Electron Multiplier Patents (Class 250/207)
  • Patent number: 10416199
    Abstract: An apparatus and method for measuring flux, current, or integrated charge of a beam are provided. The apparatus and method include a cup on which the beam is incident. The cup includes an inner cylinder, a coaxial cylinder, and an aperture. The coaxial cylinder surrounds the inner cylinder and is electrically insulated therefrom. An offset current source is in electrical communication with the inner cylinder. An electrometer, a charge integrator, or a counter may be electrically connected to the cup and the offset current source. When the beam is incident on the cup and aligned with the aperture, the electrometer can measure the beam current and the charge integrator can measure the integrated charge of the beam.
    Type: Grant
    Filed: January 17, 2017
    Date of Patent: September 17, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew W. Copel, Michael S. Gordon, Kenneth P. Rodbell
  • Patent number: 10401383
    Abstract: In order to meet the needs of the semi-conductor industry as it requires finer lithography nodes, a method of feedback control for scanning probe microscopy generates a microwave frequency comb of harmonics in a tunneling junction by irradiating the junction with mode-locked pulses of electromagnetic radiation. Utilizing power measurements within one or more harmonics, the tip-sample distance in the tunneling junction may be regulated for maximum efficiency and avoid tip crash when used with resistive samples. Optionally, no DC bias is required to use the method. Utilization of this method contributes to true sub-nanometer resolution of images of carrier distribution in resistive samples such as semi-conductors.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: September 3, 2019
    Inventor: Mark J. Hagmann
  • Patent number: 10395905
    Abstract: Certain embodiments described herein are directed to ion detectors and systems. In some examples, the ion detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In other configurations, each dynode can be coupled to a respective electrometer. Methods using the ion detectors are also described.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: August 27, 2019
    Assignee: PERKINELMER HEALTH SCIENCES, INC.
    Inventors: Urs Steiner, Daniel Robert Marshak
  • Patent number: 10333629
    Abstract: An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: June 25, 2019
    Assignee: Magseis FF LLC
    Inventor: Philip Lacovara
  • Patent number: 10307795
    Abstract: Systems and methods for classifying and sorting textile samples. A textile identification system may be configured to manipulate a textile sample in a manner that reveals a textile characteristic. For example, an elastic property of the textile sample is revealed by stretching or twisting the sample. The textile sample may be classified based on the textile characteristic. The textile sample may be sorted based on the classification.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: June 4, 2019
    Assignee: FABSCRAP, Inc.
    Inventor: Jessica Schreiber Dominguez Holguin
  • Patent number: 10290478
    Abstract: Certain embodiments described herein are directed to detectors and systems using them. In some examples, the detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In some instances, an analog signal from a non-saturated dynode is measured and cross-calibrated with a pulse count signal to extend the dynamic range of the detector.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: May 14, 2019
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Hamid Badiei, Steven A. Beres
  • Patent number: 10263711
    Abstract: An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: April 16, 2019
    Assignee: MAGSEIS FF LLC
    Inventor: Philip Lacovara
  • Patent number: 10229820
    Abstract: Certain embodiments described herein are directed to optical detector and optical systems. In some examples, the optical detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In other configurations, each dynode can be coupled to a respective electrometer. Methods using the optical detectors are also described.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: March 12, 2019
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Urs Steiner, Daniel Robert Marshak
  • Patent number: 10229765
    Abstract: Various embodiments for shortening the overall length of a pulsed neutron generator having a high voltage power supply are disclosed, including but not limited to, providing the plurality of stages of a high voltage power supply wrapped circumferentially or helically about a radiation generator tube. Various techniques for reducing voltage differentials and mitigating the risk of arcing in these embodiments are also disclosed.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 12, 2019
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Joel Lee Groves, Luke T. Perkins, Fabien Guizelin, Peter Wraight
  • Patent number: 10199197
    Abstract: A photocathode is formed on a monocrystalline silicon substrate having opposing illuminated (top) and output (bottom) surfaces. To prevent oxidation of the silicon, a thin (e.g., 1-5 nm) boron layer is disposed directly on the output surface using a process that minimizes oxidation and defects. An optional second boron layer is formed on the illuminated (top) surface, and an optional anti-reflective material layer is formed on the second boron layer to enhance entry of photons into the silicon substrate. An optional external potential is generated between the opposing illuminated (top) and output (bottom) surfaces. The photocathode forms part of novel electron-bombarded charge-coupled device (EBCCD) sensors and inspection systems.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: February 5, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Yung-Ho Alex Chuang, John Fielden
  • Patent number: 10175369
    Abstract: To make correct determination of electric charge collection among signals from a semiconductor radiation detector, provided in an embodiment of the present invention is a signal data processing method. The method includes a step of calculating timing data sequences unique to channels (timing data calculation step S02), each of channels corresponding to each of plural electrodes of the radiation detector, from detection signal data sequences. Then, while making a comparison with a first threshold value, a data value for the timing data sequence at timing when a predetermined delay time is elapsed after the timing data sequence reached the first predetermined value is selected as a timing data value for determination for the channel (delay and selection step S04).
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: January 8, 2019
    Assignee: RIKEN
    Inventors: Tomonori Fukuchi, Shinji Motomura, Shuichi Enomoto
  • Patent number: 10132679
    Abstract: Techniques are provided to furnish a light sensor that includes a filter positioned over a photodetector to filter visible and infrared wavelengths to permit the sensing of ultraviolet (UV) wavelengths. In one or more implementations, the light sensor comprises a semiconductor device (e.g., a die) that includes a substrate. A photodetector (e.g., photodiode, phototransistor, etc.) is formed in the substrate proximate to the surface of the substrate. In one or more implementations, the substrate comprises a silicon on insulator substrate (SOI). A filter (e.g., absorption filter, interference filter, flat pass filter, McKinlay-Diffey Erythema Action Spectrum-based filter, UVA/UVB filter, and so forth) is disposed over the photodetector. The filter is configured to filter infrared light and visible light from light received by the light sensor to at least substantially block infrared light and visible light from reaching the photodetector.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: November 20, 2018
    Assignee: MAXIM INTEGRATED PRODUCTS, INC.
    Inventors: Arvin Emadi, Nicole D. Kerness, Cheng-Wei Pei, Joy T. Jones, Arkadii V. Samoilov, Ke-Cai Zeng
  • Patent number: 10126254
    Abstract: A computed tomography (CT) detector apparatus includes a plurality of detector arrays arranged in a ring, wherein for at least one array that includes a plurality of elements, an anode pixel pattern is non-uniform in a z-axis direction and a thickness of each element in the array is correspondingly non-uniform along the z-axis direction. A size of the anode pixels increases proportionally away from a center of the array, and a thickness of the elements increases away from the center of the array. The ratio of the thickness of the element to the size of the anode pixels is substantially the same over the array.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: November 13, 2018
    Assignee: TOSHIBA MEDICAL SYSTEMS CORPORATION
    Inventors: Miesher L Rodrigues, Hao Yang, Liang Cai
  • Patent number: 10098595
    Abstract: The disclosure provides a circuit that includes a charge sensitive amplifier (CSA) that generates an integrated signal in response to a current signal. An active comparator is coupled to the CSA. The active comparator receives the integrated signal and a primary reference voltage signal, and generates an event detect signal. A first delay element is coupled to the active comparator and provides a fixed delay to the event detect signal to generate a convert signal. A discriminator system is coupled to the CSA. The discriminator system samples the integrated signal when activated by the convert signal.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 16, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nagesh Surendranath, Rakul Viswanath, Sandeep Kesrimal Oswal
  • Patent number: 10101468
    Abstract: An emission tomography device includes emission detectors for detecting a gamma ray incident from a patient body as a pulse signal, and a data collecting device for collecting information in which the gamma ray is detected in an emission detector. The data collecting device includes a timing circuit for outputting timing information corresponding to the timing of occurrence of an event in which a gamma ray is detected as a pulse signal in an emission detector, a simultaneous count circuit for identifying timing information in a true simultaneous count by comparing a plurality of timing information sent from a plurality of timing circuits, and a pulse calculating portion calculating a gamma ray detection location and a gamma ray energy from an intensity value of a pulse signal corresponding to the timing information identified by the simultaneous count circuit as a true simultaneous count.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 16, 2018
    Assignee: Shimadzu Corporation
    Inventor: Masayuki Nakazawa
  • Patent number: 10068182
    Abstract: According to an embodiment, a quantum computer includes physical systems Xi, a physical system Yj and a light source unit. The physical systems Xi and the physical system Yj are provided in a cavity. Each physical system Xi includes states |0>i, |1>i, |2>i and |e>i, the states |0>i and |1>i being used for a qubit, a |2>i-|e>i transition being resonant with a cavity mode of the cavity. The physical system Yj includes states |2>?j and |e>?j, a |2>?j-|e>?j transition being resonant with the cavity mode. The light source unit applies laser beams to the cavity to manipulate states of two of physical systems Xi, the laser beams including a laser beam for collecting population in the state |2>?j in the |2>?j-|e>?j transition.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: September 4, 2018
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Satoshi Nakamura, Kouichi Ichimura, Hayato Goto, Mamiko Kujiraoka
  • Patent number: 10062555
    Abstract: Scalable electron amplifier devices and methods of fabricating the devices an atomic layer deposition (“ALD”) fabrication process are described. The ALD fabrication process allows for large area (e.g., eight inches by eight inches) electron amplifier devices to be produced at reduced costs compared to current fabrication processes. The ALD fabrication process allows for nanostructure functional coatings, to impart a desired electrical conductivity and electron emissivity onto low cost borosilicate glass micro-capillary arrays to form the electron amplifier devices.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: August 28, 2018
    Assignee: UChicago Argonne, LLC
    Inventors: Anil U. Mane, Jeffrey W. Elam
  • Patent number: 10054696
    Abstract: A detector for an electron multiplier comprising: a substrate comprising a dielectric material, the substrate having a first face and an opposing second face; a charge collector provided adjacent the first face of the substrate; an anode within the substrate, the anode spaced from first face, such that the anode is capacitively coupled to the charge collector, so that charge incident on the charge collector generates an image charge on the anode; and a conduit contact, coupled to the anode and passing through the substrate to the second face of the substrate layer.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: August 21, 2018
    Assignee: Photek Limited
    Inventors: James Milnes, Tom Conneely, Jonathan Lapington
  • Patent number: 10006808
    Abstract: A method of adjusting a gain of a detector is provided in the present disclosure. According to an example, whether a gain of a photomultiplier tube in the detector meets a gain determination condition may be determined, where the gain determination condition may indicate that an absolute of a difference between the gain of the photomultiplier tube and a target gain is within a predetermined numerical range. When the gain of the photomultiplier tube does not meet the gain determination condition, a voltage of the photomultiplier tube may be adjusted, such that the gain of the photomultiplier tube meets the gain determination condition.
    Type: Grant
    Filed: October 25, 2016
    Date of Patent: June 26, 2018
    Assignee: Shenyang Neusoft Medical Systems Co., Ltd.
    Inventors: Jian Zhao, Nan Li, Guocheng Wu, Baowei Xu, Changqing Fu, Guodong Liang
  • Patent number: 9975197
    Abstract: The present invention relates to a shaping and welding device and process of connector pipes or dowels (1) primarily intended for use in compressors. More specifically the process presented here concerns the shaping and welding of copper pipes (1) used as connectors for suction, discharge and process, the metal housing (2) of hermetic compressors, with the goal of making this equipment much more practical, efficient and economical.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: May 22, 2018
    Assignee: Whirlpool, S.A.
    Inventors: Moises Alves de Oliveira, Sergio Luiz Maganhoto
  • Patent number: 9964665
    Abstract: A gamma-ray spectrometer calibration system comprises a light guide, a photomultiplier tube, a laser, and analysis electronics. The light guide is optically coupled to the scintillation crystal, the laser and the photomultiplier tube, such that the laser can provide reference signals to the photomultiplier tube. In some embodiments, one or more temperature sensors are provided, such that the analysis electronics determine initial settings and adjust the initial settings based on the temperatures measured by the temperature sensors. Additional apparatus, methods, and systems are disclosed.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: May 8, 2018
    Assignee: Halliburton Energy Services, Inc.
    Inventors: James E. Galford, Weijun Guo
  • Patent number: 9941103
    Abstract: A bias-variant photomultiplier tube (PMT) includes a photocathode that when operating absorbs photons and emits photoelectrons responsive to the absorbed photons. The bias-variant PMTO also includes a plurality of dynodes that receive the photoelectrons emitted by the photocathode. The plurality of dynodes include a first pair of dynodes having a first bias difference and at least a second pair of dynodes having a second bias difference. The second bias difference is greater than the first bias difference. The bias-variant PMTO also includes an anode to receive photoelectrons directed from the plurality of dynodes.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: April 10, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Derek Mackay, Paul Donders, Kai Cao, Jeongsik Lim
  • Patent number: 9939536
    Abstract: A semiconductor photomultiplier (SPM) device is described. The SPM comprises a plurality of photosensitive elements, a first electrode arranged to provide a bias voltage to the photosensitive elements, a second electrode arranged as a biasing electrode for the photosensitive elements, a plurality of quench resistive elements each associated with a corresponding photosensitive element, a plurality of output loads each having a capacitive load operably coupled to a resisitive load in a parallel configuration between first and second nodes; each first node is common to one of the photosensitive elements and the corresponding quench element; and a third electrode coupled to the second nodes of the output loads to provide an output signal from the photosensitive elements. The outputs loads fully or partially correct an overshoot of an output signal on the third electrode.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: April 10, 2018
    Assignee: Sensi Technologies Ltd.
    Inventors: Kevin O'Neill, Liam Wall, John Carlton Jackson
  • Patent number: 9927603
    Abstract: A switch which reduces the voltage between the photocathode and the first dynode in the activated switching state compared to the deactivated switching state and a control unit which is adapted to move a target spot, which can be illuminated by means of the light source, over a scanning field by means of a deflecting unit. The control unit activates the switch when the target spot enters a given region of the scanning field and deactivates the switch when the target spot exits the region.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: March 27, 2018
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Mirko Liedtke, Eva Simbuerger, Daniel Schwedt
  • Patent number: 9930276
    Abstract: Methods of measuring and calibrating the gain of a CCD imaging system are described. Charge injectors may be present on either side of an image sensor array that provide test charges to respective calibration VCCDs. Test charges may be transferred to upper and lower HCCDs during quad-output read out or to only the lower HCCD during dual-output or single-output read out. In each quadrant of the imaging system, test charges may be transferred to an EMCCD output or to a non-EMCCD output via a charge switch based on the magnitude of the test charges. The gains of all EMCCD outputs and non-EMCCD outputs in the imaging system may be calibrated against one another by adjusting the gain at each output when a discrepancy is detected between any two outputs.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: March 27, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Christopher Parks
  • Patent number: 9885592
    Abstract: A fiber optic sensing system is provided. The fiber optic sensing system includes: at least one fiber optic transducer; an optical backscatter interrogator for interrogating backscatter optical signals from the at least one fiber optic transducer; and an optical fiber between the optical backscatter interrogator and the at least one fiber optic transducer.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: February 6, 2018
    Assignee: Avalon Sciences Ltd.
    Inventors: Eric L. Goldner, James K. Andersen
  • Patent number: 9847214
    Abstract: Certain embodiments described herein are directed to detectors and systems using them. In some examples, the detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In some instances, an analog signal from a non-saturated dynode is measured and cross-calibrated with a pulse count signal to extend the dynamic range of the detector.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: December 19, 2017
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Hamid Badiei, Steven A. Beres
  • Patent number: 9835724
    Abstract: A system and method includes an array position sensing detector. The array position sensing detector includes a lateral effect position sensing detector element and a summing amplifier. The lateral effect position sensing detector element produces an output coupled with the summing amplifier through a switch.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: December 5, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Daniel Yap, Randall White, Daniel S. Matic
  • Patent number: 9775573
    Abstract: A peroperative probe for guiding a manual excision tool. The probe includes a detection head, an optical fiber for the reception and guidance of a signal emitted by radioactive tracers and fluorescent molecules in a tissue area, a photo-detector for converting the emitted signal into an electrical signal, a transmitter for transmitting information carried by the electrical signal to an analysis equipment, and a fastener for attaching the probe onto the manual excision tool, so that the excision tool can be used to remove a portion of tissue from the tissue area emitting the signal.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: October 3, 2017
    Assignee: Centre National De La Recherche Scientifique
    Inventors: Laurent Menard, Sebastien Bonzom, Yves Charon, Marie-Alix Duval, Francoise Lefebvre-Bouvet, Stephane Palfi, Laurent Pinot, Rainer Siebert, Stephanie Pitre
  • Patent number: 9757086
    Abstract: A radiation imaging system including: a radiation imaging apparatus for obtaining a captured image by radiographic image capturing of a subject; and an external apparatus connectable to the radiation imaging apparatus, the external apparatus including a system time management unit for managing a system time serving as a reference time of the radiation imaging system, the radiation imaging apparatus including: an imaging apparatus time management unit for managing an imaging apparatus time, which is a time on the radiation imaging apparatus; a storing unit for storing image capturing information in association with the captured image obtained by the radiographic image capturing, the image capturing information including at least image capturing time information which is determined based on the imaging apparatus time; and a time correction unit for obtaining the system time and correcting the image capturing time information based on the imaging apparatus time and the system time.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: September 12, 2017
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Shimpei Tezuka
  • Patent number: 9727823
    Abstract: Achieving orthogonal control of non-orthogonal qubit parameters of a logical qubit allows for increasing the length of a qubit chain thereby increasing the effective connectivity of the qubit chain. A hybrid qubit is formed by communicatively coupling a dedicated second qubit to a first qubit. By tuning a programmable parameter of the second qubit of a hybrid qubit, an effective programmable parameter of the hybrid qubit is adjusted without affecting another effective programmable parameter of the hybrid qubit thereby achieving orthogonal control of otherwise non-orthogonal qubit parameters. The length of the logical qubit may thus be increased by communicatively coupling a plurality of such hybrid qubits together.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: August 8, 2017
    Assignee: D-Wave Systems Inc.
    Inventors: Mohammad H. S. Amin, Trevor Michael Lanting, Colin Enderud
  • Patent number: 9726768
    Abstract: A position-sensitive ionizing-particle radiation counting detector includes a first substrate and a second substrate generally parallel to the first substrate and forming a gap with the first substrate, with a discharge gas contained within the gap. The detector includes a first electrode electrically coupled to the second substrate, and a second electrode electrically coupled to the first electrode and defining at least one pixel with the first electrode. The detector further includes an open dielectric structure pattern layered over one of the first or second electrodes and a current-limiting quench resistor coupled in series to one of the first or second electrodes. The detector further includes a power supply coupled to one of the first or second electrodes and a first discharge event detector circuitry coupled to the one of the first or second electrodes for detecting a gas discharge counting event in the electrode.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: August 8, 2017
    Assignee: INTEGRATED SENSORS, LLC
    Inventor: Peter S. Friedman
  • Patent number: 9671341
    Abstract: Method for the operation of a laser scanning microscope. The microscope includes an illumination beam path in which at least one illumination light source is arranged, a detection beam path in which at least one photomultiplier (PMT) is incorporated as detector, and a control unit for controlling fluorescence experiments. A sample is alternately illuminated at high intensity via the control unit, and the fluorescence decay behavior of sample points and/or sample regions is subsequently detected. The PMT is switched on and off depending on the illumination mode by the control unit via a switch directly in the high-voltage supply of the PMT.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: June 6, 2017
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Martin Müller, Nico Presser, Gunter Möhler
  • Patent number: 9633935
    Abstract: A stacked chip package is provided. The stacked chip package includes a first substrate having a first side and a second side opposite thereto. The first substrate includes a recess therein. The recess adjoins a side edge of the first substrate. A plurality of redistribution layers is disposed on the first substrate and extends onto the bottom of the recess. A second substrate is disposed on the first side of the first substrate. A plurality of bonding wires is correspondingly disposed on the redistribution layers in the recess, and extends onto the second substrate. A device substrate is disposed on the second side of the first substrate. A method of forming the stacked chip package is also provided.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: April 25, 2017
    Assignee: XINTEC INC.
    Inventors: Yen-Shih Ho, Chih-Wei Ho, Tsang-Yu Liu
  • Patent number: 9625417
    Abstract: Certain embodiments described herein are directed to ion detectors and systems. In some examples, the ion detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In other configurations, each dynode can be coupled to a respective electrometer. Methods using the ion detectors are also described.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: April 18, 2017
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Urs Steiner, Daniel Robert Marshak
  • Patent number: 9607814
    Abstract: In a photodetection unit 100 according to one aspect of the present invention, a photomultiplier 1 and a voltage divider board 132 are electrically connected to each other through a flexible wiring board 120, whereby the photomultiplier 1 can freely set its orientation and achieve a high degree of freedom of installation. In addition, in a voltage divider 130, an insulating resin 136 within a resin case 134 covers around the voltage divider board 132, thereby improving a voltage withstand performance of the voltage divider board 132. This eases restrictions on conditions under which the voltage divider board 132 is installed, whereby the degree of freedom of installation of the photodetection unit 100 is further improved as a whole, which makes it applicable to wider uses.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: March 28, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventor: Takanori Kurouzu
  • Patent number: 9589774
    Abstract: The present invention relates to an electron multiplier and others to effectively suppress luminescence noise, even in compact size, in which each of multistage dynodes has a plurality of columns each having a peripheral surface separated physically, and in which each column is processed in such a shape that an area or a peripheral length of a section parallel to an installation surface on which the electron multiplier is arranged becomes minimum at a certain position on the peripheral surface in the column of interest.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: March 7, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Hideki Shimoi, Hiroyuki Kyushima, Keisuke Inoue
  • Patent number: 9460886
    Abstract: An electron-bombarded detector for detecting low light signals includes a vacuum tube structure defining a cylindrical vacuum tube chamber, a photocathode disposed at a first end of the vacuum tube chamber, a sensor disposed at a second end of the vacuum tube chamber, ring electrodes disposed in the vacuum tube chamber for generating an electric field that accelerates emitted photoelectrons toward the sensor, and a magnetic field generator configured to generate a symmetric magnetic field that applies a focusing lens effect on the photoelectrons. The ring electrodes and magnetic field generator are operating using one of a reduced distance focusing approach and an acceleration/deceleration approach such that the photoelectrons have a landing energy below 2 keV. The use of reflective mode photocathodes is enabled using either multi-pole deflector coils, or ring electrodes formed by segmented circular electrode structures. Large angle deflections are achieved using magnetic or electrostatic deflectors.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: October 4, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Ximan Jiang, Stephen Biellak, John Fielden
  • Patent number: 9425030
    Abstract: A photomultiplier tube having an ion suppression electrode positioned between a photocathode and an electron multiplying device in the photomultiplier tube is disclosed. The ion suppression electrode includes a grid that is configured to provide sufficient rigidity to avoid deformation during operation of the photomultiplier tube. The photomultiplier tube also includes a source of electric potential connected to the electron multiplying device and to the ion suppression electrode to provide a first voltage to the second electrode and a second voltage to the suppression grid electrode wherein the second voltage has a magnitude equal to or greater than the magnitude of the first voltage. A method of making the photomultiplier and a method of using it are also disclosed.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: August 23, 2016
    Assignee: Burle Technologies, Inc.
    Inventor: Jeffrey DeFazio
  • Patent number: 9396914
    Abstract: Certain embodiments described herein are directed to optical detector and optical systems. In some examples, the optical detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In other configurations, each dynode can be coupled to a respective electrometer. Methods using the optical detectors are also described.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: July 19, 2016
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Urs Steiner, Daniel Robert Marshak
  • Patent number: 9325947
    Abstract: A compressive imaging system and method for quickly detecting spectrally and spatially localized events (such as explosions or gun discharges) occurring within the field of view. An incident light stream is modulated with a temporal sequence of spatial patterns. The wavelength components in the modulated light stream are spatially separated, e.g., using a diffractive element. An array of photodetectors is used to convert subsets of the wavelength components into respective signals. An image representing the field of view may be reconstructed based on samples from some or all the signals. A selected subset of the signals are monitored to detect event occurrences, e.g., by detecting sudden changes in intensity. When the event is detected, sample data from the selected subset of signals may be analyzed to determine the event location within the field of view. The event location may be highlighted in an image being generated by the imaging system.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: April 26, 2016
    Assignee: InView Technology Corporation
    Inventors: Robert F. Bridge, Lenore McMackin
  • Patent number: 9269552
    Abstract: Certain embodiments described herein are directed to ion detectors and systems. In some examples, the ion detector can include a plurality of dynodes, in which one or more of the dynodes are coupled to an electrometer. In other configurations, each dynode can be coupled to a respective electrometer. Methods using the ion detectors are also described.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: February 23, 2016
    Assignee: PerkinElmer Health Sciences, Inc.
    Inventors: Urs Steiner, Daniel Robert Marshak
  • Patent number: 9261609
    Abstract: Apparatus and methods for charge collection control in radiation detectors are provided. One radiation detector includes a semiconductor substrate, at least one cathode on a surface of the semiconductor substrate, and a plurality of anodes on a surface of the semiconductor substrate opposite the at least one cathode, wherein the plurality of anodes have gaps therebetween. The radiation detector further includes a charge collection control arrangement configured to cause one or more charges induced within the semiconductor substrate by incident photons to drift towards one or more of the plurality of anodes.
    Type: Grant
    Filed: August 20, 2012
    Date of Patent: February 16, 2016
    Assignee: General Electric Company
    Inventors: Arie Shahar, Eliezer Traub, Yaron Glazer, Ira Micah Blevis
  • Patent number: 9225919
    Abstract: An imaging device may capture a composite image from multiple individual exposures. In each imaging pixel in the imaging device, charge accumulated from each of the individual exposures may be accumulated onto a storage node. The accumulated charge from all of the individual exposures in a single composite image may be read out from the storage node. The individual exposures may be separated by delay periods. The lengths of the individual exposures and delay periods may be determined automatically or set by a user such that each individual exposure is substantially free of motion blur, while the composite image illustrates a moving subject in multiple positions.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: December 29, 2015
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Richard Scott Johnson
  • Patent number: 9086492
    Abstract: A scintillation detector including one or more photomultiplier tubes, a scintillation block optically attached to the photomultiplier tubes, and a DC-coupled bleeder circuit combining outputs of dynodes of the photomultipliers to provide a DC-coupled dynode output together with a DC-coupled anode output of the photomultiplier tubes. The DC-coupled bleeder circuit includes a RF transformer. A positive high voltage supply also can be used together with a DC-coupled bleeder circuit for the anode outputs.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: July 21, 2015
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Nan Zhang, Matthias J. Schmand, Niraj K. Doshi, Michael D. Loope
  • Publication number: 20150136948
    Abstract: A bias-variant photomultiplier tube (PMT) includes a photocathode that when operating absorbs photons and emit photoelectrons responsive to the absorbed photons. The bias-variant PMTO also includes a plurality of dynodes that receive the photoelectrons emitted by the photocathode. The plurality of dynodes include a first pair of dynodes having a first bias difference and at least a second pair of dynodes having a second bias. The second bias difference is greater than the first bias difference. The bias-variant PMTO also includes an anode to receive photoelectrons directed from the plurality of dynodes.
    Type: Application
    Filed: October 17, 2014
    Publication date: May 21, 2015
    Inventors: Derek Mackay, Paul Donders, Kai Cao, Jeongsik Lim
  • Patent number: 9035540
    Abstract: A system for detecting electromagnetic radiation or an ion flow, including an input device for receiving the electronic radiation or the ion flow and emitting primary electrons in response, a multiplier of electrons in transmission, for receiving the primary electrons and emitting secondary electrons in response, and an output device for receiving the secondary electrons and emitting an output signal in response. The electron multiplier includes at least one nanocrystalline diamond layer doped with boron in a concentration of higher than 5·1019 cm?3.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 19, 2015
    Assignee: PHOTONIS FRANCE
    Inventors: Gert Nuetzel, Pascal Lavoute, Richard B. Jackman
  • Patent number: 9029748
    Abstract: A method and apparatus for photon counting are disclosed. In an implementation, the present disclosure provides a dynamic-range photon-counting spectrometric sensor for low signal detection embedded in large parasitic background light signal. Rather than using a known forward illuminated imager approach of counting photons directly, embodiments of the present disclosure use a backward illuminated imager approach to generate a burst of electrons based on the photons, and perform photon detection by counting the generated burst of electrons using the plurality of CMOS chip pixels. An electronic circuit, in communication with the CMOS chip pixels, includes a fast clock enabling discrimination between electrons in time. The electronic circuit can be built on the face of a semiconductor wafer on which the CMOS chip pixels are provided.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 12, 2015
    Assignee: Her Majesty the Queen in Right of Canada, as Represented by the Minister of National Defence
    Inventors: Pierre Lahaie, Jean-Robert Simard
  • Publication number: 20150076320
    Abstract: An electronic multiplier porous glass plate used for a detector that measures ionized electrons by utilizing an electron avalanche multiplication in a gas is presented. The plate has a plurality of through holes provided on a plate-like member so as to be arranged two-dimensionally, wherein the plate-like member is formed by a photosensitive crystallized glass obtained by crystallizing a photosensitive glass, to realize a thinner glass plate and finer through holes.
    Type: Application
    Filed: March 25, 2013
    Publication date: March 19, 2015
    Inventors: Takashi Fushie, Hajime Kikuchi, Fuyuki Tokanai
  • Patent number: 8921756
    Abstract: A photo-detector and method for operating same: the photo-detector comprises a photomultiplier tube comprising a plurality of electrodes, each having a photocathode, an anode, a first dynode, intermediate dynodes and a last dynode; and a biasing circuit that comprises a sequence of voltage follower elements, a voltage divider and a current source. The voltage divider is coupled across a high voltage power supply and different dynodes are coupled to different ones of the voltage follower elements, control inputs of which are coupled to different junctions of the voltage divider. The current source is coupled to the voltage divider, to the sequence of the voltage follower elements and to the cathode. The anode is coupled to a load element coupled to a positive pole of the high voltage power supply and arranged to receive an output signal of the anode and convert it to an output signal of the photo-detector.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: December 30, 2014
    Assignee: Applied Materials Israel, Ltd.
    Inventors: Michael Heifets, Pavel Margulis