aluminum and the nickel and thus form a ?-NiAl nickel aluminide layer mounted on a nickel layer. The invention is particularly of use for protecting the materials used in turbines of aircraft engines.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 26, 2015
    Inventors: Pascal Bilhe, Marie-Pierre Bacos, Pierre Josso
  • Patent number: 8951465
    Abstract: A method for preparing an implant having a porous metal component. A loose powder mixture including a biocompatible metal powder and a spacing agent is prepared and compressed onto a metal base. After being compressed, the spacing agent is removed, thereby forming a compact including a porous metal structure pressed on the metal base. The compact is sintered, forming a subassembly, which is aligned with a metal substrate portion of an implant. A metallurgical bonding process, such as diffusion bonding, is performed at the interface of the subassembly and the metal substrate to form an implant having a porous metal component.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: February 10, 2015
    Assignee: Biomet Manufacturing, LLC
    Inventor: Gautam Gupta
  • Patent number: 8944309
    Abstract: A solder joint may be used to attach components of an organic vapor jet printing device together with a fluid-tight seal that is capable of performance at high temperatures. The solder joint includes one or more metals that are deposited over opposing component surfaces, such as an inlet side of a nozzle plate and/or an outlet side of a mounting plate. The components are pressed together to form the solder joint. Two or more of the deposited metals may be capable of together forming a eutectic alloy, and the solder joint may be formed by heating the deposited metals to a temperature above the melting point of the eutectic alloy. A diffusion barrier layer and an adhesion layer may be included between the solder joint and each of the components.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 3, 2015
    Assignee: The Regents of The University of Michigan
    Inventors: Stephen R. Forrest, Gregory McGraw
  • Publication number: 20150017475
    Abstract: Disclosed are methods of processing an object, the object being made of a metal or an alloy, the object having a plurality of open cavities, the method comprising: performing a sealing process on the object to seal the openings of the open cavities, thereby forming a plurality of closed cavities; and reducing the sizes of the closed cavities by performing a consolidation process on the object having the closed cavities. Sealing process may comprise shot peening or coating the object. A consolidation process may comprise a hot isostatic pressing process. The sizes of the closed cavities may be reduced until the closed cavities are no longer present in the object.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 15, 2015
    Inventor: Charles Malcolm Ward-Close
  • Patent number: 8905293
    Abstract: A bond free of an anti-stiction layer and bonding method is disclosed. An exemplary method includes forming a first bonding layer; forming an interlayer over the first bonding layer; forming an anti-stiction layer over the interlayer; and forming a liquid from the first bonding layer and interlayer, such that the anti-stiction layer floats over the first bonding layer. A second bonding layer can be bonded to the first bonding layer while the anti-stiction layer floats over the first bonding layer, such that a bond between the first and second bonding layers is free of the anti-stiction layer.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping-Yin Liu, Li-Cheng Chu, Hung-Hua Lin, Shang-Ying Tsai, Yuan-Chih Hsieh, Jung-Huei Peng, Lan-Lin Chao, Chia-Shiung Tsai, Chun-Wen Cheng
  • Patent number: 8899470
    Abstract: A method is disclosed for mechanically bonding a metal component to a ceramic material, comprising providing a metal component comprising an anchor material attached to at least a first portion of one surface of the metal component; providing a ceramic material having a first surface and a second surface, wherein the ceramic material defines at least one conduit extending from the first surface to the second surface, wherein the at least one conduit has a first open end defined by the first surface, a second open end defined by the second surface, a continuous sidewall and a cross sectional area; positioning the ceramic material such that at least a portion of the at least one conduit is in overlying registration with at least a portion of the anchor material; and applying a bonding agent into at least a portion of the at least one conduit.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: December 2, 2014
    Assignee: Corning Incorporated
    Inventors: David M. Lineman, Wenchao Wang, Randy D. Ziegenhagen
  • Patent number: 8844796
    Abstract: Disclosed herein is a method of making a structure by ultrasonic welding and superplastic forming. The method comprises assembling a plurality of workpieces comprising a first workpiece including a first material having superplastic characteristics; ultrasonically welding the first workpiece to a second workpiece, to form an assembly; heating the assembly to a temperature at which the first material having superplastic characteristics is capable of superplastic deformation, and injecting a fluid between the first workpiece and the second workpiece to form a cavity between the first workpiece and the second workpiece.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: September 30, 2014
    Assignee: The Boeing Company
    Inventor: Kevin T. Slattery
  • Publication number: 20140271003
    Abstract: A method of joining a plurality of parts to form a unitary body. At least two sintered parts are provided. At least one of the sintered parts has at least one internal channel. Each of the parts is formed of a hard metal composition of material. The at least two sintered parts are assembled into the shape of a unitary body. Each of the at least two sintered parts has a joining surface and when each joining surface is brought into contact the surfaces form a bonding interface therebetween. The assembled parts are subjected to a vacuum or gas atmosphere, without the application of external pressure, and to a temperature sufficient to fuse the at least two sintered parts together at the bonding interface to form the unitary body.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Gary William SWEETMAN, Ihsan AL-DAWERY, Jonathan FAIR
  • Publication number: 20140271008
    Abstract: A method of joining a plurality of parts to form a unitary body includes providing at least two sintered parts. Each of the parts is formed of a hard metal composition of material. The sintered parts are assembled into the shape of a unitary body. Each of the sintered parts has a joining surface and when each joining surface is brought into contact the surfaces form a bonding interface therebetween. The assembled sintered parts are subjected to a temperature sufficient to fuse the sintered parts together at the bonding interface to form the unitary body. A wear resistant tool includes a plurality of sintered parts, each of the sintered parts is formed of a hard metal composition of material, wherein the plurality of sintered parts can be assembled into a unitary body, wherein the assembled parts are fused together at a respective bonding interface to form the unitary body.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Gary William SWEETMAN, Ihsan AL-DAWERY, Jonathan FAIR
  • Publication number: 20140260808
    Abstract: A method of joining a plurality of parts to form a unitary body. At least two sintered parts are provided. At least one of the sintered parts has at least one internal cavity. Each of the parts is formed of a hard metal composition of material. The at least two sintered parts are assembled into the shape of a unitary body. Each of the at least two sintered parts has a joining surface and when each joining surface is brought into contact the surfaces form a bonding interface therebetween. The assembled parts are subjected to a vacuum or gas atmosphere, without the application of external pressure, and to a temperature sufficient to fuse the at least two sintered parts together at the bonding interface to form the unitary body.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Gary William SWEETMAN, Ihsan AL-DAWERY, Jonathan FAIR
  • Publication number: 20140272464
    Abstract: A method for applying a wear protection layer to a continuous flow machine component which has a base material comprising titanium is provided. The method includes the following steps: mixing a solder which comprises an alloy comprising titanium and particles which are distributed in the alloy and have a reaction agent; applying the solder to predetermined points of the continuous flow machine component; introducing a heat volume into the solder and the continuous flow machine component so that the alloy becomes liquid and the reaction agent changes through diffusion processes with the solder and undergoes a chemical reaction with the alloy, forming a hard aggregate; and cooling the solder so that the alloy becomes solid.
    Type: Application
    Filed: September 21, 2012
    Publication date: September 18, 2014
    Applicant: Siemens Aktiengesellschaft
    Inventors: Jochen Barnikel, Susanne Gollerthan, Harald Krappitz, Ingo Reinkensmeier
  • Patent number: 8827141
    Abstract: The present invention relates to a process and a device for joining precious metal sheets (1,4) to form structural parts, and to the products (1,4) made by the process.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: September 9, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Rudolf Singer, Stefan Zeuner, Bernd Weber, Joerg Kopatz
  • Publication number: 20140209285
    Abstract: A method for manufacturing an integral molded cooling device, a circulation channel of a refrigerant being formed in the inside of the cooling device, the method includes: laminating a channel forming plate, a top plate and a bottom plate, a plurality of comb tooth units being provided on the channel forming plate; and integrating the channel forming plate, the top plate and the bottom plate by diffusion joining.
    Type: Application
    Filed: October 28, 2013
    Publication date: July 31, 2014
    Applicant: FUJITSU LIMITED
    Inventors: Yuki HOSHINO, KENJI FUKUZONO
  • Publication number: 20140199114
    Abstract: A structure is disclosed herein. The structure includes a first component including a first material, and a second component joined to the first component. The second component includes a second material that is dissimilar from the first material. A spacer is disposed between the first and second components, and the spacer eliminates galvanic corrosion of the first component at an interface between the first component and the second component. The spacer includes a first layer consisting of the first material, a second layer bonded to the first layer and consisting of a third material, and a third layer bonded to the second layer and consisting of the second material. The third material of the second layer is different from the first material and different from the second material. Also disclosed herein are a method of making the structure, and a method for reducing galvanic corrosion.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kiran Deshpande, Kaustubh Narhar Kulkarni
  • Publication number: 20140198438
    Abstract: An information handling system is disclosed. The information handling system comprises a chassis including a metal base, and a metal insulation layer, and a processing unit coupled to the chassis.
    Type: Application
    Filed: January 14, 2013
    Publication date: July 17, 2014
    Inventors: Deeder M. Aurongzeb, Andrew T. Sultenfuss
  • Patent number: 8752752
    Abstract: A composite steel plate includes at least two steel sheets rolled to form a plate. One of the sheets has a composition that varies in a depthwise direction, between nanocrystalline and micron grained. The plate is made by treating a steel sheet to produce a composition in the sheet that varies in a depthwise direction of the sheet between nanocrystalline and micron grained, stacking the treated sheet with at least one other steel sheet, and rolling the stacked sheets to form the plate.
    Type: Grant
    Filed: March 9, 2009
    Date of Patent: June 17, 2014
    Assignee: Hong Kong Polytechnic University
    Inventors: Jian Lu, Junbao Zhang, Aiying Chen
  • Publication number: 20140153210
    Abstract: A microelectronic assembly includes a first substrate having a surface and a first conductive element and a second substrate having a surface and a second conductive element. The assembly further includes an electrically conductive alloy mass joined to the first and second conductive elements. First and second materials of the alloy mass each have a melting point lower than a melting point of the alloy. A concentration of the first material varies in concentration from a relatively higher amount at a location disposed toward the first conductive element to a relatively lower amount toward the second conductive element, and a concentration of the second material varies in concentration from a relatively higher amount at a location disposed toward the second conductive element to a relatively lower amount toward the first conductive element.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicant: INVENSAS CORPORATION
    Inventor: Cyprian Emeka Uzoh
  • Publication number: 20140144889
    Abstract: Disclosed herein are bonded structures and methods of forming the same. One embodiment of a bonded structure comprises first and second metallic layers and a bonding interface between the first and second metallic layers formed by diffusion and comprising a layer of at least one intermetallic compound. The intermetallic compound layer is formed in an area 52% or greater of an area of the bonding interface and has a thickness of 0.5 to 3.2 ?m.
    Type: Application
    Filed: January 31, 2014
    Publication date: May 29, 2014
    Applicant: Nissan Motor Co., Ltd.
    Inventors: Hiroshi Sakurai, Shigeyuki Nakagawa, Akira Fukushima, Sadao Yanagida, Chika Sugi
  • Patent number: 8727203
    Abstract: A method of manufacturing an orthopaedic implant device having a porous outer surface is described. In one embodiment, the implant device includes a porous layer, an intermediate layer, and a solid substrate. The porous layer is preferably bonded to the intermediate layer by cold isostatic pressing. The intermediate layer is preferably bonded by vacuum welding to the solid substrate such that the porous layer forms at least a portion of the outer surface of the orthopaedic implant device. Preferably, a diffusion bond is created between the bonded intermediate layer and the solid substrate by hot isostatic pressing. In another embodiment, a porous layer is created on an outer surface of a solid layer by selective melting. Preferably, the solid layer is bonded to the solid substrate such that the porous layer forms at least a portion of the outer surface of the orthopaedic implant device.
    Type: Grant
    Filed: September 16, 2010
    Date of Patent: May 20, 2014
    Assignee: Howmedica Osteonics Corp.
    Inventors: Aiguo Wang, Daniel E. Lawrynowicz, Haitong Zeng, Naomi Murray, Balaji Prabhu
  • Publication number: 20140117119
    Abstract: A high-frequency power supply 10 includes a shaft 16 bonded to one surface of a plate 12 serving as a gas distributor plate. The plate 12 includes a radio-frequency electrode 14 buried therein. The shaft 16 has a through-hole 20 through which a gas flows. The plate 12 and the shaft 16 are made of a ceramic material. The shaft 16 has a double-tube structure including the inner tube 18 and the outer tube 22. The interior space of the inner tube 18 forms the through-hole 20. The plate 12 is hermetically solid-state bonded to the inner tube 18 and the outer tube 22. The shaft 16 is bonded to the center of the plate 12.
    Type: Application
    Filed: October 21, 2013
    Publication date: May 1, 2014
    Applicant: NGK INSULATORS, LTD.
    Inventors: Yutaka UNNO, Tetsuhisa ABE
  • Patent number: 8707747
    Abstract: A process for manufacturing a shaped sandwich panel includes arranging a sandwich panel adjacent a die. The sandwich panel includes a core layer arranged between and connected to a first layer and a second layer. The core layer includes a plurality of apertures that extend through the core layer to the first layer. The first layer engages the die. Fluid within the apertures is pressurized to a pressure adequate to at least partially form the sandwich panel to a geometry of the die.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: April 29, 2014
    Assignee: Rohr, Inc.
    Inventor: Brian Norris
  • Patent number: 8702919
    Abstract: Sputtering targets are described that comprise: a) a target surface component comprising a target material; b) a core backing component having a coupling surface, a back surface and at least one open area, wherein the coupling surface is coupled to at least part of the target surface component; and wherein at least part of the target surface component fits into at least one open area of the core backing component. In some embodiments, the target surface component, the core backing component or a combination thereof have at least one surface area feature coupled to or located in the back surface of the core backing component, the target surface component or a combination thereof, wherein the surface area feature increases the cooling effectiveness of the target surface component.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: April 22, 2014
    Assignee: Honeywell International Inc.
    Inventors: Stephane Ferrasse, Werner H. Hort, Jaeyeon Kim, Frank C. Alford
  • Patent number: 8695195
    Abstract: A process for manufacturing a metal part reinforced with ceramic fibers including machining at least one housing for an insert in a metal body having an upper face. At least one insert formed from ceramic fibers in a metal matrix is placed in the housing. The insert is covered with a cover. A vacuum is created in the interstitial space around the insert and the interstitial space is hermetically sealed under vacuum. The assembly, namely the metal body with the cover, is treated by hot isostatic pressure. The treated assembly is machined in order to obtain the part. The cover includes an element covering the insert in the slot and projecting from the upper face, and a sheet covering the upper face with said element. In particular, the insert is straight and the housing for the insert in the metal body forms a straight slot.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: April 15, 2014
    Assignee: Messier-Bugatti-Dowty
    Inventors: Patrick Dunleavy, Richard Masson
  • Publication number: 20140072715
    Abstract: Methods of forming a blade and rendering a blade resistant to erosion includes positioning a backing plate(s) or elongated backing plate(s) adjacent at least one side of a forward face of a leading edge surface of the blade. The methods include depositing an erosion resistant material in a plurality of layers by fusion bonding the erosion resistant material to the forward face of the leading edge surface of the blade. The backing plates providing a template or guide for depositing the plurality of layers of erosion resistant material. The plurality of layers of erosion resistant material form an erosion shield and a leading edge of the blade. Methods include removing the backing plate.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Applicant: General Electric Company
    Inventors: Michael Lewis JONES, Swami GANESH
  • Publication number: 20140062263
    Abstract: A piezoelectric actuator unit includes a plurality of laminated piezoelectric elements, a first external electrode positioned on a first side surface of each piezoelectric element, and a conductive member connected to each first external electrode with a solder including indium, bismuth, or a mixture thereof, and some of the indium and/or bismuth in the solder is diffused into the soldered portions of the conductive member.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 6, 2014
    Applicant: HONDA MOTOR CO., LTD.
    Inventor: HONDA MOTOR CO., LTD.
  • Patent number: 8663813
    Abstract: A seamless composite metal tube comprises an inner layer (1) consisting of copper or a copper alloy, an outer layer (5) consisting of aluminium or an aluminium alloy, and at least three different intermediate intermetallic layers (2, 3, 4) each consisting of copper and aluminium, wherein the concentration of copper decreases from the inner layer (1) to the outer layer (5) in the radial direction of the tube.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: March 4, 2014
    Assignee: Halcor Metal Works S.A.
    Inventors: John Biris, George Hinopoulos, Apostolos Kaimenopoulos
  • Patent number: 8651364
    Abstract: A strip-shaped or plate-shaped composite metal object and a method for the production thereof. The composite metal object has at least two layers of the same metal. The layers have been brought by a heat pretreatment to a temperature such that a mutual diffusion bond has resulted through subsequent pressing of the layers against one another, while reducing the thickness by 5 to 25% and preferably 8 to 15%. A layer, which on the side thereof facing an adjacent layer has strip-shaped recesses, which are closed by the adjacent layer to form channels when the layers are pressed together, is used as one of the layers. The channels in the composite metal object allow the inclusion of additional elements before processed further to form an implement. The channels remain extensively preserved during the production and further processing of the composite model object.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: February 18, 2014
    Assignee: Eisfink Max Maier GmbH & Co. KG
    Inventors: Norbert Hoffstaedter, Markus Spring
  • Patent number: 8647453
    Abstract: A method of manufacturing a fiber reinforced metal matrix composite article, the method comprises forming a first metal component, forming a second metal component and forming at least one fiber preform comprising at least one metal coated fiber. The metal at least one first portion of the at least one metal coated fiber of the at least one fiber preform is bonded to the metal at least one second portion of the at least one metal coated fiber of the at least one fiber preform to hold the at least one fiber in position. The at least one fiber preform is placed between the first metal component and the second metal component. The second metal component is sealed to the first metal component, and heat and pressure is applied such as to consolidate the at least one fiber preform and to diffusion bond the metal on the fiber of the at least one fiber preform, the first metal component and the second metal component to form a unitary composite article. The bonding comprises ultrasonic welding.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: February 11, 2014
    Assignee: Rolls-Royce PLC
    Inventor: Philip J Doorbar
  • Patent number: 8608049
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 17, 2013
    Assignee: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen
  • Patent number: 8602290
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen, Joel G. Scrafton, Casey Harmon
  • Patent number: 8590768
    Abstract: Copper metal or metal alloy workpieces and/or aluminum metal or metal alloy workpieces are joined in a solid state weld by use of a reactive material placed, in a suitable form, at the joining surfaces. Joining surfaces of the workpieces are pressed against the interposed reactive material and heated. The reactive material alloys or reacts with the workpiece surfaces consuming some of the surface material in forming a liquid-containing reaction product comprising a low melting liquid that removes oxide films and other surface impediments to a welded bond across the interface. Further pressure is applied to expel the reaction product and to join the workpiece surfaces in a solid state weld bond.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: November 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: David R. Sigler, James G. Schroth