Noble Metal (gold, Silver, Ruthenium, Rhodium, Palladium, Osmium, Iridium, Platinum) Patents (Class 252/514)
  • Publication number: 20150102270
    Abstract: A thermosetting conductive silicone composition comprises an organopolysiloxane having at least one structure represented by the following formula (1), wherein m is either of 0, 1 or 2; R1 represents a hydrogen atom, a phenyl group or a halogenated phenyl group; R2 represents a hydrogen atom or methyl group; R3s may be the same or different from each other and each represents a substituted or unsubstituted monovalent organic group having 1 to 12 carbon atoms; Z1 represents either of —R4—, —R4—O— or —R4(CH3)2Si—O— where R4s may be the same or different from each other and each represents a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms; and Z2s represent an oxygen atom or a substituted or unsubstituted divalent organic group having 1 to 10 carbon atoms which may be the same or different from each other; an organic peroxide; and conductive particles.
    Type: Application
    Filed: August 26, 2014
    Publication date: April 16, 2015
    Inventors: Satoshi ONAI, Toshiyuki OZAI
  • Patent number: 9006296
    Abstract: According to the present invention, a metal nanoparticle dispersion suitable to multiple layered coating by jetting in the form of fine droplets is prepared by dispersing metal nanoparticles having an average particle size of 1 to 100 nm in a dispersion solvent having a boiling point of 80° C. or higher in such a manner that the volume percentage of the dispersion solvent is selected in the range of 55 to 80% by volume and the fluid viscosity (20° C.) of the dispersion is chosen in the range of 2 mPa·s to 30 mPa·s, and then when the dispersion is discharged in the form of fine droplets by inkjet method or the like, the dispersion is concentrated by evaporation of the dispersion solvent in the droplets in the course of flight, coming to be a viscous dispersion which can be applicable to multi-layered coating.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: April 14, 2015
    Assignees: Harima Chemicals, Inc., SIJ Technology, Inc., National Institute of Advanced Industrial Science and Technology
    Inventors: Daisuke Itoh, Akihito Izumitani, Noriaki Hata, Yorishige Matsuba, Kazuhiro Murata, Hiroshi Yokoyama
  • Patent number: 9005483
    Abstract: Nanoparticle paste formulations can be configured to maintain a fluid state, promote dispensation, and mitigate crack formation during nanoparticle fusion. Such nanoparticle paste formulations can contain an organic matrix and a plurality of metal nanoparticles dispersed in the organic matrix, where the plurality of metal nanoparticles constitute about 30% to about 90% of the nanoparticle paste formulation by weight. The nanoparticle paste formulations can maintain a fluid state and be dispensable through a micron-size aperture. The organic matrix can contain one or more organic solvents, such as the combination of one or more hydrocarbons, one or more alcohols, one or more amines, and one or more organic acids. Optionally, the nanoparticle paste formulations can contain about 0.01 to about 15 percent by weight micron-scale metal particles or other additives.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: April 14, 2015
    Assignee: Lockheed Martin Corporation
    Inventors: Alfred A. Zinn, Andrew Fried, Tim Stachowiak, Jerome Chang, Randall Mark Stoltenberg
  • Patent number: 9005484
    Abstract: A composition that includes an stabilized silver nanoparticles, a gellant and an optional wax. The gellant and the stabilized silver nanoparticles are soluble or dispersable in either an isoparaffinic hydrocarbon solvent, a mineral oil solvent or an alkane solvent.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 14, 2015
    Assignee: Xerox Corporation
    Inventors: Marcel P. Breton, Yiliang Wu, Naveen Chopra, Jennifer L. Belelie, Stephan V. Drappel
  • Patent number: 9005485
    Abstract: The present invention relates to a composition for a one-part die attach adhesives material useful for packaging semi-conductors including HB-LED. The composition of the present invention includes a thermal and electrical conductive filler, a polymer matrix and a solvent which form a material with high thermal conductivity, low curing temperature and high self-life temperature. The present invention also relates to a method of preparing said composition by mixing a size-selected and surface-modified filler formulation, a polymer matrix and a non-reactive organic solvent together followed by curing the mixture at a low temperature.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: April 14, 2015
    Assignee: Nano and Advanced Materials Institute Limited
    Inventors: Chenmin Liu, Dong Lu, Xianxin Lang, Bo Wang, Zhiying Li
  • Publication number: 20150098165
    Abstract: A conductive paste that includes a (meth)acrylic resin serving as a binder resin, an organic solvent, and a metal powder. The (meth)acrylic resin has a glass transition point Tg in the range of ?60° C. to 120° C., a hydroxyl group content in the range of 0.01% to 5% by weight per molecule, an acid value in the range of 1 to 50 mgKOH/g, and a weight-average molecular weight in the range of 10,000 to 350,000 Mw.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Toshihiro Suzuki, Naoaki Ogata, Masahito Ishikawa
  • Patent number: 8999204
    Abstract: Disclosed is a conductive ink composition, a manufacturing method thereof, and a manufacturing method of a conductive thin film using the same, and more specifically, a conductive ink composition is provided that includes composite metal nanoparticles including first metal nanoparticles and second metal nanoparticles, and a polymer matrix. The polymer matrix is a composition including a polymer and a solvent, the first metal nanoparticles and the second metal nanoparticles are different metals, and the content of the composite metal nanoparticles is about 20 to about 25 wt %, the content of the polymer is about 5 to about 10 wt %, and the content of the solvent is about 65 to about 75 wt %, based on the total weight of the composition.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: April 7, 2015
    Assignee: Korea Institute of Science and Technology
    Inventors: Jae-Min Hong, Yong-Won Song, Yong-Ju Jung, Hee-Dok Choi, Won-Suk Han, Hak-Sung Kim
  • Publication number: 20150090313
    Abstract: In general, the invention relates to electro-conductive pastes with Ag-metal-oxide as additives and solar cells with high Ohmic sheet resistance, preferably photovoltaic solar cells. More specifically, the invention relates to solar cell precursors, processes for preparation of solar cells, solar cells and solar modules. The invention relates to an electro-conductive paste comprising the following paste constituents: a. At least 70 wt. % Ag particles, based on the paste, b. An organic vehicle, c. A glass, d. An Ag-metal-oxide, comprising Ag, a metal M or semiconductor element different from Ag, and oxygen.
    Type: Application
    Filed: September 25, 2014
    Publication date: April 2, 2015
    Inventors: Gerd Schulz, Daniel Zindel, Markus König, Matthias Hörteis, Michael Neidert, Sebastian Unkelbach
  • Patent number: 8992701
    Abstract: After a reducing agent is added to a water reaction system containing silver ions to deposit silver particles by reduction, the silver particles are dried to obtain a silver powder which is heat-treated at a temperature of higher than 100° C. and lower than 400° C. The silver powder thus heat-treated has a maximum coefficient of thermal expansion of not greater than 1.5% at a temperature of 50° C. to 800° C., and has no heating peak when the silver powder is heated from 50° C. to 800° C. The silver powder has an ignition loss of not greater than 1.0% when the silver powder is ignited until the weight of the silver powder is constant at 800° C. The silver powder has a tap density of not less than 2 g/cm3 and a BET specific surface area of not greater than 5 m2/g.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: March 31, 2015
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Takatoshi Fujino, Kozo Ogi
  • Publication number: 20150083217
    Abstract: A conductive paste composition contains a source of an electrically conductive metal, a lead-tellurium-based oxide, a discrete oxide of an adhesion promoting element, and an organic vehicle. An article such as a high-efficiency photovoltaic cell is formed by a process of deposition of the paste composition on a semiconductor substrate (e.g., by screen printing) and firing the paste to remove the organic vehicle and sinter the metal and lead-tellurium-based oxide.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 26, 2015
    Inventors: KENNETH WARREN HANG, KURT RICHARD MIKESKA, RAJ G. RAJENDRAN, CARMINE TORARDI, PAUL DOUGLAS VERNOOY, YUELI WANG
  • Publication number: 20150083961
    Abstract: Electrically and/or thermally conductive polymer composites and methods of preparing same are provided. In some embodiments, a method for preparing an electrically and/or thermally conductive polymer composite may include (1) mixing a polymer, a conductive particulate filler, and a solvent compatible with the polymer to form a non-conductive polymer solution or melt; (2) processing, the non-conductive polymer solution or melt to form a non-conductive polymer network composition; wherein the presence of solvent during three-dimensional network formation manipulates the polymer network structure; and (3) removing the solvent from the non-conductive polymer network composition to form an electrically and/or thermally conductive polymer composite. The altered polymer chain structure present in the non-conductive polymer network composition is maintained in the composite, and offsets the impact of particulate filler addition including increased modulus, decreased elasticity, and decreased elongation at break.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: U.S. Army Research Laboratory ATTN: RDRL-LOC-I
    Inventors: Randy A. Mrozek, Joseph L. Lenhart
  • Publication number: 20150083474
    Abstract: An electroconductive ink composition comprising silver particles (A), a compound having a siloxane backbone with a functional group (B), and an organic solvent (C), the silver particles (A) having a protective layer containing an amino group-containing compound and having a mean particle size of 1 nm or more and 100 nm or less, the content of the compound (B) being 4% by weight to 8% by weight based on the total amount of the composition, can form a circuit pattern on a polymer film with low heat resistance, and the obtained circuit pattern has excellent adhesion to a substrate and high conductivity.
    Type: Application
    Filed: April 15, 2013
    Publication date: March 26, 2015
    Inventors: Kensuke Kawamura, Hideaki Umakoshi
  • Patent number: 8986578
    Abstract: The high impact strength conductive adhesive is a mixture formed from a bisphenol A-based epoxy resin, a curing agent, and silver flakes. In one embodiment, the bisphenol A-based epoxy resin forms about 10.5 wt % of the mixture and the curing agent forms about 14.5 wt % of the mixture, the balance being silver flakes. In this embodiment, the curing agent is preferably an oligomeric polyamine curing agent, such as amidoamine-polyoxypropylenediamine t-butyl phenol. Each silver flake preferably has a tap density of between about 4.0 g/cm3 and about 5.8 g/cm3, and a surface area of between about 0.8 m2/g and about 0.3 m2/g. In an alternative embodiment, the bisphenol A-based epoxy resin forms about 11.7 wt % of the mixture and the curing agent forms about 16.3 wt % of the mixture, the balance being silver flakes.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: March 24, 2015
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Rafil A. Basheer
  • Patent number: 8987586
    Abstract: A conductive paste including a conductive powder, a metallic glass, and an organic vehicle, wherein the metallic glass has a resistivity that is decreased when the metallic glass is heat treated at a temperature that is higher than a glass transition temperature of the metallic glass.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Soo Jee, Eun-Sung Lee, Se-Yun Kim, Sang-Mock Lee, Jun Ho Lee, Do-Hyang Kim, Ka Ram Lim
  • Patent number: 8986579
    Abstract: This invention provides a method for using a polymer thick film conductor composition to form an electrical conductor in an electrical circuit, the method subjecting the deposited thick film conductor composition to lamination. The invention also provides a method for reducing the resistance of an electrical conductor formed from a polymer thick film conductor composition, the method comprising the step of subjecting the electrical conductor to lamination. The invention further provides devices containing electrical conductors made by these methods.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: March 24, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Larry Alan Bidwell, Michael J. Champ, John C. Crumpton, Jay Robert Dorfman
  • Publication number: 20150075597
    Abstract: An electroconductive paste composition for use in forming backside soldering pads on a solar cell including metallic particles, glass frit including Bi2O3, Al2O3, SiO2, B2O3 and at least one of Li2O or Li3PO4, and an organic vehicle is provided. The invention also provides a solar cell comprising a silicon wafer having a front side and a backside, and a soldering pad formed on the silicon wafer produced from an electroconductive paste according to the invention. The invention further provides a solar cell module comprising electrically interconnected solar cells according to the invention. A method of producing of a solar cell, comprising the steps of providing a silicon wafer having a front side and a backside, applying an electroconductive paste composition according to the invention onto the backside of the silicon wafer, and firing the silicon wafer according to an appropriate profile, is also provided.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Inventors: Eric KURTZ, Lindsey A. KARPOWICH, Weiming ZHANG
  • Patent number: 8980139
    Abstract: A method of manufacturing a metal paste for an internal electrode according to the present invention includes preparing each of a metal powder and an organic vehicle; preparing a ceramic inhibitor powder in which a nano glass added with a rare-earth element is mixed; manufacturing a primary mixture by mixing the metal powder of 70 to 95 wt % and the ceramic inhibitor powder of 5 to 30 wt % when each of the metal powder, the organic vehicle, and the ceramic inhibitor powder in which the nano glass added with the rare-earth element is mixed is prepared; manufacturing a secondary mixture by mixing the primary mixture of 50 to 70 wt % and the organic vehicle of 30 to 50 wt % when the primary mixture is manufactured; and manufacturing the metal paste for the internal electrode by filtering the secondary mixture when the secondary mixture is manufactured.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 17, 2015
    Assignee: Samhwa Capacitor Co., Ltd.
    Inventors: Young Joo Oh, Jung Rag Yoon
  • Publication number: 20150069448
    Abstract: A light-reflective anisotropic conductive adhesive is used for anisotropic conductive connection of a light-emitting element to a wiring board. The adhesive includes a thermosetting resin, conductive particles, and light-reflective acicular insulating particles. The conductive particles comprise a core particle coated with a metal particle or a metal material, and a light reflective layer formed on a surface of the core particle. The light reflective layer comprises inorganic particles selected from any one of titanium oxide particles, zinc oxide particles or aluminum oxide particles until the entire conductive particle appears a color in a range from white to gray.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 12, 2015
    Inventors: Hidetsugu Namiki, Shiyuki Kanisawa, Hideaki Umakoshi, Akira Ishigami
  • Publication number: 20150068598
    Abstract: A conductive paste composition contains a source of an electrically conductive metal, an alkaline-earth-metal boron tellurium oxide, and an organic vehicle. An article such as a high-efficiency photovoltaic cell is formed by a process of deposition of the paste composition on a semiconductor device substrate (e.g., by screen printing) and firing the paste to remove the organic vehicle and sinter the metal and establish electrical contact between it and the device.
    Type: Application
    Filed: November 19, 2014
    Publication date: March 12, 2015
    Inventors: ZHIGANG RICK LI, Kurt Richard Mikeska, David Herbert Roach, Carmine Torardi, Paul Douglas Vernooy
  • Patent number: 8974704
    Abstract: A paste composition for solar cell electrodes includes a conductive powder, a glass frit, and an organic vehicle. The glass fit includes about 5 wt % to about 55 wt % of Bi2O3, about 10 wt % to about 40 wt % of TeO2, and a balance of PbO.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Cheil Industries, Inc.
    Inventors: Eun Kyung Kim, Young Wook Choi, Hun Gyu Song, Jung Chul Lee
  • Patent number: 8974705
    Abstract: A conductive composition comprises (i) micro- or submicro-sized silver flake having a tap density of 4.6 g/cc or higher and (ii) a solvent that dissolves any fatty acid lubricant or surfactant present on the surface of the silver. In one embodiment, (iii) a small amount of peroxide is present. No organic resin is present in the composition.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 10, 2015
    Assignees: Henkel AG & Co. KGaA, Henkel IP & Holding GmbH
    Inventors: Harry Richard Kuder, Juliet Grace Sanchez, Xinpei Cao, Matthias Grossmann
  • Patent number: 8974703
    Abstract: A conductive paste may include a conductive powder, a metallic glass including a first element having a heat of mixing value with the conductive powder of less than 0, and an organic vehicle, and an electronic device and a solar cell may include an electrode formed using the conductive paste.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: March 10, 2015
    Assignees: Samsung Electronics Co., Ltd., Industry-Academic Cooperation Foundation, Yonsei University of Yonsei Unversity
    Inventors: Se Yun Kim, Eun Sung Lee, Sang Soo Jee, In Yong Song, Sang Mock Lee, Do-Hyang Kim, Ka Ram Lim
  • Publication number: 20150060741
    Abstract: The present application relates to a new contact material, methods for the production of said contact material, and the use of said contact material.
    Type: Application
    Filed: March 26, 2013
    Publication date: March 5, 2015
    Inventor: Michael Bender
  • Publication number: 20150060742
    Abstract: A conductive paste used for a solar cell electrode comprising: (i) 60 wt % to 95 wt % of a silver powder, (ii) 0.1 wt % to 10 wt % of a glass frit, (iii) 3 wt % to 38 wt % of an organic medium, and (iv) 0.1 wt % to 5.0 wt % of a Ag—Bi composite powder, wherein the wt % are based on the total weight of the conductive paste.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 5, 2015
    Inventors: HOWARD DAVID GLICKSMAN, YUMI MATSUURA
  • Patent number: 8968608
    Abstract: An object of the present invention is to provide a method for producing a conductive material that allows a low electric resistance to be generated, and that is obtained by using an inexpensive and stable conductive material composition containing no adhesive. The conductive material can be provided by a producing method that includes the step of sintering a first conductive material composition that contains silver particles having an average particle diameter (median diameter) of 0.1 ?m to 15 ?m, and a metal oxide, so as to obtain a conductive material. The conductive material can be provided also by a method that includes the step of sintering a second conductive material composition that contains silver particles having an average particle diameter (median diameter) of 0.1 ?m to 15 ?m in an atmosphere of oxygen or ozone, or ambient atmosphere, at a temperature in a range of 150° C. to 320° C., so as to obtain a conductive material.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: March 3, 2015
    Assignee: Nichia Corporation
    Inventors: Masafumi Kuramoto, Satoru Ogawa, Katsuaki Suganuma, Keun-Soo Kim
  • Patent number: 8968607
    Abstract: A paste composition for a solar cell electrode includes including an organic vehicle, a conductive powder, and a glass frit, the glass frit including TeO2, and a transition metal oxide component, the transitional metal oxide component including one or more of a transition metal oxide having a melting point of about 1300° C. or more.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: March 3, 2015
    Assignee: Cheil Industries, Inc.
    Inventors: Young Wook Choi, Eun Kyung Kim, Young Ki Park, Dae Seop Song
  • Publication number: 20150056560
    Abstract: A photosensitive conductive paste includes an epoxy acrylate (A) including a urethane bond, a photopolymerization initiator (B), and a conductive filler (C), wherein an added amount of the conductive filler (C) is 70 to 95% by weight with respect to the total solids in the photosensitive conductive paste.
    Type: Application
    Filed: March 4, 2013
    Publication date: February 26, 2015
    Inventors: Tsukuru Mizuguchi, Satoshi Matsuba, Kazutaka Kusano
  • Publication number: 20150057147
    Abstract: The purpose of the present invention is to provide a stable colloidal gold solution and a method for producing the stable colloidal gold solution. A colloidal gold solution which contains, in water, gold nanoparticles having particle diameters of 100 nm or less and anions represented by general formula (a); and a method for producing the colloidal gold solution. R—COO? (a) (In the formula, R represents a linear or branched alkyl group having 1-4 carbon atoms.
    Type: Application
    Filed: March 6, 2013
    Publication date: February 26, 2015
    Inventors: Hiroaki Sakurai, Kenji Koga, Masato Kiuchi
  • Patent number: 8961836
    Abstract: The invention relates to a composition for printing conductor tracks onto a substrate, especially for solar cells, using a laser printing process, which composition comprises 30 to 90% by weight of electrically conductive particles, 0 to 7% by weight of glass frit, 0 to 8% by weight of at least one matrix material, 0 to 8% by weight of at least one organometallic compound, 0 to 5% by weight of at least one additive and 3 to 69% by weight of solvent. The composition further comprises 0.5 to 15% by weight of nanoparticles as absorbents for laser radiation, which nanoparticles are particles of silver, gold, platinum, palladium, tungsten, nickel, tin, iron, indium tin oxide, titanium carbide or titanium nitride. The composition comprises not more than 1% by weight of elemental carbon.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: February 24, 2015
    Assignee: BASF SE
    Inventors: Frank Kleine Jaeger, Stephan Hermes
  • Publication number: 20150047700
    Abstract: A conductive paste for solar cell electrodes according to an embodiment of the present invention comprises a glass frit containing many glass particles, and a non-glass component containing mainly at least one of silver and copper and additionally metallic element A1. The metallic element A1 is at least one selected from the group consisting of vanadium, niobium, tantalum, rhodium, rhenium, and osmium. A solar cell according to an embodiment of the present invention includes a semiconductor substrate, an antireflection film disposed in a first region on a main surface of the semiconductor substrate, and an electrode disposed in a second region different from the first region on the main surface of the semiconductor substrate and formed by firing the conductive paste for electrodes.
    Type: Application
    Filed: February 28, 2013
    Publication date: February 19, 2015
    Inventors: Yoshio Miura, Daisuke Ota, Tomomi Wataya
  • Patent number: 8956557
    Abstract: The present invention is directed to a thick film silver paste comprising (i) silver, (ii) copper, and (iii) a Pb—Te—O all dispersed in an organic medium. The present invention is further directed to an electrode formed from the paste and a semiconductor device and, in particular, a solar cell comprising such an electrode. The electrodes provide good electrical performance.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: February 17, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventor: Raj G. Rajendran
  • Publication number: 20150041974
    Abstract: A sintered body of silver fine particles for a bonding member to bond components of a semiconductor device, wherein an activation energy for creep of the sintered body of the silver fine particles is from 0.4 to 0.75 times that of an activation energy for a lattice diffusion of bulk silver.
    Type: Application
    Filed: February 26, 2013
    Publication date: February 12, 2015
    Inventors: Makoto Kobayashi, Koji Sasaki
  • Patent number: 8951445
    Abstract: A bridging arrangement for coupling a first terminal to a second terminal includes a plurality of particles of a first type forming at least one path between the first terminal and the second terminal, wherein the particles of the first type are attached to each other; a plurality of particles of a second type arranged in a vicinity of a contact region between a first particle of the first type and a second particle of the first type, wherein at least a portion of the plurality of particles of the second type is attached to the first particle of the first type and the second particle of the first type.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: February 10, 2015
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Javier V. Goicochea, Cyrill Kuemin, Walter H. Riess, Heiko Wolf
  • Patent number: 8952245
    Abstract: The invention relates to an inorganic reaction system used in the manufacture of electroconductive pastes. The inorganic reaction system comprises a lead containing composition and elemental tellurium, where in the lead containing composition is between 5-95 wt. % of the inorganic reaction system, and the elemental tellurium is between 5-95 wt. % of the inorganic reaction system. More preferably, the lead containing composition is between 40-90 wt. % of the inorganic reaction system, and the elemental tellurium is between 10-40 wt. % of the inorganic reaction system. The lead containing composition can be a glass frit and can further comprise lead oxide. Another aspect of the invention relates to an electroconductive paste composition that comprises metallic particles, an inorganic reaction system as disclosed, and an organic vehicle. Another aspect of the invention relates to an organic vehicle that comprises a binder, a surfactant, a solvent, and a thixatropic agent.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: February 10, 2015
    Assignee: Heraeus Precious Metals North America Conshohocken LLC
    Inventors: Lei Wang, Cuiwen Guo, Raymond Michael Cosimano, Weiming Zhang
  • Patent number: 8951446
    Abstract: Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: February 10, 2015
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Robert V. Fox, Rene Rodriguez, Joshua J. Pak, Chivin Sun
  • Publication number: 20150036276
    Abstract: A transparent conductive film includes a metal filler and a colored self-assembled material adsorbed to the surface of the metal filler. This transparent conductive film can prevent diffuse reflection of light on the surface of the metal filler.
    Type: Application
    Filed: March 5, 2013
    Publication date: February 5, 2015
    Inventors: Naoto Kaneko, Mikihisa Mizuno, Sung-kil Lee, Ryosuke Iwata, Yasuhisa Ishii
  • Publication number: 20150034883
    Abstract: While a water reaction system containing silver ions is irradiated with ultrasonic waves to cause cavitation therein, a reducing agent containing solution, which contains an aldehyde as a reducing agent, is mixed with the water reaction system to deposit silver particles, the solid-liquid separation of which is carried out, and thereafter, the separated silver particles are washed and dried to produce a spherical silver powder which has a closed cavity in each particle thereof.
    Type: Application
    Filed: February 12, 2013
    Publication date: February 5, 2015
    Inventors: Koji Hirata, Noriaki Nogami
  • Publication number: 20150034989
    Abstract: an anisotropic conductive adhesive which uses conductive particles where a silver-based metal is used as a conductive layer, having high light reflectance and excellent migration resistance is provided. The anisotropic conductive adhesive includes light reflective conductive particles in an insulating adhesive resin. The light reflective conductive particle includes a light reflective metal layer made of a metal alloy including silver, gold and hafnium formed on the surface of a resin particle as a core by sputtering method. The light reflective metal layer is preferably formed having a composition ratio of a silver of at least 50% by weight to at most 80% by weight: a gold of at least 10% by weight to at most 45%: a hafnium of at least 10% by weight to at most 40% by weight, and a total ratio does not exceed 100% by weight.
    Type: Application
    Filed: October 16, 2014
    Publication date: February 5, 2015
    Inventors: Hidetsugu NAMIKI, Shiyuki KANISAWA, Hideaki UMAKOSHI, Masaharu AOKI, Akira ISHIGAMI
  • Patent number: 8945436
    Abstract: Provided is a conductive paste which contains an inexpensive metal, such as copper or aluminum, as an electrode wiring material and has oxidation resistance that enables the paste to withstand a high-temperature process performed in an oxidizing atmosphere and an electronic part equipped with electrode wiring formed from the paste. The electronic part in accordance with the present invention is equipped with electrode wiring that comprises a conductive glass phase containing transition metals and phosphorus, metal particles, and none of the substances prohibited by the RoHS directive. The electronic part is characterized in that each of the transition metals contained in the conductive glass phase is present in the state of having a plurality of oxidation numbers and that the proportion of the atoms which have the largest oxidation number for each transition metal satisfies a given relationship.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: February 3, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Takuya Aoyagi, Takashi Naito, Hiroki Yamamoto, Takahiko Kato
  • Patent number: 8945435
    Abstract: The present invention relates to new compositions of matter, particularly metals and alloys, and methods of making such compositions. The new compositions of matter exhibit long-range ordering and unique electronic character.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: February 3, 2015
    Assignee: Electromagnetics Corporation
    Inventor: Christopher J. Nagel
  • Publication number: 20150027524
    Abstract: Solar cell conductor formulations made are from two silver powders having different particle size distributions, an aluminum powder, and two frit glass compositions having softening points in the range of 250-700° C. and whose softening points differ by at least 10° C.
    Type: Application
    Filed: September 5, 2012
    Publication date: January 29, 2015
    Applicant: HERAEUS PRECIOUS METALS NORTH AMERICA CONSHOHOCKEN LLC
    Inventors: Shahram Seyedmohammadi, Himal Khatri, Srinivasan Sridharan, Aziz S. Shaikh
  • Publication number: 20150028334
    Abstract: To provide an electroconductive thin film, containing: a metal oxide containing indium and tin; and gold.
    Type: Application
    Filed: March 14, 2013
    Publication date: January 29, 2015
    Applicant: RICOH COMPANY, LTD.
    Inventors: Shinji Matsumoto, Naoyuki Ueda, Yuki Nakamura, Yukiko Abe, Mikiko Takada, Yuji Sone, Ryoichi Saotome
  • Patent number: 8940195
    Abstract: A conductive paste includes a conductive powder, a metallic glass, and an organic vehicle. The metallic glass includes a first element, a second element having a higher absolute value of Gibbs free energy of oxide formation than the first element, and a third element having an absolute value of Gibbs free energy of oxide formation of about 1000 kJ/mol or less at a baking temperature and a eutectic temperature with the conductive powder of less than about 1000° C. An electronic device and a solar cell may include an electrode formed using the conductive paste.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Sung Lee, Se Yun Kim, Sang Soo Jee, Yong Nam Ham
  • Patent number: 8940197
    Abstract: A process for preparing a palladium nanoparticle ink comprises reacting a reaction mixture comprising a palladium salt, a stabilizer, a reducing agent, and an optional solvent to directly form the palladium nanoparticle ink. During the formation of the palladium nanoparticle ink, the palladium nanoparticles are not isolated from the reaction mixture.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: January 27, 2015
    Assignee: Xerox Corporation
    Inventors: Ping Liu, Yiliang Wu, Nan-Xing Hu, Anthony James Wigglesworth
  • Publication number: 20150022940
    Abstract: There is provided a conductive paste composition for an external electrode, the conductive paste composition including a polymer resin, spherical first conductive metal particles included in the polymer resin and being hollow in at least a portion thereof, and second conductive metal particles of a flake shape included in the polymer resin and being hollow in at least a portion thereof.
    Type: Application
    Filed: October 23, 2013
    Publication date: January 22, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jae Hwan HAN, Byoung Jin Chun, Kyung Pyo Hong, Hyun Hee Gu, Byung Jun Jeon
  • Publication number: 20150021527
    Abstract: A composition for solar cell electrodes includes a conductive powder, a glass frit, an organic vehicle, and a thermosetting resin, the thermosetting resin being present in an amount of about 0.5 wt % to about 30 wt % based on a total weight of the composition.
    Type: Application
    Filed: April 22, 2014
    Publication date: January 22, 2015
    Inventors: Dong Il SHIN, Kuninori OKAMOTO, Hee In NAM
  • Publication number: 20150017457
    Abstract: A transparent conductive film contains a metal filler, a colored compound adsorbed to the surface of the metal filler, and at least one of thiols, sulfides, and disulfides adsorbed to the surface of the metal filler. When the terminal on the metal filler side of the colored compound is not any of thiols, sulfides, and disulfides, at least one of colorless thiols, sulfides, and disulfides is adsorbed to the surface of the metal filler. According to this transparent conductive film, an increase in resistance can be suppressed while suppressing diffuse reflection of light on the surface of the metal filler.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 15, 2015
    Inventors: Mikihisa Mizuno, Naoto Kaneko, Ryosuke Iwata, Yasuhisa Ishii
  • Publication number: 20150014604
    Abstract: The present invention provides a silver nanowire blended electrically conductive elastomer composition and method for manufacturing the same. The silver nanowire blended electrically conductive elastomer composition is formed by having a polyurethane prepolymer react with tetraaniline to form a copolymer, dissolving the copolymer in a solvent to form a copolymer solution and adding a doping agent and silver nanowires into the copolymer solution.
    Type: Application
    Filed: July 9, 2013
    Publication date: January 15, 2015
    Inventor: SYANG-PENG RWEI
  • Publication number: 20150013763
    Abstract: The conductive composition contains at least (a) conductive metal fibers, and (b) at least one compound selected from a compound represented by the following Formula (1) and a compound represented by the following Formula (2). In Formula (1), each of R1 and R2 independently represents an alkyl group, an aryl group, an alkoxy group, an aryloxy group, or a halogen atom, and R3 represents an alkyl group or an aryl group. The compound represented by Formula (1) may include a structure that plural compounds represented by Formula (1) are linked to each other in a single molecule. In Formula (2), each of R4 and R5 independently represents an alkyl group. The compound represented by Formula (2) may include a structure that plural compounds represented by Formula (2) are linked to each other.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 15, 2015
    Applicant: FUJIFILM CORPORATION
    Inventors: Tokihiko MATSUMURA, Toyohisa OYA, Kazushi FURUKAWA
  • Publication number: 20150017433
    Abstract: The present disclosure explores and fabricates coupled plasmonic nanoparticles of gold (Au), silver (Ag), or aluminum (Al) onto nanorods or nanowires of zinc telluride (ZnTe), silicon (Si), germanium (Ge), or other semiconductor materials. Full-wave simulation is performed to obtain an optimum design for maximum light absorption. The nanorods, after being coated with a shell to form a p-n junction, or being imparted with a radial junction, are of interest for enhanced light harvesting in solar cells, for example. The fabrication method of such arrays is described. Modeling of the spectral properties using equivalent circuit theory is implemented to predict fabrication results and provide an intuitive approach regarding the design of these optical metamaterials with predetermined properties.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 15, 2015
    Applicant: The University Of North Carolina At Charlotte
    Inventors: Hossein ALISAFAEE, Michael Anthony Fiddy