With Means To Transmission-test Contained Fluent Material Patents (Class 250/343)
  • Patent number: 10801889
    Abstract: A spectrometer module and a fabrication method thereof are provided. The fabrication method includes the steps of: providing at least one substrate; and forming at least one positioning side and at least one optical component of the spectrometer on the at least one substrate by a microelectromechanical systems (MEMS) process. The spectrometer module fabricated by the fabrication method includes a plurality of substrates and at least one optical component. At least one of the substrates has at least one positioning side, and the at least one optical component of the spectrometer is formed on at least one of the substrates. The positioning side and the optical component are fabricated by a MEMS process.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: October 13, 2020
    Assignee: OTO PHOTONICS INC.
    Inventor: Chien-Hsiang Hung
  • Patent number: 10788458
    Abstract: A method of detecting at least a partial blockage in a porous member separating an inner chamber of a device having a gas sensor responsive to an analyte positioned within the inner chamber and an ambient environment includes emitting pressure waves within the inner chamber and measuring a change in phase of a response via a sensor responsive to pressure waves.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: September 29, 2020
    Assignee: MSA Technology, LLC
    Inventors: Jerin Miller, Ryan Alan Sherry, Robert Kevin Sexton, Robert Eric Uber
  • Patent number: 10790634
    Abstract: A laser system with optical feedback, includes an optical-feedback-sensitive laser which emits, via an output optical fibre, a continuous, frequency-adjustable, propagating, source optical wave, known as the source wave; a resonant optical cavity coupled by means of optical feedback to the laser and configured to generate an intra-cavity wave, one fraction of which returns to the laser in the form of a counter-propagating optical wave; an electro-optic fibre modulator placed on the optical path between the laser and the resonant optical cavity, the electro-optic modulator being configured to generate a phase-shifted source wave by phase-shifting the source wave and, by phase-shifting the counter-propagating optical wave, to generate a phase-shifted counter-propagating wave, known as the feedback wave, which reaches the laser; a phase-control device for generating a control signal for the electro-optic modulator from an error signal representative of the relative phase between the source wave and the feedback
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: September 29, 2020
    Assignee: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE
    Inventor: Samir Kassi
  • Patent number: 10788413
    Abstract: Method for distinguishing between red blood cells and white blood cells. The method includes obliquely illuminating the blood sample with light from at least two rotational angles and analyzing light side scattered from cells in the sample to provide accurate discrimination of white blood cell types based on the anisotropy of red blood cell side scatter as compared to more isotropic white blood cell side scatter.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: September 29, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Jason Michael Tucker-Schwartz, Shivang R. Dave
  • Patent number: 10788457
    Abstract: A method of detecting at least a partial blockage in a porous member separating an inner chamber of a device having a gas sensor responsive to an analyte positioned within the inner chamber and an ambient environment includes emitting pressure waves within the inner chamber and measuring a response via a sensor responsive to pressure waves positioned within the inner chamber.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: September 29, 2020
    Assignee: MSA Technology, LLC
    Inventors: Jerin Miller, Ryan Alan Sherry, Robert Kevin Sexton, Robert Eric Uber
  • Patent number: 10782284
    Abstract: A breath analyte capture device includes a breath input port into which a user exhales a breath sample, and a cartridge insertion port for receiving a disposable cartridge containing an interactant. During exhalation of a breath sample, at least a portion of the breath sample is routed through the cartridge such that the analyte (such as breath acetone) is captured by the interactant. In some embodiments, the concentration of the analyte in the breath sample is measured by monitoring a chemical reaction that occurs in the disposable cartridge. The chemical reaction may be monitored by illuminating the cartridge at each of multiple light wavelengths while measuring reflected light.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: September 22, 2020
    Assignee: Invoy Holdings Inc.
    Inventors: Lubna Ahmad, Zachary Smith, Salman Ahmad, Connie Kim, Ayman Luqman
  • Patent number: 10768160
    Abstract: An artificial gut simulator and methods are shown. In one example, the artificial gut simulator and methods provide accurate dissolution data by removing detected test sample material from the tester over time.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: September 8, 2020
    Assignee: Regents of the University of Minnesota
    Inventor: Ronald A. Siegel
  • Patent number: 10746655
    Abstract: Detector data representative of an intensity of light that impinges on a detector after being emitted from a light source and passing through a gas over a path length can be analyzed using a first analysis method to obtain a first calculation of an analyte concentration in the volume of gas and a second analysis method to obtain a second calculation of the analyte concentration. The second calculation can be promoted as the analyte concentration upon determining that the analyte concentration is out of a first target range for the first analysis method.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: August 18, 2020
    Assignee: SpectraSensors, Inc.
    Inventors: Xiang Liu, Alfred Feitisch, Xin Zhou
  • Patent number: 10726283
    Abstract: Provided is a device which performs vein authentication by using a downward irradiation-type thin module and selecting an image of a proper angle by varying the irradiation direction of near-infrared illumination. Realized are a photographing method and control method of a finger vein image suitable for thin devices such as a smartphone. Adopted is a finger vein authentication device comprising an imaging unit, an illumination unit which is disposed on a substantially same plane as the imaging unit, and irradiates a finger to be captured by the imaging unit with light in which an irradiation angle is variable, an image selection unit which selects an image according to the irradiation angle of the illumination unit, and an authentication processing unit which performs authentication processing using the image selected by the image selection unit.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: July 28, 2020
    Assignee: HITACHI, LTD.
    Inventor: Kenji Ichige
  • Patent number: 10724941
    Abstract: A liquid membrane 100 is formed by jetting a liquid sucked from a recovery reservoir 11a and pressurized using a pump 12 from a nozzle of a liquid membrane cartridge 20. The formed liquid membrane 100 makes contact with a slope wall of the liquid membrane cartridge 20 along a surface of the liquid membrane 100. The liquid running down from the slope wall is recovered and stored in the recovery reservoir 11a in order to recover the liquid running down along the slope wall in a decelerated state into the recovery reservoir 11a. As a result, it is possible to prevent air bubbles from being generated by agitation of a liquid of the recovery reservoir 11a when the liquid enters the recovery reservoir 11a.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: July 28, 2020
    Assignee: FEMTO Deployments, Inc.
    Inventors: Akira Watanabe, Bunpei Doi
  • Patent number: 10718706
    Abstract: Systems and methods of laser dispersion spectroscopy for in situ, quantitative and non-intrusive measurements of combustion parameters, such as temperature and gas concentrations are provided. The system includes a laser source configured to sweep across the spectral features of molecules, an RF generator configured to modulate a laser to generate a three-tone laser beam, a photodetector configured to detect the transmitted three-tone laser beam to generate a heterodyne beat note signal, and a lock-in amplifier configured to further process the beat note signal in order to measure a phase of the heterodyne beat note signal.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 21, 2020
    Assignee: The Chinese University of Hong Kong
    Inventors: Wei Ren, Liuhao Ma, Zhen Wang, Kin Pang Cheong
  • Patent number: 10690604
    Abstract: Sensors and methods are provided that include a diamond material containing a nitrogen vacancy center, the diamond material being configured to be exposed to an environment comprising one or more gases, an optical light source configured to excite the nitrogen vacancy center of the diamond material with an optical light beam produced therefrom, a detector configured to detect a signal originating from the diamond material in response to the optical light beam exciting the nitrogen vacancy center, and the capability of analyzing the signal to identify a specific gas in the environment. Also included are levitated spin-optomechanical systems capable of elevating in a vacuum a diamond material containing a nitrogen vacancy center, applying microwave radiation to the diamond material for controlling and flipping the electron spin of the nitrogen vacancy center, and monitoring electron spin of the nitrogen vacancy center.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: June 23, 2020
    Assignee: Purdue Research Foundation
    Inventors: Tongcang Li, Thai Hoang, Jonghoon Ahn, Jaehoon Bang
  • Patent number: 10684167
    Abstract: An optical measurement method and system. The system includes, and method applies, a light source, a beamsplitter, at least one filter, a output photodetector for acquiring data of a sample, and a correction photodetector for correcting and maintaining output intensity from the light source. The filter is located between the light source and the correction photodetector for normalizing the spectrum of the input light being applied to input light correction. The filter may be incorporated into the beamsplitter and may be tuned to filter light from the light source for providing non-zero transmission of light with a near-zero gradient for wavelengths in a portion of the spectrum of the input light being applied to the sample and read by the output photodetector. The filter may also or alternatively be located downstream of the beamsplitter to correct for wavelength sensitivity of the correction photodetector.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: June 16, 2020
    Assignee: ALBERTA BIOPHOTONICS INC.
    Inventors: Elmar Prenner, Kirat Singh
  • Patent number: 10643008
    Abstract: Background composition concentration data representative of an actual background composition of a sample gas can be used to model absorption spectroscopy measurement data obtained for a gas sample and to correct an analysis of the absorption spectroscopy data (e.g. for structural interference and collisional broadening) based on the modeling.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: May 5, 2020
    Assignee: SpectraSensors, Inc.
    Inventors: Xiang Liu, Alfred Feitisch, Keith Benjamin Helbley, James Tedesco
  • Patent number: 10633512
    Abstract: It has conventionally been difficult to achieve a sheet adhesive which adheres in a low temperature (from 20 to 90° C.), and has both of softness and high adhering strength. The present invention realizes a sheet adhesive capable of adhering in a low temperature (from 20 to 90° C.) which exhibits a high adhesiveness in spite of being a soft sheet of thin film, by forming a simulated multiple layer by using an elastomer as a substrate layer, and by forming a reactive layer by means of spraying or application. A sheet adhesive including a substrate layer and a reactive layer, wherein the substrate layer includes a component (A) and a component (B) below, and the reactive layer is formed with a liquid agent including a component (C) below in an amount of from 0.01% by mass to 45% by mass, component (A): a urethane elastomer, component (B): an epoxy resin, component (C): an amine compound and/or phenol compound.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: April 28, 2020
    Assignee: THREE BOND CO., LTD.
    Inventors: Hiroshi Kimura, Yoshihide Arai
  • Patent number: 10605725
    Abstract: An infrared (IR) imaging system for determining a concentration of a target species in an object is disclosed. The imaging system can include an optical system including a focal plane array (FPA) unit behind an optical window. The optical system can have components defining at least two optical channels thereof, said at least two optical channels being spatially and spectrally different from one another. Each of the at least two optical channels can be positioned to transfer IR radiation incident on the optical system towards the optical FPA. The system can include a processing unit containing a processor that can be configured to acquire multispectral optical data representing said target species from the IR radiation received at the optical FPA. One or more of the optical channels may be used in detecting objects on or near the optical window, to avoid false detections of said target species.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: March 31, 2020
    Assignee: REBELLION PHOTONICS, INC.
    Inventors: Ryan Mallery, Ohad Israel Balila, Robert Timothy Kester
  • Patent number: 10605712
    Abstract: The invention relates to an assembly for determining the permeation rate of a sample for at least one permeate, in particular water vapor, wherein multiple detectors are arranged in a row or in a row and column arrangement for the spatially resolved spectral analysis of electromagnetic radiation within a wavelength interval. The detectors are connected to an electronic evaluation unit and are arranged such that electromagnetic radiation emitted from a broadband radiation source is incident on the detectors either after being reflected by the surface of the sample, by a layer formed on the sample, or by the surface of a layer within the sample, and/or after passing through a sample which is transparent to the electromagnetic radiation. The irradiation is carried out such that a homogeneous intensity of the electromagnetic radiation is maintained on a surface, by means of which the electromagnetic radiation is reflected or through which the radiation is transmitted.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: March 31, 2020
    Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Philipp Wollmann, Wulf Graehlert, Florian Gruber
  • Patent number: 10605661
    Abstract: An image capturing apparatus includes an image capturing device that captures an image of light from a subject, the light passing through each of wavelength band filters having invisible wavelengths as passbands, in which parts of the passbands of the filters whose center wavelengths are adjacent to each other mutually overlap, and a control unit that causes the image capturing device to capture an image of the light from the subject on which a first irradiation light is irradiated, the first irradiation light having a first spectral distribution in which parts of the respective passbands of the filters overlap with one another, and causes the image capturing device to capture an image of the light from the subject on which a second irradiation light is irradiated, the second irradiation light having a second spectral distribution in which parts of the respective passbands of the filters overlap with one another.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: March 31, 2020
    Assignee: NIKON CORPORATION
    Inventors: Hiroshi Sakakibara, Kiyoshige Shibazaki, Junya Hagiwara, Yusuke Takanashi
  • Patent number: 10533939
    Abstract: The instant disclosure provides a gas detection device including a chamber module, a light emitting module and an optical sensing module. The chamber module includes a condensing chamber, a receiving chamber and a sampling chamber. The condensing chamber has a first reflecting structure, a second reflecting structure and a third reflecting structure. The first reflecting structure is disposed between the second reflecting structure and the third reflecting structure. The light emitting module is disposed on the condensing chamber and includes a light emitting unit corresponding to the condensing chamber. The optical sensing module includes an optical sensing unit disposed in the receiving chamber.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: January 14, 2020
    Assignee: RADIANT INNOVATION INC.
    Inventors: Tseng-Lung Lin, Shao-Yun Yu, Yu-Chien Huang
  • Patent number: 10480999
    Abstract: A spectrometer includes a light detection element having a substrate made of a semiconductor material, a light passing part provided in the substrate, and a light detection part put in the substrate, a support having a base wall part opposing the light detection element, and side wall parts integrally formed with the base wall part, the light detection element being fixed to the side wall parts, the support being provided with a wiring electrically connected to the light detection part, and a dispersive part provided on a surface of the base wall part on a side of a space. An end part of the wiring is connected to a terminal of the light detection element. An end part of the wiring is positioned on a surface in the base wall part on an opposite side from the side of the space.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: November 19, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Takafumi Yokino, Katsumi Shibayama
  • Patent number: 10481063
    Abstract: A display device includes a detecting drive unit, an air cleanliness detecting unit and an air cleanliness indicating unit. The air cleanliness detecting unit is configured to detect air cleanliness under the driven of the detecting drive unit and to transmit a detecting result to the air cleanliness indicating unit. The air cleanliness indicating unit is configured to indicate the air cleanliness based on the detecting result of the air cleanliness detecting unit. The display device of the disclosure can conveniently detect the air cleanliness so that a user can live more healthily.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: November 19, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Wenchu Dong
  • Patent number: 10473586
    Abstract: The concentration of a targeted molecule (such as glucose) in a liquid medium having at least one interfering molecule coexisting with the targeted molecule is detected by use of NDIR and a sampling technique in which an imposed location of a pulse beam from a signal source, an interference source and a reference source is varied over a plurality of sites of a sampling area.
    Type: Grant
    Filed: March 20, 2019
    Date of Patent: November 12, 2019
    Assignee: AIRWARE, INC.
    Inventors: Thomas Campbell, Jacob Y Wong
  • Patent number: 10473583
    Abstract: The invention relates to a method for determining concentrations of absorbing gases by means of a spectroscopic measuring device, wherein wavelength-dependent measurement values for a light intensity are obtained and a wavelength-dependent measurement value function is represented based on these values. A wavelength-dependent theoretical function is defined, which includes as parameters a calibration parameter and the concentrations. The calibration parameter is defined as a function of a device parameter and a correction parameter that depends on the concentrations.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: November 12, 2019
    Assignee: AIRYX GMBH
    Inventors: Denis Poehler, Martin Horbanski, Ulrich Platt
  • Patent number: 10466156
    Abstract: A method is provided for transporting a plurality of cells through a flow chamber, wherein the cells are initially immobilized on an internal surface of the flow chamber. The method comprises: selectively releasing the cells from the internal surface of the flow chamber; and flowing liquid through the flow chamber such that the released cells travel with the liquid, thereby transporting the cells through the flow chamber. Cells can be immobilized on or selectively released from the internal surface by applying or removing a trapping potential. The trapping potential can arise from an electric field gradient or an optical field gradient. Alternatively, cells can be selectively released from the surface using photocatalysis. Selective release allows cells to be individually observed or analyzed downstream, and can be based on a signal detected from one or more cells immobilized on the surface.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: November 5, 2019
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Daniel Y. Chu, Paul J. Patt, Roger Tong
  • Patent number: 10466174
    Abstract: A gas analyzer may include: a gas chamber configured to receive a gas to be analyzed therein, a radiation source configured to emit electromagnetic radiation into the gas chamber, the electromagnetic radiation being adapted to selectively excite gas molecules of a specific type that is to be detected in the gas received in the gas chamber, a collimator configured to collimate the electromagnetic radiation emitted by the radiation source, and a sensor configured to detect a physical quantity indicative of a degree of interaction between the electromagnetic radiation emitted by the radiation source and the gas to be analyzed.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: November 5, 2019
    Assignee: Infineon Technologies AG
    Inventors: Christoph Glacer, Alfons Dehe, David Tumpold, Gueclue Onaran
  • Patent number: 10458900
    Abstract: A non-dispersive photoacoustic gas detector includes an infrared light source, a first closed chamber, a first acoustic sensor in fluid communication with the first closed chamber, a second closed chamber, and a second acoustic sensor in fluid communication with the second closed chamber. The first closed chamber comprises a plurality of windows that are substantially transparent to infrared light from the infrared light source. The second closed chamber comprises at least one window that is substantially transparent to infrared light from the infrared light source, and the first closed chamber is arranged in series with the second closed chamber between the infrared light source and the second closed chamber.
    Type: Grant
    Filed: September 7, 2016
    Date of Patent: October 29, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Terry Marta, James Allen Cox, Bernard Fritz, Antony Phillips, Rodney Watts
  • Patent number: 10451593
    Abstract: A system and method for determining concentration of a constituent of a sample fluid includes a flow cell with a light source emitting incident light to a proximal end thereof. Media disposed within the flow cell supports nanostructures that are substantially transparent in at least a portion of the incident light spectrum. The nanostructures adsorb or absorb the constituent to attain a concentration that is a multiple of the concentration of the constituent in the sample fluid. A sensor detects transmitted light exiting from the media, and generates outputs corresponding to a spectrum of the transmitted light. A processor captures the sensor outputs and compares the incident light spectrum to the transmitted light spectrum to generate an absorbance spectrum. The absorbance spectrum is used to calculate the concentration in the nanostructures, which is then used with the predetermined multiple to calculate the sample concentration.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: October 22, 2019
    Assignee: AA Holdings, Ltd.
    Inventors: Yoav Barshad, Adam B. Thibault
  • Patent number: 10451543
    Abstract: A photo-acoustic gas sensor is disclosed. The photo-acoustic gas sensor includes a substrate, a light emitter unit supported by the substrate, the light emitter unit including a light emitter configured to emit a beam of light pulses with a predetermined repetition frequency and wavelength corresponding to an absorption band of a gas to be sensed, and a detector unit supported by the substrate, the detector unit including a microphone, wherein the beam of light pulses traverses an area intended to accommodate the gas and the microphone can receive a signal oscillating with the repetition frequency.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: October 22, 2019
    Assignee: Infineon Technologies AG
    Inventors: Thomas Mueller, Horst Theuss, Klaus Elian, Rainer Markus Schaller, Stefan Kolb
  • Patent number: 10429664
    Abstract: According to one embodiment, a semiconductor laser includes a semiconductor laser element. A drive current which is composed of a direct current and an alternating current superposed thereon is applied to the semiconductor laser element. A waveform of the alternating current is a non-square wave. A frequency of the alternating current is from 50 Hz to 500 kHz.
    Type: Grant
    Filed: April 18, 2018
    Date of Patent: October 1, 2019
    Assignee: Japan Display Inc.
    Inventors: Youichi Asakawa, Ken Onoda, Toshihiko Fukuma, Shinichi Komura
  • Patent number: 10428839
    Abstract: A vibration damper structure and a series fan thereof. The vibration damper structure includes a first support body, a second support body and an elastic member. The first support body has a first upper end and a first lower end. The second support body has a second upper end and a second lower end. The elastic member is disposed between the first and second support bodies. The elastic member has a first support end in contact with the first lower end and a second support end in contact with the second lower end. The vibration damper structure is applied to the series fan to greatly reduce the vibration of the series fan in operation.
    Type: Grant
    Filed: January 8, 2017
    Date of Patent: October 1, 2019
    Assignee: ASIA VITAL COMPONENTS CO., LTD.
    Inventors: Bor-Haw Chang, Yu-Tzu Chen, Chung-Shu Wang
  • Patent number: 10422743
    Abstract: A lightpipe is coupled to a spectrometer based on a laterally variable optical filter. The lightpipe may be used for both guiding the illuminating light towards a sample and collecting light reflected or emitted by the sample upon illumination, for spectral measurements at a distance from the sample afforded by the lightpipe. The lightpipe may include a slab of homogeneous transparent material for unconstrained bidirectional propagation of light in bulk of the material. The lightpipe may be solid, hollow, or sectioned for separated guiding of the illuminating and the reflected light.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: September 24, 2019
    Assignee: VIAVI Solutions Inc.
    Inventors: Curtis R. Hruska, Benjamin F. Catching, Marc K. Von Gunten
  • Patent number: 10408745
    Abstract: A method of referencing in optical absorption spectroscopy using broadband light sources for determining the concentration of substances in gaseous or fluid media through and to a device for measuring the concentration of substances in gaseous or fluid media within the measurement path of a measurement cell using absorption spectroscopy of light emitted from broadband light sources via light guiding optics.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: September 10, 2019
    Assignee: BLUEPOINT MEDICAL GMBH & CO. KG.
    Inventors: Martin Degner, Hartmut Ewald, Nils Damaschke, Elfred Lewis
  • Patent number: 10386298
    Abstract: A sensor including an optical cavity capable of receiving the gas, and defined by first and second opposite ends and a connecting portion connecting said ends; a light source arranged to emit infrared light in the optical cavity; at least one infrared detector arranged to detect the infrared light; at least one mirror arranged in the optical cavity to guide the infrared light towards said at least one infrared detector; the sensor being remarkable in that it includes first and second reflective elements respectively extending at the first and second ends of the optical cavity, and having an infrared light reflection coefficient greater than or equal to 75% for any angle of incidence.
    Type: Grant
    Filed: February 21, 2017
    Date of Patent: August 20, 2019
    Assignee: COMMISSARIAT À L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Pierre Barritault, Serge Gidon
  • Patent number: 10371630
    Abstract: An inline concentration meter includes a light source unit emitting mixed light containing at least two wavelengths with a phase difference, a detecting unit including a light incident part for entering the mixed light emitted from the light source unit into a fluid passage of a detector body and at least two light detection parts receiving the mixed light passed through the fluid passage, a computing processor unit conducting frequency analyzes of detection signals of the mixed light output from the respective light detection parts and computing variations of intensities of the detection signals corresponding to absorbances in at least two frequency ranges to compute a concentration of fluid in the fluid passage based on the variations of the intensities of the detection signals, and a recording/displaying unit recording and displaying a value of the fluid concentration computed at the computing processor unit.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: August 6, 2019
    Assignees: Tokushima University, Fujikin Incorporated
    Inventors: Yoshihiro Deguchi, Masaaki Nagase, Nobukazu Ikeda, Michio Yamaji
  • Patent number: 10352910
    Abstract: A gas analyzer is provided. The gas analyzer may include: a tubular housing having a housing wall extending along an axial direction of the tubular housing and surrounding a gas chamber configured to receive a gas to be analyzed therein, an excitation element positioned at a first axial end of the tubular housing and configured to selectively excite gas molecules of a specific type that is to be detected in the gas received in the gas chamber in a time-varying fashion, thereby generating acoustic waves, and a sensor positioned at a second axial end of the tubular housing and configured to detect acoustic waves generated by the excitation element.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: July 16, 2019
    Assignee: Infineon Technologies AG
    Inventors: Christoph Glacer, Alfons Dehe, David Tumpold
  • Patent number: 10337949
    Abstract: A portable handheld gas leak detector that draws in a sample of ambient air for detecting the presence of a gas by sensing changes in infrared (IR) energy between an IR emitter and an IR sensor when the gas is in the space between the IR emitter and the IR sensor.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: July 2, 2019
    Assignee: Kane USA, Inc.
    Inventor: David W. Augusto
  • Patent number: 10309601
    Abstract: A light source device includes a light source, a wavelength conversion member, and a retroreflective optical member. The light source emits excitation light. The wavelength conversion member includes a first region irradiated with the excitation light and radiates, from the first region, converted light having a wavelength different from that of the excitation light. The retroreflective optical member reflects the converted light toward the first region. The first region is a region that is a part of the wavelength conversion member.
    Type: Grant
    Filed: November 24, 2016
    Date of Patent: June 4, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masatoshi Nishimura, Akihiro Yamada, Jun Kondo
  • Patent number: 10302599
    Abstract: A photoacoustic gas detector may include: a gas chamber configured to receive a gas to be analyzed therein, an excitation element configured to selectively excite gas molecules of a specific type that is to be detected in the gas received in the gas chamber in a time-varying fashion, thereby generating pressure differences, a sensor configured to detect pressure differences generated by the excitation element, and a pump configured to pump gas between the exterior of the photoacoustic gas detector and the gas chamber.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: May 28, 2019
    Assignee: Infineon Technologies AG
    Inventors: David Tumpold, Alfons Dehe, Christoph Glacer
  • Patent number: 10302558
    Abstract: A gas analysis system includes: a laser light source for emitting a laser light to be transmitted through an analysis target gas; a photodetector configured to receive the laser light transmitted through the analysis target gas, for outputting a signal corresponding to an emission intensity of the received laser light; a gas analysis apparatus for analyzing the analysis target gas on the basis of the signal outputted from the photodetector; a variable light attenuator disposed between the analysis target gas and the laser light source; a transmitted-light amount detector configured to evaluate a transmitted light amount of the laser light transmitted through the analysis target gas on the basis of the signal outputted from the photodetector; and an attenuation amount controller configured to control an attenuation amount of the variable light attenuator on the basis of the transmitted light amount of the laser light evaluated by the transmitted-light amount detector.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: May 28, 2019
    Assignee: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Hirotaka Oka, Kenji Muta, Tatsuyuki Nishimiya, Kohei Kawazoe
  • Patent number: 10288558
    Abstract: Unique gas cell constructions based on a hollow-core photonic crystal fiber are used, for example, inside a fiber ring laser cavity as an intracavity gas cell. In one embodiment, two simple terminal blocks are coupled to opposite ends of the hollow-core photonic crystal fiber. Each block features a main through-bore with an optical window at one end and an optical fiber chuck fitted at the other end, while a transverse bore intersects the main bore and features a gas fitting for connection to a gas source or vacuum pump. In another embodiment, the hollow-core photonic crystal fiber is contained within an enclosure whose exterior walls are fitted with optical windows and gas ports. Inside the enclosure, fiber clamps supports the ends of the hollow-core photonic crystal fiber at positions adjacent to an in alignment with the optical windows.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: May 14, 2019
    Assignee: Lakehead University
    Inventor: Gautam Das
  • Patent number: 10288575
    Abstract: We disclose herein an environmental sensor system comprising an environmental sensor comprising a first heater and a second heater in which the first heater is configured to consume a lower power compared to the second heater. The system also comprises a controller coupled with the environmental sensor. The controller is configured to detect if a measured value of a targeted environmental parameter is present. The controller is configured to switch on at least one of the first and second heaters based on the presence and/or result of the measured value of the targeted environmental parameter.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: May 14, 2019
    Assignee: AMS SENSORS UK LIMITED
    Inventors: Syed Zeeshan Ali, Simon Jonathan Stacey, Florin Udrea
  • Patent number: 10254162
    Abstract: The present disclosure provides an optical module comprising: a photoelectric conversion unit, a first demodulation circuit, and a second demodulation circuit; the first demodulation circuit and the second demodulation circuit are respectively connected to the photoelectric conversion unit; the photoelectric conversion unit is configured to convert the received optical signal into an electrical signal; the first demodulation circuit is configured to demodulate an electrical signal converted by the photoelectric conversion unit and generate a high-frequency electrical signal; the second demodulation circuit is configured to demodulate an electrical signal converted by the photoelectric conversion unit and generate a low-frequency electrical signal.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: April 9, 2019
    Assignees: HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES CO., LTD., HISENSE BROADBAND MULTIMEDIA TECHNOLOGIES LTD.
    Inventors: Qiang Zhang, Qisheng Zhao
  • Patent number: 10254222
    Abstract: A gas concentration measurement device includes a light source that emits infrared light, a detector that detects the infrared light through a band pass filter, and a waveguide including a wave-guiding portion that includes a tubular inner peripheral surface, an entrance that introduces the infrared light from the light source to the wave-guiding portion, and an exit that guides the infrared light that passes through the wave-guiding portion toward the detector. A portion or the entirety of the inner peripheral surface of the wave-guiding portion includes a tapered region that includes a cross section that decreases along a direction extending from the entrance to the exit. The waveguide reflects the infrared light that enters the wave-guiding portion to reduce energy of the infrared light that is obliquely incident on the band pass filter.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: April 9, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Masaaki Yasuda, Yoshinori Ikeda
  • Patent number: 10241044
    Abstract: For determining concentration of targeted molecules MG in a liquid sample admixed with interfering molecules MJ which overlap their absorption band, a special NDIR sampling and calibration technique is employed. Besides the signal source, a reference and one or more interference sources are added. The selection of the wavelength for the interference sources enables its measured transmittance value to be used for deciding the validity of the calibration curve for molecules MG in the liquid sample. This value can further be used to adjust the calibration curve via a parameter linking the transmittances measured at the signal and interference wavelength channels in order to assure its validity.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: March 26, 2019
    Assignee: AIRWARE, INC.
    Inventors: Jacob Y Wong, Thomas Campbell
  • Patent number: 10234381
    Abstract: Method of measuring a ratio of concentrations of two isotopologues of a chemical species in a first gas mixture using an optical absorption spectroscopy based gas analyzer; the method includes measuring the line intensity of a rotational-vibrational line of one isotopologue and the line intensity of another rotational-vibrational line of another isotopologue. The method also includes determining the ratio of two line intensities and comparing it with another ratio measured using another gas analyzer for a gas mixture with known concentration of isotopologues. The second ratio can be measured for the same pair of lines or for different pair of lines. The second ratio can be measured at the same gas temperature or at different gas temperature. The method includes determining a ratio of concentrations of two isotopologues based on two ratios of line intensities and two temperatures.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: March 19, 2019
    Inventor: Serguei Koulikov
  • Patent number: 10228324
    Abstract: Presented herein are systems and methods for quantifying trace and/or ultra-trace levels of a species—for example, H2S or H2O—in a natural gas line. The systems and methods employ a tunable laser, such as a tunable diode laser, vertical-cavity surface-emitting laser (VCSEL), external cavity diode laser or a vertical external-cavity surface-emitting laser (VECSEL) or a tunable quantum cascade laser (QCL). The laser produces an output beam over a set of one or more relatively narrow, high resolution wavelength bands at a scan rate from about 0.1 Hz to about 1000 Hz. A natural gas sample comprising a trace level of a species of interest passes through a flow cell into which the output beam from the laser is guided. An optical detector receives light from the flow cell, producing a signal indicative of the absorption attenuation from which the concentration of the trace species is determined.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: March 12, 2019
    Assignee: MKS Instruments, Inc.
    Inventors: Peter Zemek, Robert M. Carangelo, Hongke Ye, Andrew Wright
  • Patent number: 10225965
    Abstract: What is specified is an electronic component (100) comprising a functional body (1) provided with a reflection structure (2) wherein the reflection structure (2) is arranged and designed to reflect radiation that impinges on the electronic component (100) from outside away from the functional body (1) and wherein the electronic component (100) is radiation-passive.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: March 5, 2019
    Assignee: EPCOS AG
    Inventors: Oliver Dernovsek, Thomas Feichtinger
  • Patent number: 10222323
    Abstract: An inline concentration measurement device comprises: a measurement cell main body with a gas flow path formed; a light incident part with a window member connected to the main body; and a light receiving part with a window member connected to the main body, wherein the gas flow path includes a gas flow path for an optical path extending straight between the window members of the light incident part and the light receiving part, a first communication part making a gas inlet formed in the main body communicate with the gas flow path part for the optical path, and a second communication part making a gas outlet formed in the main body communicate with the gas flow path part for the optical path, and the first communication part obliquely extends from the gas inlet towards the window member of the light incident part.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: March 5, 2019
    Assignees: TOKUSHIMA UNIVERSITY, FUJIKIN INCORPORATED
    Inventors: Yoshihiro Deguchi, Masaaki Nagase, Nobukazu Ikeda, Michio Yamaji, Tadayuki Yakushijin
  • Patent number: 10222595
    Abstract: An optical multipass system is configured to include, in addition an end-mirror configuration of reflective surfaces, a multipass pattern folding assembly. The end-mirror configuration includes at least two reflective surfaces arranged to provide for establishing cell stability of an optical multipass cell comprising all or part of the optical multipass system, or further provide for directing and/or focusing light within the optical multipass cell. The multipass pattern folding assembly includes at least two inner reflective surfaces configured to provide for folding an optical pattern intra-cavity at least twice off one of the inner reflective surfaces of the multipass pattern folding assembly.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: March 5, 2019
    Inventor: Joshua B Paul
  • Patent number: 10190995
    Abstract: A method and apparatus for analyzing a fluid sample that includes loading the sample in a sample space in a sensor with an input and an output, applying an electromagnetic input signal to the input, measuring at the output a response signal that includes an output signal produced by the sensor while the sensor is contacted by the sample and the electromagnetic input signal is applied to the input, comparing the response signal against the electromagnetic input signal to generate a comparison, and matching the comparison against a set of comparisons for known substances.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: January 29, 2019
    Assignee: Liverpool John Moores University
    Inventors: Ahmed Al-Shamma'a, Alex Mason, Olga Korostynska