Ion Or Electron Beam Irradiation Patents (Class 250/492.3)
  • Publication number: 20140291516
    Abstract: Methods and systems for measuring a characteristic of a substrate or preparing a substrate for analysis are provided. One method for measuring a characteristic of a substrate includes removing a portion of a feature on the substrate using an electron beam to expose a cross-sectional profile of a remaining portion of the feature. The feature may be a photoresist feature. The method also includes measuring a characteristic of the cross-sectional profile. A method for preparing a substrate for analysis includes removing a portion of a material on the substrate proximate to a defect using chemical etching in combination with an electron beam. The defect may be a subsurface defect or a partially subsurface defect. Another method for preparing a substrate for analysis includes removing a portion of a material on a substrate proximate to a defect using chemical etching in combination with an electron beam and a light beam.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Mehran Nasser-Ghodsi, Mark Borowicz, Dave Bakker, Mehdi Vaez-Iravani, Prashant Aji, Rudy Garcia, Tzu Chin Chuang
  • Publication number: 20140291553
    Abstract: A apparatus includes a unit to operate a first dose of a beam corrected for a proximity effect for each of second mesh regions of a second mesh size obtained by dividing the first mesh size by a product of a natural number and a number of passes, by using a dose model using a dose threshold; a unit to operate a representative temperature rising due to heat transfer originating from irradiation of the beam by using a dose for an applicable pass of the first dose and a unit to operate a polynomial having a term obtained by multiplying a dose modulation coefficient based on the representative temperature by a pattern area density as an element, and a dose that makes a difference between a value obtained by operating the polynomial and the dose threshold within a tolerance is used.
    Type: Application
    Filed: March 21, 2014
    Publication date: October 2, 2014
    Applicant: NuFlare Technology, Inc
    Inventors: Noriaki NAKAYAMADA, Yasuo KATO, Mizuna SUGANUMA
  • Patent number: 8847178
    Abstract: A charged particle beam writing apparatus according to one aspect of the present invention includes a substrate cover attachment/detachment unit to attach or detach a substrate cover that covers a whole periphery of a substrate being a writing target from an upper part, to/from the substrate, a writing unit to write a pattern on the substrate, in a state where the substrate cover is attached to the substrate, by a charged particle beam, a position measurement unit, before and after writing by the writing unit, to measure a position of the substrate cover in a state attached to the substrate, at a predetermined measurement position, and a correction unit, with respect to a position of the substrate to which the substrate cover is attached, to correct a positional deviation amount between a position of the substrate cover measured after writing and a position of the substrate cover measured before writing.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: September 30, 2014
    Assignee: NuFlare Technology, Inc.
    Inventors: Michihiro Kawaguchi, Kazuhiro Shiba, Keisuke Yamaguchi, Kiminobu Akeno, Yoshinori Kagawa
  • Patent number: 8847179
    Abstract: A charged particle beam reduces treatment time in the uniform scanning or in the conformal layer stacking irradiation. In the uniform scanning, an optimum charged particle beam scan path for uniformly irradiating a collimator aperture area is calculated. In the conformal layer stacking irradiation, an optimum charged particle beam scan path for uniformly irradiating a multi-leaf collimator aperture area of each layer for each of the layers obtained by partitioning the target volume is calculated. Alternatively, a minimum irradiation field size that covers the multi-leaf collimator aperture area of each layer is calculated, and a scan path corresponding to the irradiation field size, prestored in a memory of a particle therapy control apparatus, is selected. The charged particle beam scan path is optimally changed in the lateral directions in conformity with the collimator aperture area in the uniform scanning or in each layer in the conformal layer stacking irradiation.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: September 30, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Shinichiro Fujitaka, Yusuke Fujii, Rintaro Fujimoto, Kazuo Hiramoto, Hiroshi Akiyama
  • Patent number: 8847148
    Abstract: An apparatus, method and products thereof provide an accelerated neutral beam derived from an accelerated gas cluster ion beam for processing materials.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: September 30, 2014
    Assignee: Exogenesis Corporation
    Inventors: Sean R. Kirkpatrick, Allen R. Kirkpatrick
  • Patent number: 8847180
    Abstract: A charged particle beam apparatus, which processes an object with a charged particle beam, includes: a detector having a detection surface, and configured to detect a charged particle beam incident on a partial region of the detection surface; and a controller configured to make target incident positions of charged particle beams, to be sequentially incident on the detection surface, different from each other.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: September 30, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Takehiko Suzuki
  • Publication number: 20140284501
    Abstract: Biomass feedstocks (e.g., plant biomass, animal biomass, and municipal waste biomass) are processed to produce useful products, such as fuels. For example, novel systems, methods and equipment for conveying and/or cooling treated biomass are described.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Marshall MEDOFF, Thomas Craig MASTERMAN, Robert PARADIS
  • Publication number: 20140284494
    Abstract: Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) or other materials are processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, systems and methods are described that can be used to treat feedstock materials, such as cellulosic and/or lignocellulosic materials, in a vault in which the walls and optionally the ceiling include discrete units. Such vaults are re-configurable.
    Type: Application
    Filed: June 9, 2014
    Publication date: September 25, 2014
    Inventors: Marshall MEDOFF, Thomas Craig MASTERMAN, Robert PARADIS
  • Patent number: 8841638
    Abstract: An particle beam therapy system comprises a scanning electromagnet for scanning a particle beam which travels in a vacuum duct so as to irradiate an irradiation object and an irradiation unit comprising a beam outlet window, wherein the irradiation unit is configured such that the vacuum duct can be divided by a flange surfacewhich is provided at a position closer to an irradiation object than a scanning electromagnet, in a case where a vacuum duct for a scanning irradiation method which is provided at a position closer to an irradiation object than the flange surface is moved so as not to overlap a beam line of the particle beam, a ride filter for a broad beam irradiation method can be provided at space where the vacuum duct for a scanning irradiation method was provided before it was moved.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: September 23, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Takeshi Hagino, Taizo Honda
  • Patent number: 8841631
    Abstract: An electrostatic scanner to scan an ion beam in an ion implanter. The electrostatic scanner may include a first scan plate having a first inner surface that faces the ion beam, the first inner surface having a concave shape in a first plane that is perpendicular to a direction of propagation of the ion beam, and a second scan plate opposite the first scan plate separated by a gap to accept the ion beam the second scan plate having a second inner surface that faces the ion beam and a convex shape in the first plane, the first scan plate and second scan plate configured to generate an electrostatic field in the gap to scan the ion beam back and forth along a horizontal direction perpendicular to the direction of propagation of the ion beam.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: September 23, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Joseph C. Olson, Edward W. Bell, Danielle Feldman
  • Publication number: 20140264085
    Abstract: A method for exposing a wafer according to pattern data using a charged particle lithography machine generating a plurality of charged particle beamlets for exposing the wafer. The method comprises providing the pattern data in a vector format, rendering the vector pattern data to generate multi-level pattern data, dithering the multi-level pattern data to generate two-level pattern data, supplying the two-level pattern data to the charged particle lithography machine, and switching on and off the beamlets generated by the charged particle lithography machine on the basis of the two-level pattern data, wherein the pattern data is adjusted on the basis of corrective data.
    Type: Application
    Filed: May 27, 2014
    Publication date: September 18, 2014
    Inventors: Teunis VAN DE PEUT, Marco Jan-Jaco WIELAND
  • Publication number: 20140263173
    Abstract: Methods for using an electron beam treatment performed on an amorphous carbon layer to form a treated amorphous carbon layer with high etching resistance are provided. In one embodiment, a method of treating an amorphous carbon film includes providing a substrate having a material layer disposed, forming an amorphous carbon layer on the material layer, and performing an electron beam treatment process on the amorphous carbon layer.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: Applied Materials, Inc.
    Inventors: Craig ROSSLEE, Srinivas D. NEMANI, Dmitry LUBOMIRSKY, Ellie Y. YIEH
  • Publication number: 20140264065
    Abstract: An energy degrading device for attenuating energy of a particle beam with reduced emittance growth. An energy degrader comprises an emittance control material that can preferentially scatter the beam particles that is incident on a surface with a shallow angle. In one approach, the energy degrader may include alternating layers of a low-Z and a high-Z material, wherein the low Z material serves to attenuate energy of the beam particles by virtue of scattering and the high Z material serves to suppress the emittance increase by scattering back the beam particles toward the beam axis. In another approach, the energy degrader may be composed of carbon nanotubes or a material with oriented crystalline structure that is substantially orientated in the incident direction of the particle beam. The carbon nanotubes may serve to preferentially scatter beam particles towards the central beam axis as well as attenuate energy thereof.
    Type: Application
    Filed: September 27, 2013
    Publication date: September 18, 2014
    Applicant: Varian Medical Systems, Inc.
    Inventor: Luis Alberto CRUZ
  • Patent number: 8835868
    Abstract: A multi charged particle beam writing apparatus includes a stage to mount a target object thereon and to be movable, an emission unit to emit a charged particle beam, an aperture member, in which a plurality of openings are formed, to produce multiple beams by letting a region including the whole of a plurality of openings be irradiated with the charged particle beam and letting portions of the charged particle beam respectively pass through a corresponding opening of a plurality of openings, a reduction optical system to reduce the multiple beams, and a doublet lens, arranged at the subsequent stage of the reduction optical system, in which a magnification is 1 and directions of magnetic fluxes are opposite.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: September 16, 2014
    Assignee: NuFlare Technology, Inc.
    Inventors: Takanao Touya, Munehiro Ogasawara
  • Patent number: 8835883
    Abstract: A charged particle radiation device includes a sample chamber in which a sample stage adapted to mount a sample is installed, a charged particle radiation irradiation section adapted to irradiate the sample with a charged particle radiation to observe and fabricate the sample, sidewalls installed on a periphery of the sample chamber and the charged particle radiation irradiation section, a ceiling board installed on a plane located in an upper part of the sidewalls, and a sound absorbing structure section disposed below the ceiling board, and including a plurality of hole sections and a hollow section communicated with the hole sections. The sound absorbing structure section has an absorption band including a frequency band of a standing wave generated in a space surrounded by the sidewalls and the ceiling board. Further, a soundproof cover may include the sidewalls, ceiling board and sound absorbing structure.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 16, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Daisuke Muto, Masanori Watanabe, Hiroshi Tsuji, Masaru Matsushima
  • Patent number: 8835843
    Abstract: A method of processing a TEM-sample, wherein the method comprises: mounting an object in a particle beam system such that the object is disposed, in an object region of the particle beam system; directing of a first particle beam onto the object region from a first direction, wherein the first particle beam is an ion beam; and then rotating the object about an axis by 180°, wherein the following relation is fulfilled: 35°???55°, wherein ? denotes a first angle between the first direction and the axis; and then directing of the first particle beam onto the object region from the first direction; wherein material is removed from the object during the directing of the first particle beam onto the object region. Furthermore, a second particle beam may be directed onto the object region, and particles emanating from the object region can be detected.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: September 16, 2014
    Assignee: Carl Zeiss Microscopy GmbH
    Inventor: Lorenz Lechner
  • Patent number: 8835845
    Abstract: A method for TEM/STEM sample preparation and analysis that can be used in a FIB-electron microscope system without a flip stage. The method allows a dual beam FIB electron microscope system with a typical tilt stage having a maximum tilt of approximately 60° to be used to extract a TEM/STEM sample to from a substrate, mount the sample onto a sample holder, thin the sample using FIB milling, and rotate the sample so that the sample face is perpendicular to a vertical electron beam column for TEM/STEM imaging.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 16, 2014
    Assignee: FEI Company
    Inventor: Liang Hong
  • Patent number: 8835882
    Abstract: The invention provides a method to real time monitor the ion beam. Initially, turn on an ion implanter which has a wafer holder, a Faraday cup and a measurement device positioned close to a special portion of a pre-determined ion beam path of the ion beam, wherein the Faraday cup is positioned downstream the wafer holder and the measurement device is positioned upstream the wafer holder. Then, measure a first ion beam current received by the Faraday cup and a second ion beam current received by the measurement device. By continuously measuring the first and second ion beam current, the ion beam is real-time monitored even the Faraday cup is at least partially blocked during the period of moving the wafer holder across the ion beam. Accordingly, the on-going implantation process and the operation of the implanter can be adjusted.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: September 16, 2014
    Assignee: Advanced Ion Beam Technology, Inc.
    Inventors: Wei-Cheng Lin, Zhimin Wan
  • Patent number: 8835873
    Abstract: A continuous sterilization system is provided which reliably supports a sterilization target so that the sterilization target is not tipped over during a sterilization process and can stably ensure uniform irradiation periods on any portion of inner and outer surfaces and moreover, a portion sterilized by electron beam irradiation is not contaminated again. The continuous sterilization system is provided with a first conveying means, a first electron beam accelerator, a second conveying means, a second electron beam accelerator, and a third electron beam accelerator.
    Type: Grant
    Filed: October 24, 2012
    Date of Patent: September 16, 2014
    Assignee: Airex Co., Ltd.
    Inventors: Koji Kawasaki, Daisuke Kakuda, Mitsuo Kamino, Norihiko Tsuji, Jun Masudome
  • Patent number: 8835884
    Abstract: A charged particle beam apparatus including a charged particle emission gun with which cleaning of a tip is possible without stopping the operation of the charged particle emission gun for a long time and without heating the tip. The charged particle emission gun includes a cleaning photo-irradiation apparatus that generates ultraviolet light or infrared light to irradiate a tip, and an optical fiber for guiding the ultraviolet light or the infrared light toward the tip. The cleaning photo-irradiation apparatus generates ultraviolet light or an infrared light with a predetermined wavelength and intensity to desorb a molecule adsorbed on the tip through photon stimulated desorption, or to desorb a molecule adsorbed on the tip through photon stimulated desorption and ionize the desorbed molecule.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 16, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Noriaki Arai
  • Patent number: 8835879
    Abstract: Ion implantation systems that separate the flow of ions from the flow of neutral particles are disclosed. The separation of neutral particles from ions can be achieved by manipulating the flow of ions in the system through variations in electrical or magnetic fields disposed within the implantation system. The path of neutral particles is less affected by electrical and magnetic fields than ions. The separation of these flows may also be accomplished by diverting the neutral particles from the ion beam, such as via an introduced gas flow or a flow blockage. Both separation techniques can be combined in some embodiments.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: September 16, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Greg Citver, Timothy J. Miller
  • Patent number: 8835848
    Abstract: An ultra-miniaturized electron optical microcolumn is provided. The electron optical microcolumn includes an electron-emitting source emitting electrons using a field emission principle, an extraction electrode causing the emission of electrons from the electron-emitting source, a focusing electrode to which voltage is flexibly applied in response to a working distance to a target for regulating a focusing force of electron beams emitted from the electron-emitting source, an acceleration electrode accelerating electrons emitted by the extraction electrode, a limit electrode regulating an amount and a size of electron beams using electrons accelerated by the acceleration electrode, and a deflector deflecting electron beams towards the target.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: September 16, 2014
    Assignee: Industry-University Cooperation Foundation Sunmoon University
    Inventors: Tae Sik Oh, Ho Seob Kim, Dae Wook Kim, Seung-Joon Ahn
  • Patent number: 8835844
    Abstract: The present invention has the object of providing charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices. To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: September 16, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Ezumi, Yoichi Ose, Akira Ikegami, Hideo Todokoro, Tatsuaki Ishijima, Takahiro Sato, Ritsuo Fukaya, Kazunari Asao
  • Patent number: 8835885
    Abstract: A charged particle beam irradiation device includes an accelerator that accelerates charged particles and emits a charged particle beam; an irradiation unit that irradiates a body with the charged particle beam; a duct that transports the charged particle beam to the irradiation unit; a tubular body arranged on a propagation path of the charged particle beam within the irradiation unit, has inert gas filled thereinto, and has particle beam transmission films transmitting the charged particle beam therethrough at an inlet and an outlet thereof; a gas supply unit that supplies the inert gas into the tubular body; and a leak valve that leaks the inert gas inside the tubular body to the outside when the internal pressure of the tubular body is equal to or higher than a set pressure. The gas supply unit has a plurality of supply lines having different amounts of supply of inert gas.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: September 16, 2014
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventor: Tsuyoshi Ogasawara
  • Publication number: 20140252227
    Abstract: A charged particle beam irradiation system includes: an irradiation unit configured to irradiate an irradiation target with a charged particle beam; a radiation resistance state measuring section configured to measure a radiation resistance state of the irradiation target; a region dividing section configured to divide the irradiation target into a plurality of radiation resistance regions based on a measurement result of the radiation resistance state measuring section; a radiation dose computing section configured to compute a planned value of a radiation dose of the charged particle beam for each of the plurality of radiation resistance regions divided by the region dividing section; and an irradiation planning section-configured to create an irradiation plan of the charged particle beam with respect to the irradiation target based on a computation result of the radiation dose computing section.
    Type: Application
    Filed: October 9, 2012
    Publication date: September 11, 2014
    Applicant: SUMITOMO HEAVY INDUSTRIES, LTD.
    Inventors: Kenzo Sasai, Teiji Nishio
  • Publication number: 20140255826
    Abstract: A method includes scanning a lithography mask with a repair process, and measuring back-scattered electron signals of back-scattered electrons generated from the scanning. An endpoint is determined from the back-scattered electron signals. A stop point is calculated from the endpoint. The step of scanning is stopped when the calculated stop point is reached.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Inventors: Chien-Lin Chen, Chih-Wei Wen, Chung-Hung Lin
  • Patent number: 8829466
    Abstract: A scanning power source that outputs the excitation current for a scanning electromagnet and an irradiation control apparatus that controls the scanning power source; the irradiation control apparatus is provided with a scanning electromagnet command value learning generator that evaluates the result of a run-through, which is a series of irradiation operations through a command value for the excitation current outputted from the scanning power source, that updates the command value for the excitation current, when the result of the evaluation does not satisfy a predetermined condition, so as to perform the run-through, and that outputs to the scanning power source the command value for the excitation current such that its evaluation result has satisfied the predetermined condition.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 9, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventor: Takaaki Iwata
  • Patent number: 8829476
    Abstract: Treatment planning methods are provided that determine the variability of relative biological effectiveness (RBE) along a beam line and calculate, among other things, what intensity of hadron beam such as a proton or a carbon ion beam should be applied to achieve a desired biological dose at treatment site of a patient afflicted with a medical condition. Typically, three or four RBE values at three or four corresponding spacially-dispersed intervals along the beam line are calculated. In one embodiment, two RBE values for the spread-out Bragg peak (SOBP) region of the treatment site; one for the proximal section and one for the declining distal section is calculated. A third and different RBE value may be determined for the distal edge region of the SOBP. A fourth value may also be calculated for a pre-SOBP region.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: September 9, 2014
    Assignee: Hampton University
    Inventors: Cynthia E. Keppel, Richard A. Britten, Vahagn R. Nazaryan
  • Patent number: 8829461
    Abstract: A scanning apparatus which performs scan on an object with a charged particle beam includes: a blanking deflector configured to individually blank a plurality of charged particle beams based on control data; a scanning deflector configured to collectively deflect the plurality of charged particle beams to perform the scan; and a controller. The controller is configured to hold first data used to obtain error in a scanning amount and a scanning direction of the scanning deflector relative to a reference scanning amount and a reference scanning direction with respect to each of the plurality of charged particle beams, and to generate the control data based on the first data so that the scan is performed for a target region on the object.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: September 9, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hirohito Ito, Yusuke Sugiyama
  • Publication number: 20140246606
    Abstract: A charged particle beam irradiation apparatus includes: an irradiation section configured to irradiate an irradiated body with a charged particle beam; a gantry in which an irradiation section is disposed and which can rotate or oscillate around a central axis line; an enclosure in which the irradiated body is disposed; and a gantry-side transport line that has an inlet section on which a charged particle beam emitted from an accelerator is incident and that is supported on the gantry and configured to transport an incident charged particle beam to the irradiation section, in which the gantry has a first bearing section provided between the inlet section of the gantry-side transport line and the enclosure, and a second bearing section provided on a side opposite to the first bearing section with respect to the enclosure.
    Type: Application
    Filed: May 8, 2014
    Publication date: September 4, 2014
    Applicant: SUMITOMO HEAVY INDUSTRIES, LTD.
    Inventor: Satoru YAJIMA
  • Patent number: 8822960
    Abstract: The charged particle beam drawing apparatus of the present invention is a charged particle beam drawing apparatus that renders a pattern on a substrate using a charged particle beam and includes a detector that detects charge amount depending on the irradiation of the charged particle beam; first and second deflectors that are arranged along the direction of the irradiation of the charged particle beam and are capable of deflecting the charged particle beam; and a controller that controls the first and second deflectors, wherein the controller transmits a signal, which is used for switching the irradiation/nonirradiation of the charged particle beam to the detector, to the first and second deflectors at a predetermined timing, and adjusts the operation timing of the first and second deflectors based on the output of the detector depending on the signal.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: September 2, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kimitaka Ozawa
  • Patent number: 8822965
    Abstract: A charged particle beam irradiation apparatus includes: a scanning electromagnet that scans a charged particle beam; and a degrader that is provided on a downstream side of the scanning electromagnet in a scanning direction of the charged particle beam and adjusts a range of the charged particle beam by reducing energy of the charged particle beam. The degrader is configured to be closer to an upstream side in the scanning direction of the charged particle beam, outward in the scanning direction.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: September 2, 2014
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventor: Toru Asaba
  • Patent number: 8822953
    Abstract: An electron beam irradiation apparatus is provided that includes a vacuum room, an electron beam generator, a window frame, and an irradiation foil. The vacuum room includes a wall having an opening through which an electron beam is irradiated. An internal atmosphere of the vacuum room is evacuated. The electron beam generator is provided inside the vacuum room. The window frame is attached to and surrounds the opening in the wall of the vacuum room. The irradiation foil, through which an electron beam generated in the vacuum room is transmitted, is fixed to the window frame. The surface of the window frame, at least an area exposed to the vacuum room, is substantially covered with material including an element or elements with an atomic number less than or equal to 10.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: September 2, 2014
    Assignee: Shibuya Kogyo Co., Ltd.
    Inventors: Hirotoshi Shibuya, Toshiaki Naka, Yukinobu Nishino, Ryo Abe, Tokuo Nishi, Yukihiro Yamamoto
  • Patent number: 8822945
    Abstract: A focused ion beam apparatus includes a gas field ion gun unit having an emitter, an ion source gas supply unit for supplying different ion source gases to the emitter, a heater for heating the emitter, and an extraction electrode. A storage section stores, for each gas of a plurality of different types, set values of emitter temperature, gas pressure, extraction voltage to be applied to an extraction electrode, image contrast and image brightness. An input section selects and inputs one of the gas types. A control section reads, from the storage section, the set values of emitter temperature, gas pressure, extraction voltage, image contrast and image brightness, which correspond to the input gas type, and sets a heater, a gas control section, a voltage control section, and an adjustment section for the contrast and brightness of the image.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: September 2, 2014
    Assignee: SII NanoTechnology Inc.
    Inventors: Kenichi Nishinaka, Takashi Ogawa, Yoshihiro Koyama
  • Patent number: 8822913
    Abstract: An inductively coupled plasma source having multiple gases in the plasma chamber provides multiple ion species to a focusing column. A mass filter allows for selection of a specific ion species and rapid changing from one species to another.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 2, 2014
    Assignee: FEI Company
    Inventors: Anthony Graupera, Charles Otis
  • Patent number: 8822921
    Abstract: A method and apparatus is provided for preparing samples for observation in a charged particle beam system in a manner that reduces or prevents artifacts. Material is deposited onto the sample using charged particle beam deposition just before or during the final milling, which results in an artifact-free surface. Embodiments are useful for preparing cross sections for SEM observation of samples having layers of materials of different hardnesses. Embodiments are useful for preparation of thin TEM samples.
    Type: Grant
    Filed: December 31, 2013
    Date of Patent: September 2, 2014
    Assignee: FEI Company
    Inventors: Michael Schmidt, Jeffrey Blackwood, Stacey Stone, Sang Hoon Lee, Ronald Kelley
  • Patent number: 8822958
    Abstract: Optimal irradiation conditions determined by iterative calculation are based upon an operator-defined irradiating direction, prescription dose, and other conditions. Dose matrixes A and B relating doses to calculation points from a beam delivered to irradiating positions are divided into a dose matrix AM or BM for the calculation points in a target region that are present at distances equal to or less than a distance L from the beam axis of the beam delivered to each spot, and a dose matrix AS or BS for the calculation points that are present at distances greater than L. When the iterative calculation is conducted following completion of the division, dose values and {right arrow over (d)}S(1) and {right arrow over (d)}S(2) that include the dose matrixes AS and BS are regarded as constants, and if updating conditions are satisfied, an objective function is recalculated using the values of the dose matrixes A, B and the spot irradiation dose {right arrow over (x)}.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: September 2, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Shusuke Hirayama, Rintaro Fujimoto, Yoshihiko Nagamine
  • Publication number: 20140239200
    Abstract: A cathode operating temperature adjusting method includes acquiring an approximate equation approximating a correlation between an emission current value in an electron beam source using a cathode and an operating temperature of the cathode at which a bias voltage becomes saturated at the emission current, measuring a current density of an electron beam from the cathode when in the state where an n-th emission current value and an n-th cathode operating temperature are set in the electron beam source, determining whether the measured current density is within a first tolerance range, changing the n-th emission current value to an (n+1)th emission current value when the measured current density is not within the first tolerance range, calculating an operating temperature of the cathode corresponding to the (n+1)th emission current value by the approximate equation, and setting the calculated operating temperature, as an (n+1)th cathode operating temperature, in the electron beam source.
    Type: Application
    Filed: February 21, 2014
    Publication date: August 28, 2014
    Applicant: NuFlare Technology, Inc.
    Inventor: Nobuo MIYAMOTO
  • Patent number: 8816303
    Abstract: A method of processing of an object comprises scanning a particle beam across a surface of the object and detecting electrons emerging from the object due to the scanning; determining a height difference between the surface of the object and a predetermined surface for each of plural of locations on the surface of the object based on the detected electrons; determining a processing intensity for each of the plural locations on the surface of the object based on the determined height differences; and directing a particle beam to the plural locations based on the determined processing intensities, in order to remove material from or deposit material on the object at the plural locations.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: August 26, 2014
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Josef Biberger, Ralph Pulwey, Jaroslaw Paluszynski, Dietmar Doenitz, Hans Mathèe, Michael Steigerwald
  • Patent number: 8816278
    Abstract: A method is provided for imaging a region of interest. The method includes defining a lamella within a microelectronic device, where the region of interest is in the lamella. The lamella has a first and second surface, and a first sacrificial layer contacts the first surface. The region of interest includes a material of interest, and an imaging technique capable of detecting the material of interest is selected. A support layer is formed on the second surface, where the support layer is transparent to the imaging technique. The first sacrificial layer is removed, and an image of the region of interest is produced.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: August 26, 2014
    Assignee: Globalfoundries Singapore Pte. Ltd.
    Inventors: Zhou Yongkai, Zhu Jie, Du An Yan
  • Patent number: 8816308
    Abstract: An RI manufacturing apparatus includes: an accelerator which accelerates charged particles; a target which is irradiated with the charged particle accelerated by the accelerator, thereby manufacturing a radioactive isotope; a built-in shield that may be a wall body which surrounds the accelerator and the target to shield radiation; and a target shield that may be a wall body which is disposed between the built-in shield and the accelerator and surrounds the target to shield the radiation.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: August 26, 2014
    Assignee: Sumitomo Heavy Industries, Ltd.
    Inventor: Hideki Tanaka
  • Patent number: 8819859
    Abstract: The apparatus includes a probe tip configured to scan a substrate having a defect to attach the defect on the probe tip while scanning the substrate, a cantilever configured to integrate a holder holding at least one probe tip, a stage configured to secure the substrate, an electromagnetic radiation source configured to generate the electromagnetic radiation beam, and an electromagnetic radiation detector configured to receive the first electromagnetic radiation signal and the second electromagnetic radiation signal. A first electromagnetic radiation signal is generated while an electromagnetic radiation beam focuses on the probe tip. A second electromagnetic radiation signal is generated while the electromagnetic radiation beam focuses on the sample attached on the probe tip. A chemical analysis of the sample is executed by comparing a difference between the first electromagnetic radiation signal and the second electromagnetic radiation signal.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: August 26, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yen-Kai Huang, Yuan-Chih Chu
  • Patent number: 8816276
    Abstract: An electron beam writing apparatus comprising a XY stage that a sample is placed on, an electron optical column, an electron gun emitting an electron beam disposed in the optical column, an electrostatic lens provided with electrodes aligned in an axial direction of the electron beam disposed in the optical column, wherein a shield plate is disposed between the XY stage and the electron optical column to block reflected electrons or secondary electrons generated by irradiation to the sample with the electron beam. The electrostatic lens is disposed immediately above the shield plate to change a focal position of the electron beam. A voltage supply device applies a negative voltage constantly to the electrostatic lens.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: August 26, 2014
    Assignee: NuFlare Technology, Inc.
    Inventors: Takanao Touya, Takahito Nakayama
  • Patent number: 8815474
    Abstract: A photomask defect correction method and device correct an opaque or a clear defect of a photomask. An opaque or clear defect in a portion of a photomask to be corrected is observed and information of the observed defect for performing correction of the defect is acquired. The observed defect is corrected in accordance with the acquired defect information by irradiating the observed defect with a focused ion beam from an ion beam irradiation system having a gas field ion source that generates gas ions for forming the focused ion beam. The gas ions may be hydrogen ions, nitrogen ions, oxygen ions, fluorine ions or chlorine ions.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: August 26, 2014
    Assignee: Hitachi High-Tech Science Corporation
    Inventor: Osamu Takaoka
  • Patent number: 8809799
    Abstract: Problems to be solved: To obtain higher brightness than Langmuir limit. Adjust brightness to the optimum value. Method of resolution: To obtain such beams, the following means and methods are effective. A charged particles beam apparatus consisting of a charged particle source, a beam drawing electrode, and a beam control electrode, wherein; after the charged particles beam source a condenser lens is designed, and brightness of the charged particles beam is adjusted by adjusting a magnification factor of said condenser lens.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: August 19, 2014
    Inventor: Mamoru Nakasuji
  • Patent number: 8809814
    Abstract: A method for irradiating a target volume includes defining a target region having a plurality of target points. The target points are individually approachable. The method includes defining a number of rescanning passes, in which the target region is scanned multiple times, such that the plurality of target points of the target region is approached variously often during the rescanning passes. At least some target points of the plurality of target points are not approached in all of the rescanning passes. The approaching of the plurality of target points is distributed among the rescanning passes such that for a target point of the plurality of target points that is not approached in all of the rescanning passes, at least one further rescanning pass, in which the target point is not approached, is located before a final rescanning pass, in which the target point is approached.
    Type: Grant
    Filed: June 18, 2010
    Date of Patent: August 19, 2014
    Assignees: Siemens Aktiengesellschaft, GSI Helmholtzzentrum für Schwerionenforschung GmbH
    Inventors: Christoph Bert, Eike Rietzel
  • Patent number: 8809815
    Abstract: There is provided a particle-beam energy changing apparatus that is capable of changing energy of a particle beam quickly and silently, in which a first energy changing unit and a second energy changing unit for changing energy of a particle beam passing therethrough by varying thicknesses of their attenuators attenuating the particle beam energy are arranged so that the particle beam passes through the first energy changing unit and the second energy changing unit; and the maximum attenuation amount by the first energy changing unit is set smaller than the maximum attenuation amount by the second energy changing unit.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: August 19, 2014
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yuehu Pu, Taizo Honda, Takaaki Iwata
  • Patent number: 8809817
    Abstract: A method and irradiator apparatus used for wort sterilization by radiation for production of ethanol from sugar cane, comprising a modular irradiation drum, radioactive source, ducts for transmission of a fluid through an apparatus for irradiation, and application of radiation to a fluid within an apparatus for sterilization of such fluid.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: August 19, 2014
    Inventors: Marcelo Gianatto Moreira, Airton Deppman, Pedro Carlos Russo Rossi
  • Publication number: 20140225008
    Abstract: A multi charged particle beam writing apparatus according to an embodiment, includes a setting unit to set a second region such that more openings in remaining openings except for an opening through which the defective beam passes are included in the second region, a selection unit to select a mode from a first mode in which a pattern is written on a target object by using multiple beams having passed openings in the second region and a second mode in which multiple writing is performed while shifting a position by using at least one of remaining multiple beams in the state where the defective beam is controlled to be beam off and additional writing is performed for a position which was supposed to be written by the defective beam, and a writing processing control unit to control to write in the mode selected.
    Type: Application
    Filed: April 18, 2014
    Publication date: August 14, 2014
    Applicant: NuFlare Technology, Inc.
    Inventors: Ryoichi YOSHIKAWA, Munehiro OGASAWARA
  • Patent number: 8803453
    Abstract: A method for generating stabilized particle acceleration by a radio-frequency (RF) accelerator is described, comprising operating the accelerator in a warm-up mode during a warm-up time period, without injecting charged particles or without accelerating injected charged particles, and operating the accelerator in a beam-on mode during a beam-on time period after the warm-up time period, to accelerate charged particles injected by the charged particle source. Automatic frequency control to match an expected frequency of the accelerator during the beam-on time period, prior to the start of the beam-on time period, for stability, is also described.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: August 12, 2014
    Assignee: Varian Medical Systems, Inc.
    Inventors: Douglas W. Eaton, Gongyin Chen, Timothy R. Fox