Low Workfunction Layer For Electron Emission (e.g., Photocathode Electron Emissive Layer) Patents (Class 257/10)
  • Patent number: 10468383
    Abstract: A semiconductor device includes n semiconductor chips stacked via electrical contacting means in the silicon substrate thickness direction, n being an integer larger than 2, a side face of the stacked semiconductor device in the substrate thickness direction being covered by a non-conductive layer. The shape of the side face with respect to a plan view of the stacked semiconductor device may be one of curved, convex, concave or circular.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: November 5, 2019
    Inventor: Makoto Shizukuishi
  • Patent number: 10438882
    Abstract: Described herein are integrated circuit structures having a package substrate with microstrip transmission lines as the top metallization layer, and a ground plane external to the package substrate that is electrically connected to a ground plane internal to the package substrate, as well as related devices and methods. In one aspect of the present disclosure, an integrated circuit structure may include a package substrate having an internal ground plane and a microstrip signal layer as the top metallization layer, and an external ground plane on the surface of the package substrate that is electrically connected to the internal ground plane in the package substrate. In another aspect of the present disclosure, an integrated circuit structure may further include changes to microstrip transmission line geometry to match impedance values of areas covered by the external ground plane with impedance values of areas not covered by the external ground plane.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: October 8, 2019
    Assignee: Intel Corporation
    Inventor: Eng Huat Goh
  • Patent number: 10423267
    Abstract: A conductive thin film, a touch panel and a manufacturing method for the same, and a display device are provided. Material for forming the conductive thin film comprise topological insulator, the conductive thin film has a two-dimensional nanostructure, which solves the technical problem that the resistance of electrodes of the touch panel is relatively harge.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: September 24, 2019
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Yongchun Lu, Yong Qiao, Hongfei Cheng, Jianbo Xian
  • Patent number: 10367638
    Abstract: Methods and apparatus for use in quantum cryptographic applications are disclosed. An optical signal having a first wavelength is encoded for quantum cryptography at a stage where the optical signal is on at least two signal paths. The wavelength of the encoded optical signal on the at least two signal paths is converted to a second wavelength before the optical signal is encoded for transmission. Encoding for transmission is applied to the optical signal on the second wavelength.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: July 30, 2019
    Assignee: Nokia Technologies Oy
    Inventors: David Bitauld, Antti Niskanen
  • Patent number: 10267496
    Abstract: A translucent cover for an LED light bulb is disclosed. The translucent cover includes a cover body made from a light-transmissive material, light-scattering particles in the light-transmissive material, and a series of micro-structure features on and inner surface of the cover body. The micro-structure features are configured to refract and reflect light emitted from the LED light bulb to increase the emission angle of the light emitted from the cover.
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: April 23, 2019
    Assignee: Gardenia Industrial Limited
    Inventor: Hing Chuen Allan Kwong
  • Patent number: 10236165
    Abstract: Exemplary metamaterial photocathodes enable detection of light from visible through long wave infrared wavelengths. Metamaterial stacks, comprising gold, silicon, and cesium-oxide, coupled to a semiconductor allow hot electrons to efficiently enter a vacuum. The hot electrons are multiplied in a multichannel plate and directly through another vacuum towards a phosphorus screen.
    Type: Grant
    Filed: August 4, 2018
    Date of Patent: March 19, 2019
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Benjamin R Conley
  • Patent number: 10141393
    Abstract: Integrated capacitor structures and methods for fabricating same are provided. In an embodiment, the integrated capacitor structures exploit the capacitance that can be formed in a plane that is perpendicular to that of the substrate, resulting in three-dimensional capacitor structures. This allows for integrated capacitor structures with higher capacitance to be formed over relatively small substrate areas. Embodiments are suitable for use by charge pumps and can be fabricated to have more or less capacitance as desired by the application.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: November 27, 2018
    Assignee: Cypress Semiconductor Corporation
    Inventors: Mark Ramsbey, Unsoon Kim, Shenqing Fang, Chun Chen, Kuo Tung Chang
  • Patent number: 10062554
    Abstract: Exemplary metamaterial photocathodes enable detection of light from visible through long wave infrared wavelengths. Metamaterial stacks, comprising gold, silicon, and cesium-oxide, coupled to a semiconductor allow hot electrons to efficiently enter a vacuum. The hot electrons are multiplied in a multichannel plate and directly through another vacuum towards a phosphorus screen.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: August 28, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventor: Benjamin R. Conley
  • Patent number: 10060948
    Abstract: Methods are described for the economical manufacture of Scanning Probe and Electron Microscope (SPEM) probe tips. In this method, multiple wires are mounted on a stage and ion milled simultaneously while the stage and mounted probes are tilted at a selected angle relative to the ion source and rotated. The resulting probes are also described. The method provides sets of highly uniform probe tips having controllable properties for stable and accurate scanning probe and electron microscope (EM) measurements.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: August 28, 2018
    Assignee: Tiptek, LLC
    Inventors: Joseph W. Lyding, Gregory S. Girolami, Scott P. Lockledge, Jinju Lee
  • Patent number: 10008379
    Abstract: A high efficiency incandescent light bulb includes a filament both electrically and optically heated to visibly incandesce. The filament is enclosed in a visibly transmissive, IR reflective filter, with a high view factor, as to maximize recycling of IR wavelengths. The filter is formed on two clamshell segments.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: June 26, 2018
    Inventor: Robert A Marshall
  • Patent number: 9966216
    Abstract: A new ultra-thin high-efficiency photoelectron source utilizing a metallic photonic resonant cavity having a photonic resonant cavity with a top metallic layer with a plurality of openings, each having an average dimension less than the wavelength of the excitation photons in vacuum, a bottom metallic layer and a photoelectron emission layer of semiconductor positioned between the top metallic layer and the bottom metallic.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: May 8, 2018
    Assignee: Princeton University
    Inventor: Stephen Y. Chou
  • Patent number: 9960004
    Abstract: The invention relates to a semi-transparent photocathode (1) for a photon detector having an increased absorption rate for a preserved transport rate. According to the invention, the photocathode (1) includes a transmission diffraction grating (30) able to diffract said photons and provided in the support layer (10) on which the photoemissive layer (20) is deposited.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 1, 2018
    Assignee: PHOTONIS FRANCE
    Inventors: Gert Nützel, Pascal Lavoute
  • Patent number: 9887158
    Abstract: A conductive structure includes a substrate including a first dielectric layer formed thereon, a first trench formed in the first dielectric layer, a first barrier layer formed in the first trench, a first nucleation layer formed on the first barrier layer, a first metal layer formed on the first nucleation layer, and a first high resistive layer sandwiched in between the first barrier layer and the first metal layer.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: February 6, 2018
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Kun-Ju Li, Kuo-Chin Hung, Min-Chuan Tsai, Wei-Chuan Tsai, Yi-Han Liao, Chun-Tsen Lu, Fu-Shou Tsai, Li-Chieh Hsu
  • Patent number: 9871147
    Abstract: A photodetector including a substrate, a light absorption layer arranged over the substrate, the light absorption layer including a stack including a semiconductor layer that absorbs light of a wavelength having an electric field vector parallel to a normal direction of a substrate surface, a lower contact layer arranged on a first side of the light absorption layer, a lower electrode contacting with the lower contact layer, an upper contact layer arranged on a second side of the light absorption layer, and an upper electrode contacting with the upper contact layer. An uneven structure including polarization-selective shapes of projections or depressions on the second side of the upper contact layer is provided, the shapes of projections or depressions each having a size of a wavelength or less of incident light in the semiconductor layer and half the wavelength or greater and being periodically arranged in at least one direction.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: January 16, 2018
    Assignees: SHARP KABUSHIKI KAISHA, THE UNIVERSITY OF TOKYO
    Inventors: Teruhisa Kotani, Yasuhiko Arakawa, Tetsu Tatsuma
  • Patent number: 9865421
    Abstract: An integrated vacuum microelectronic structure is described as having a highly doped semiconductor substrate, a first insulating layer placed above said doped semiconductor substrate, a first conductive layer placed above said first insulating layer, a second insulating layer placed above said first conductive layer, a vacuum trench formed within said first and second insulating layers and extending to the highly doped semiconductor substrate, a second conductive layer placed above said vacuum trench and acting as a cathode, a third metal layer placed under said highly doped semiconductor substrate and acting as an anode, said second conductive layer is placed adjacent to the upper edge of said vacuum trench, the first conductive layer is separated from said vacuum trench by portions of said second insulating layer and is in electrical contact with said second conductive layer.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: January 9, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Davide Giuseppe Patti, Gianleonardo Grasso
  • Patent number: 9865517
    Abstract: The present disclosure provides a test element group, an array substrate, a test device and a test method. The test element group includes an array of Thin Film Transistors (TFTs), in which first electrodes of the TFTs in each row are connected to a first connection end, second electrodes of the TFTs in each column are connected to a second connection end, and third electrodes of all of the TFTs in the array are connected to an identical third connection end. The first electrode, the second electrode and the third electrode correspond to the source electrode, the drain source and the gate source of the TFT.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: January 9, 2018
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Ying Liu, Hongwei Tian, Tuo Sun
  • Patent number: 9865223
    Abstract: An optoelectronic modulation stack includes a substrate, a plurality of touch sensing units, at least a first anti-interference spot and a nano-structural layer. The touch sensing units are coplanarly disposed on the substrate, and a first interval region is formed between the adjacent touch sensing units. The first anti-interference spot is disposed within the first interval region, and the width of the first anti-interference spot is substantially less than that of the substrate or touch sensing unit. The nano-structural layer is disposed below the first anti-interference spot and includes a plurality of nano structures. When the light passes through the nano structures and the first anti-interference spot, the optical characteristic of the light is changed.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: January 9, 2018
    Assignees: Hannstar Display (Nanjing) Corporation, Hannstar Display Corporation
    Inventors: Hsing-Ying Lee, Da-Ching Tang, Tien-Rong Lu
  • Patent number: 9837238
    Abstract: A photocathode designs that leverage the grazing incidence geometry yield improvements through the introduction of recessed structures, such as cones, pyramids, pillars or cavities to the photocathode substrate surface. Improvements in yield of up to 20 times have been shown to occur in grazing incidence geometry disclosed herein due to a larger path length of the X-ray photons which better matches the secondary electron escape depth within the photocathode material. A photocathode includes a substrate having a first side and a second side, the first side configured to receive x-ray energy and the second side opposing the first side. A structured surface is associated with the second side of the substrate such that the structured surface includes a plurality of recesses from the second side of the substrate into the substrate.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: December 5, 2017
    Assignee: National Security Technologies, LLC
    Inventors: Yekaterina Opachich, Andrew MacPhee
  • Patent number: 9780260
    Abstract: A semiconductor light emitting device includes a substrate; a base layer made of a first conductivity-type semiconductor and disposed on the substrate; a plurality of nanoscale light emitting units disposed in a region of an upper surface of the base layer and including a first conductivity-type nano-semiconductor layer protruding from the upper surface of the base layer, a nano-active layer disposed on the first conductivity-type nano-semiconductor layer, and a second conductivity-type nano-semiconductor layer disposed on the nano-active layer; and a light emitting laminate disposed in a different region of the upper surface of the base layer and having a laminated active layer.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: October 3, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung Wook Hwang, Han Kyu Seong, Nam Goo Cha
  • Patent number: 9759998
    Abstract: The present disclosure relates to a method and apparatus for mitigating printable native defects in an extreme ultra violet (EUV) mask substrate. In some embodiments, the method is performed by identifying a printable native defect within an EUV mask substrate that violates one or more sizing thresholds. A first section of the EUV mask substrate including the printable native defect is removed to form a concavity within the EUV mask substrate. A multi-layer replacement section that is devoid of a printable native defect is inserted into the concavity.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: September 12, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yen-Kai Huang, Hsun-Chuan Shih, Yuan-Chih Chu
  • Patent number: 9708184
    Abstract: A microparticle can include a central region and a peripheral region. The peripheral region can include a nanoparticle, such as a metal nanoparticle, a metal oxide nanoparticle, or a semiconductor nanocrystal. The microparticle can be a member of a monodisperse population of particles.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: July 18, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: YinThai Chan, John P. Zimmer, Moungi G. Bawendi
  • Patent number: 9698306
    Abstract: Light-emitting devices, and related components, systems and methods are disclosed.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: July 4, 2017
    Assignee: Luminus Devices, Inc.
    Inventors: Alexei A. Erchak, Elefterios Lidorikis, Chiyan Luo
  • Patent number: 9660151
    Abstract: A method for manufacturing a light emitting device has: forming a first phosphor layer including a first phosphor that is based on KSF or quantum dots on a light emitting element by a method other than spraying, and forming a second phosphor layer including a second phosphor that is different from the first phosphor on the first phosphor layer by spraying.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: May 23, 2017
    Assignee: NICHIA CORPORATION
    Inventor: Hiroto Tamaki
  • Patent number: 9634625
    Abstract: A radio frequency transmitter includes a digital power amplifier and a bias control circuit. The digital power amplifier is arranged for receiving at least a radio frequency input signal, a digital amplitude control word signal and at least one bias voltage to generate a radio frequency output signal. The bias control circuit is coupled to the digital power amplifier, and is arranged for adjusting the at least one bias voltage according to a power control signal.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: April 25, 2017
    Assignee: MEDIATEK INC.
    Inventors: Chao Lu, Chun-Hsien Peng, Paul Cheng Po Liang
  • Patent number: 9558861
    Abstract: The invention relates to novel block copolymers that enable a good dispersion of nanofillers in water and also to a dispersion of nanofillers obtained owing to these block copolymers. This dispersion may be used as a transparent electrode in organic solar cells or other photoemitter or photoreceptor devices.
    Type: Grant
    Filed: April 3, 2013
    Date of Patent: January 31, 2017
    Assignees: ARKEMA FRANCE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE BORDEAUX, INSTITUT POLYTECHNIQUE DE BORDEAUX
    Inventors: Christophe Navarro, Katerina Bethani, Cyril Brochon, Henri Cramail, Guillaume Fleury, Georges Hadziioannou, Eric Cloutet
  • Patent number: 9520260
    Abstract: A photo-emitter x-ray source is provided that includes a photocathode electron source, a laser light source, where the laser light source illuminates the photocathode electron source to emit electrons, and an X-ray target, where the emitted electrons are focused on the X-ray target, where the X-ray target emits X-rays. The photocathode electron source can include alkali halides (such as CsBr and CsI), semiconductors (such as GaAs, InP), and theses materials modified with rare Earth element (such as Eu) doping, electron beam bombardment, and X-ray irradiation, and has a form factor that includes planar, patterned, or optically patterned. The X-ray target includes a material such as tungsten, copper, rhodium or molybdenum.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: December 13, 2016
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Lambertus Hesselink, R. Fabian W. Pease, Piero Pianetta, Juan R. Maldonado, Yao-Te Cheng, Jason Ryan
  • Patent number: 9381341
    Abstract: The present disclosure provides an electrode and an feedthrough for an implantable medical device. In one embodiment, the implantable electrode and the implantable feedthrough both comprise electrically insulating diamond material and electrically conductive diamond material that form an interface. Further, the present disclosure provides method for fabricating the implantable electrode and the feedthrough.
    Type: Grant
    Filed: December 3, 2013
    Date of Patent: July 5, 2016
    Assignees: The University of Melbourne, National ICT Australia Limited
    Inventors: Hamish Meffin, Kate Fox, David Garrett, Kumaravelu Ganesan, Steven Prawer, Samantha Lichter, Igor Aharonovich
  • Patent number: 9299949
    Abstract: A display panel and a display device, such as an organic light emitting panel that includes a spacer. The display panel and the display device include a semiconductor element including a first electrode; a passivation layer arranged on the semiconductor element and including a via hole exposing the first electrode; a second electrode arranged on the passivation layer and connected to the first electrode through the via hole; and a spacer arranged on the second electrode and adjacent to the via hole, wherein the spacer exposes at least a portion of a region where the via hole is formed.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: March 29, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventor: Won Mi Hwang
  • Patent number: 9252330
    Abstract: A semiconductor light-emitting element according to the present invention includes: an n-type nitride semiconductor layer 21; a p-type nitride semiconductor layer 23; an active layer region 22 which includes an m plane nitride semiconductor layer and which is interposed between the n-type nitride semiconductor layer and the p-type nitride semiconductor layer; an n-type electrode 30 which is electrically connected to the n-type nitride semiconductor layer; a p-type electrode 40 which is electrically connected to the p-type nitride semiconductor layer; a light-emitting face, through which polarized light that has been produced in the active layer region is extracted out of this element; and a striped structure 50 which is provided for the light-emitting face and which has a plurality of projections that run substantially parallel to the a-axis direction of the m plane nitride semiconductor layer.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: February 2, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Akihiro Isozaki, Akira Inoue, Atsushi Yamada, Toshiya Yokogawa
  • Patent number: 9151779
    Abstract: Systems and methods for EMC, EMI and ESD testing are described. A probe comprises a center conductor extending along an axis of the probe, a probe tip, and a shield coaxially aligned with the center conductor and configured to provide electromagnetic screening for the probe tip. One or more actuators may change the relative positions of the probe tip and shield with respect to a device under test, thereby enabling control of sensitivity and resolution of the probe.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: October 6, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Kyu-Pyung Hwang, Young K Song, Changhan Hobie Yun, Dong Wook Kim
  • Patent number: 9058852
    Abstract: A memory cell and method for operating a memory cell including a bidirectional access device and memory element electrically coupled in series. The bidirectional access device includes a tunneling capacitance. The memory element programmable to a first and second state by application of a first and second write voltage opposite in polarity to one another. The memory element has a lower capacitance in the first state than the second state. A read unit senses a transient read current due to a voltage drop upon application of a read voltage. Determining if the memory element is the first or second state is based on whether the read current is greater or less than a sense threshold. The sense threshold is based on a capacitance ratio between the first and second state.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: SangBum Kim, Chung H. Lam
  • Patent number: 9018861
    Abstract: A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: April 28, 2015
    Inventors: Roderick A. Hyde, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Lowell L. Wood, Jr.
  • Patent number: 8981338
    Abstract: A semiconductor photocathode includes an AlXGa1-XN layer (0?X<1) bonded to a glass substrate via an SiO2 layer and an alkali-metal-containing layer formed on the AlXGa1-XN layer. The AlXGa1-XN layer includes a first region, a second region, an intermediate region between the first and second regions. The second region has a semiconductor superlattice structure formed by laminating a barrier layer and a well layer alternately, the intermediate region has a semiconductor superlattice structure formed by laminating a barrier layer and a well layer alternately. When a pair of adjacent barrier and well layers is defined as a unit section, an average value of a composition ratio X of Al in a unit section decreases monotonously with distance from an interface position between the second region and the SiO2 layer at least in the intermediate region.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: March 17, 2015
    Assignees: Sanken Electric Co., Ltd., Hamamatsu Photonics K.K.
    Inventors: Shunro Fuke, Tetsuji Matsuo, Yoshihiro Ishigami, Tokuaki Nihashi
  • Publication number: 20150060757
    Abstract: A field emission device may comprise: an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode; an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; and/or a gate electrode comprising a graphene sheet covering the opening. A method of manufacturing a gate electrode may comprise: forming a graphene thin film on one surface of a conductive film; forming a mask layer having an etching opening on another surface of the conductive film, wherein the etching opening exposes a portion of the conductive film; partially removing the conductive film through the etching opening to partially expose the graphene thin film; and/or removing the mask layer.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Applicant: KUMOH NATIONAL INSTITUTE OF TECHNOLOGY
    Inventors: Dong-gu LEE, Shang-hyeun PARK, Yong-chul KIM, Chang-soo LEE, Do-yoon KIM
  • Publication number: 20150060758
    Abstract: A field emission device may comprise: an emitter comprising a cathode electrode and an electron emission source supported by the cathode electrode; an insulating spacer around the emitter, the insulating spacer forming an opening that is a path of electrons emitted from the electron emission source; and/or a gate electrode around the opening. The electron emission source may comprise a plurality of graphene thin films vertically supported in the cathode electrode toward the opening.
    Type: Application
    Filed: September 1, 2014
    Publication date: March 5, 2015
    Applicant: Kumoh National Institute of Technology - Academic Cooperation Foundation
    Inventors: Donggu LEE, Shanghyeun PARK, Yongchul KIM, Ilhwan KIM, Taewon JEONG
  • Patent number: 8969848
    Abstract: A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: March 3, 2015
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood
  • Patent number: 8932886
    Abstract: A light emitting die package and a method of manufacturing the die package are disclosed. The die package includes a leadframe, at least one light emitting device (LED), a molded body, and a lens. The leadframe includes a plurality of leads and has a top side and a bottom side. A portion of the leadframe defines a mounting pad. The LED device is mounted on the mounting pad. The molded body is integrated with portions of the leadframe and defines an opening on the top side of the leadframe, the opening surrounding the mounting pad. The molded body further includes latches on the bottom side of the leadframe. The lens is coupled to the molded body. A composite lens is used as both reflector and imaging tool to collect and direct light emitted by LED(s) for desired spectral and luminous performance.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: January 13, 2015
    Assignee: Cree, Inc.
    Inventors: Ban P. Loh, Gerald H. Negley
  • Patent number: 8912526
    Abstract: An electron multiplier for a system for detecting electromagnetic radiation or an ion flow is disclosed. The multiplier includes at least one active structure intended to receive a flow of incident electrons, and to emit in response a flow of electrons called secondary electrons. The active structure includes a substrate on which is positioned a thin nanodiamond layer formed from diamond particles the average size of which is less than or equal to about 100 nm.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: December 16, 2014
    Assignee: Photonis France
    Inventors: Gert Nutzel, Pascal Lavoute, Richard B. Jackman
  • Publication number: 20140361242
    Abstract: A field emission device is configured as a heat engine.
    Type: Application
    Filed: July 3, 2014
    Publication date: December 11, 2014
    Inventors: Roderick A. Hyde, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Lowell L. Wood, JR.
  • Publication number: 20140353577
    Abstract: Plasmonic nanoscale devices with increased emissions are disclosed. Highly concentrated fields of plasmonic nanocavities are integrated with a core to alter the excited-state optical processes. A plasmonic device (e.g., a nanowire) is created using a direct or indirect bandgap material core, an interlayer and a metallic shell.
    Type: Application
    Filed: November 21, 2012
    Publication date: December 4, 2014
    Inventors: Ritesh Agarwal, Chang-Hee Cho, Carlos O. Aspetti
  • Publication number: 20140353576
    Abstract: An integrated vacuum microelectronic device comprises: a highly doped semiconductor substrate, at least one insulating layer) placed above said doped semiconductor substrate, a vacuum aperture formed within said at least one insulating layer and extending to the highly doped semiconductor substrate, a first metal layer acting as a cathode, a second metal layer placed under said highly doped semiconductor substrate and acting as an anode. The first metal layer is placed adjacent to the upper edge of the vacuum aperture and the vacuum aperture has a width dimension such as the first metal layer remains suspended over the vacuum aperture.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 4, 2014
    Inventor: Davide Giuseppe Patti
  • Patent number: 8853070
    Abstract: A method of increasing a work function of an electrode is provided. The method comprises obtaining an electronegative species from a precursor using electromagnetic radiation and reacting a surface of the electrode with the electronegative species. An electrode comprising a functionalized substrate is also provided.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: October 7, 2014
    Assignee: OTI Lumionics Inc.
    Inventors: Michael Helander, Zhibin Wang, Jacky Qiu, Zheng-Hong Lu
  • Publication number: 20140291609
    Abstract: A junctionless light emitting device comprises a field emitter cathode, and a light emitting semi-conductor material sandwiched between an ohmic contact (OC) that faces the injected electrons and a Schottky contact (SC). The field emitter cathode is configured to inject electrons into the ohmic contact.
    Type: Application
    Filed: May 24, 2012
    Publication date: October 2, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Deli Wang, Muchuan Yang, Chun Li
  • Patent number: 8847395
    Abstract: A microelectronic device, including: a substrate and a plurality of metal interconnection levels stacked on the substrate; a first metal line of a given metal interconnection level; a second metal line of another metal interconnection level located above the given metal interconnection level, the first and second lines are interconnected via at least one semiconductor connection element extending in a direction forming a nonzero angle with the first metal lines and the second metal line; and a gate electrode capable of controlling conduction of the semiconductor connection element.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: September 30, 2014
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Thomas Ernst, Paul-Henry Morel, Sylvain Maitrejean
  • Publication number: 20140264256
    Abstract: According to one embodiment, a product includes an array of three dimensional structures, where each of the three dimensional structure includes a semiconductor material; a cavity region between each of the three dimensional structures; and a first material in contact with at least one surface of each of the three dimensional structures, where the first material is configured to provide high energy particle and/or ray emissions.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: Lawrence Livermore National Security, LLC
    Inventors: Rebecca J. Nikolic, Adam P. Conway, Roger A. Henderson, Victor P. Karpenko, Qinghui Shao, Dawn A. Shaughnessy, Mark A. Stoyer, Lars F. Voss
  • Patent number: 8754397
    Abstract: The carbon nanotube-based electronic and photonic devices are disclosed. The devices are united by the same technology as well as similar elements for their fabrication. The devices consist of the vertically grown semiconductor nanotube having two Schottky barriers at the nanotube ends and one Schottky barrier at the middle of the nanotube. Depending on the Schottky barrier heights and bias arrangements, the disclosed devices can operate either as transistors, CNT MESFET and CNT Hot Electron Transistor, or as a CNT Photon Emitter.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: June 17, 2014
    Assignee: Nano-Electronic and Photonic Devices and Circuits, LLC
    Inventor: Alexander Kastalsky
  • Patent number: 8742393
    Abstract: The SrTiO3 buffer layer is formed by lamination of the Sr2+O2? layer and the Ti4+O24? layer. The surface of the buffer layer is terminated with the Ti4+O24? layer. On the buffer layer, a LaAlO3 thin film layer is formed. The thin film layer includes a La3+O2? layer and an Al3+O24? layer alternately laminated in order on the SrTiO3 buffer layer.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: June 3, 2014
    Assignee: Tokyo Institute of Technology
    Inventors: Tomofumi Susaki, Hideo Hosono
  • Patent number: 8735866
    Abstract: A high-voltage electronic device comprising high-voltage electrodes, located in a dielectric envelope with an internal surface coated with a material having a conductivity which is greater than the conductivity of the envelope, characterized in that the areas subject to high field strength are coated with composite material, based on a polycrystalline material with a bulk conductivity of particles 10?9 to 10?13 Ohm?1 cm?1, each of which contains a surface nanolayer of bonding inorganic material. The high-voltage electrodes may be placed in a vacuum envelope and fixed on coated insulators. Preferred coating materials include materials from a group of materials comprising; oxides of chromium, boron or zirconium in the form of polycrystalline porous substance with a particle size of 30 nm-30 microns, connected to each other with an inorganic material, for instance silicon oxide (SiO2) with a layer thickness not more than 100 nm.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: May 27, 2014
    Inventor: Viktor D. Bochkov
  • Publication number: 20140110661
    Abstract: The present invention provides for a structure comprising a plurality of emitters, wherein a first nozzle of a first emitter and a second nozzle of a second emitter emit in two directions that are not or essentially not in the same direction; wherein the walls of the nozzles and the emitters form a monolithic whole. The present invention also provides for a structure comprising an emitter with a sharpened end from which the emitter emits; wherein the emitters forms a monolithic whole. The present invention also provides for a fully integrated separation of proteins and small molecules on a silicon chip before the electrospray mass spectrometry analysis.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 24, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Daojing Wang, Pan Mao, Hung-Ta Wang, Peidong Yang
  • Patent number: 8692226
    Abstract: A field emission device is configured as a heat engine. Different embodiments of the heat engine may have different configurations that may include a cathode, gate, suppressor, and anode arranged in different ways according to a particular embodiment. Different embodiments of the heat engine may also incorporate different materials in and/or proximate to the cathode, gate, suppressor, and anode.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: April 8, 2014
    Inventors: Jesse R. Cheatham, III, Philip Andrew Eckhoff, William Gates, Roderick A. Hyde, Muriel Y. Ishikawa, Jordin T. Kare, Nathan P. Myhrvold, Tony S. Pan, Robert C. Petroski, Clarence T. Tegreene, David B. Tuckerman, Charles Whitmer, Lowell L. Wood, Jr., Victoria Y. H. Wood