Encapsulated Patents (Class 257/100)
  • Patent number: 12125955
    Abstract: A method for preparing a double-sided microlens array, which is used to prepare a uniform, large-area and easy-to-control microlens array on upper and lower surfaces of a sapphire glass lens. A complete laser wavefront is spatially divided into many tiny parts, and each part is focused on the focal plane by a corresponding small lens, and the light spots are overlapped to achieve uniform light in a specific area. The sapphire glass lens is applied to the deep ultraviolet LED inorganic module packaging device to reduce the total reflection loss between the deep ultraviolet LED package optical window-air interface, and focus the light passing through the lens on the focal plane, while increasing the emission of light Coupling ability, uniform light intensity of ultraviolet LED.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: October 22, 2024
    Assignees: GUANGDONG UNIVERSITY OF TECHNOLOGY, Shenzhen Shuangma Xingguang Electronic Technology Co., Ltd.
    Inventors: Miao He, Jiongjian Gao, Kunhua Wen, Zuyong Feng, Li Chen, Deping Xiong, Xuelan Feng
  • Patent number: 12108622
    Abstract: Flexible display devices, such as flexible cover lens films, are discussed and provided herein. The flexible cover lens film has good strength, elasticity, optical transmission, wear resistance, and thermostability. The cover lens film includes a hard coat layer with a thickness from about 5 ?m to 40 ?m, an impact absorption layer with a thickness from about 20 ?m to 110 ?m, and a substrate layer with a thickness from about 10 ?m to 175 ?m and is disposed between the hard coat layer and the impact absorption layer. By combining the hard coat layer and the impact resistant layer, the cover lens film is both flexible and strong with hardness from 6H to 9H.
    Type: Grant
    Filed: July 25, 2023
    Date of Patent: October 1, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Manivannan Thothadri, Daniel Paul Forster, Robert F. Praino, Jr., Harvey You
  • Patent number: 12002901
    Abstract: An optoelectronic semiconductor component includes an optoelectronic semiconductor chip having a top area at a top side, a bottom area at an underside, at least one side area connecting the top area and the bottom area; electrical contact locations at the top area or at the bottom area of the optoelectronic semiconductor chip; and a molded body, wherein the molded body surrounds the optoelectronic semiconductor chip at all side areas at least in places, the molded body is electrically insulating, and the molded body is free of any conductive element that completely penetrates the molded body.
    Type: Grant
    Filed: June 22, 2023
    Date of Patent: June 4, 2024
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Karl Weidner, Ralph Wirth, Axel Kaltenbacher, Walter Wegleiter, Bernd Barchmann, Oliver Wutz, Jan Marfeld
  • Patent number: 11710809
    Abstract: A light-emitting device includes a support; a light-emitting element on or above the support; a first wavelength conversion member on or above the light-emitting element, the first wavelength conversion member having an area larger than that of the light-emitting element in a top view; a first light-transmissive member covering a lower surface of an extension region of the first wavelength conversion member an a lateral surface of the light-emitting element; a first light-reflective member on lateral sides of the first wavelength conversion member and the first light-transmissive member; and a second wavelength conversion member disposed on or above the first wavelength conversion member. A thickness of the second wavelength conversion member above a peripheral portion of the first wavelength conversion member is smaller than a thickness of the second wavelength conversion member above a central portion of the first wavelength conversion member.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: July 25, 2023
    Assignee: NICHIA CORPORATION
    Inventor: Takahito Miki
  • Patent number: 11658165
    Abstract: A display device includes a thin film transistor substrate having a thin film transistor, a light emitting element including an ultra-small LED element on the thin film transistor substrate, a pixel electrode connected to one end of the thin film transistor and one end of the light emitting element, a common electrode on the thin film transistor substrate and connected to an other end of the light emitting element, a color conversion layer on the light emitting element and including a plurality of quantum dot materials, and an encapsulation layer on the color conversion layer.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: May 23, 2023
    Assignee: Samsung Display Co., Ltd.
    Inventor: Eun Ju Kim
  • Patent number: 11641010
    Abstract: A light-emitting device includes a carrier, a light-emitting element and a connection structure. The carrier includes a first electrical conduction portion. The light-emitting element includes a first light-emitting layer capable of emitting first light and a first contact electrode formed under the light-emitting layer. The first contact electrode is corresponded to the first electrical conduction portion. The connection structure includes a first electrical connection portion and a protective portion surrounding the first contact electrode and the first electrical connection portion. The first electrical connection portion includes an upper portion, a lower portion and a neck portion arranged between the upper portion and the lower portion. The lower portion has a width is wider than of the upper portion.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: May 2, 2023
    Assignee: EPISTAR CORPORATION
    Inventors: Min-Hsun Hsieh, Shau-Yi Chen, Shao-You Deng
  • Patent number: 11640926
    Abstract: A semiconductor device includes a semiconductor chip, a substrate having a main surface on which the semiconductor chip is arranged, a resin case which has a storage space therein and a side wall, the side wall having an injection path extending from the storage space to a device exterior, the resin case having a first opening at a bottom side thereof, connecting the storage space to the device exterior, the substrate being disposed on the resin case, at a main surface side of the substrate facing at the bottom side of the resin case, and a sealing material filling the storage space and the injection path.
    Type: Grant
    Filed: October 29, 2019
    Date of Patent: May 2, 2023
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yuji Ichimura
  • Patent number: 11538740
    Abstract: A semiconductor package includes a first lead with first and second ends extending in the same direction as one another. At least one second lead has first and second ends and is partially surrounded by the first lead. A die pad is provided and a die is connected to the die pad. Wires electrically connect the die to the first lead and the at least one second lead. An insulating layer extends over the leads, the die pad, and the die such that the first end of the at least one second lead is exposed from the semiconductor package and the second end of the first lead is encapsulated entirely within the insulating layer.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: December 27, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jason Chien, Yuh-Harng Chien, J K Ho
  • Patent number: 11538969
    Abstract: In one embodiment, the optoelectronic semiconductor component comprises at least one semiconductor chip for generating a primary radiation, and also an optical body disposed optically downstream of the semiconductor chip. A reflector surrounds the optical body laterally all around in a positively locking manner and is configured for reflecting the primary radiation and visible light. The optical body has a base surface facing the semiconductor chip and an exit surface facing away from the semiconductor chip. The optical body tapers in a direction away from the semiconductor chip. A quotient of the base surface and a height of the optical body is between 1 mm and 30 mm inclusive.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: December 27, 2022
    Assignee: Osram OLED GmbH
    Inventors: Michael Foerster, Konrad Wagner, Benjamin Schulz, Stefan Morgott, I-Hsin Lin-Lefebvre
  • Patent number: 11536893
    Abstract: A display apparatus including a display panel, a light source unit configured to provide light to the display panel, and a light guide member disposed between the display panel and the light source unit and covering the light source unit such that the light source unit is buried in the light guide member, the light guide member having a surface roughness on an upper surface thereof to diffuse light and including a substrate, and a light emitting device disposed on the substrate and including a blocking pattern to have an intensity of light emitted in an upward direction to be equal to or less than about 80% of a maximum light intensity of the light emitting device.
    Type: Grant
    Filed: March 7, 2021
    Date of Patent: December 27, 2022
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Seung Ri Choi, Eun Ju Kim, Hee Soo Lim
  • Patent number: 11482137
    Abstract: A flexible display device including a flexible display panel having a substrate and an organic electroluminescent member disposed on the substrate, a window member disposed on the flexible display panel, and a protection member disposed under the flexible display panel, wherein the protection member includes a metal layer disposed under the substrate, a cushion layer disposed under the metal layer, and a planarization layer disposed between the metal layer and the cushion layer.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: October 25, 2022
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jiwon Han
  • Patent number: 11437453
    Abstract: Disclosed are a display apparatus and a method of manufacturing the same. The display apparatus includes a light emitting part including a plurality of light emitting diodes; and a thin film transistor (TFT) panel part configured to drive the plurality of light emitting diodes. The plurality of light emitting diodes are electrically connected to the plurality of TFTs, respectively, by a layer disposed between the light emitting diode part and the TFT panel part.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: September 6, 2022
    Assignee: Seoul Semiconductor Co., Ltd.
    Inventors: Motonobu Takeya, Jong Ik Lee, Young Hyun Kim
  • Patent number: 11390746
    Abstract: The present disclosure relates to a light curable, light-heat or light-moisture dually curable, or light-heat-moisture multiple curable polyorganosiloxane composition, which has ease of synthesis, low volatile content, rapid curability, excellent toughness and/or superior optical/physical stability in a variety of fields such as coating materials, encapsulants, sealants and adhesives, a cured body obtained by curing said compositions, and an electronic device comprising the same.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: July 19, 2022
    Assignees: Dow Silicones Corporation, Dow Toray Co., Ltd.
    Inventors: Takuya Ogawa, Yungjin Park, Juyoung Yook
  • Patent number: 11382209
    Abstract: A printed circuit board includes an electronic component including a first base and a plurality of first lands, the first base including a first main surface, the plurality of first lands being disposed around a first portion of the first main surface and spaced from each other, a printed wiring board including a second base and a plurality of second lands, the second base including a second main surface, the plurality of second lands being disposed around a second portion of the second main surface and spaced from each other, bonding portions configured to bond the first lands and the second lands, a resin portion configured to cover the bonding portions and including cured thermosetting resin, and a member having a property to repel uncured thermosetting resin and disposed on one of the first portion and the second portion.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: July 5, 2022
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Mitsutoshi Hasegawa, Kunihiko Minegishi, Takashi Sakaki, Shingo Ishiguri
  • Patent number: 11355674
    Abstract: An embodiment discloses a semiconductor device package, comprising: a body including a cavity; a plurality of electrodes disposed inside the body; a semiconductor device disposed in the cavity of the body; and a transparent member disposed on the cavity, wherein the body comprises: a first side surface and a second side surface facing each other, and a third side surface and a fourth side surface facing each other; a first corner area formed by the first side surface and the third side surface; a second corner area formed by the first side surface and the fourth side surface; a third corner area formed by the second side surface and the fourth side surface; and a fourth corner area formed by the second side surface and the third side surface, and wherein the plurality of electrodes comprises a first electrode on which the semiconductor device is disposed, wherein the first electrode comprises: a fifth side surface and a sixth side surface facing each other; a seventh side surface connecting the fifth side sur
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 7, 2022
    Assignee: SUZHOU LEKIN SEMICONDUCTOR CO., LTD.
    Inventors: Koh Eun Lee, Hui Seong Kang, Min Ji Jin
  • Patent number: 11322666
    Abstract: An optoelectronic device includes an emitter of light rays and a receiver of light rays. The emitter is encapsulated within a first encapsulation layer, and the receiver is encapsulated within a second encapsulation layer. An opaque layer covers the first encapsulation layer (encapsulating the receiver) and covers the second encapsulation layer (encapsulating the emitter). The first and second encapsulation layers are separated by a region of opaque material. This opaque material may be provided by the opaque layer or an opaque fill.
    Type: Grant
    Filed: October 15, 2020
    Date of Patent: May 3, 2022
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Romain Coffy, Remi Brechignac, Jean-Michel Riviere
  • Patent number: 11305983
    Abstract: A hermetic housing is disclosed (10a) for an optoelectronic component (11) or a MEMS device configured to form an enclosure (12) within which a low pressure or vacuum prevails. The hermetic housing includes: an optical window (14) transparent for at least one wavelength of interest (?); and a layer of a getter material (15a) configured to capture gases present in said enclosure and deposited on the optical window opposite the enclosure. This layer of getter material has a thickness (e_t), greater than 60 nanometers, and a porosity (P) in the range from 10 to 70% to satisfy the following relation: (1?P)*e_t<?/2?k with ? corresponding to the at least one wavelength of interest, and k corresponding to the extinction coefficient of the material of the layer of getter material for the at least one wavelength of interest of the optical window.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 19, 2022
    Assignees: LYNRED, UNIVERSITE PARIS-SACLAY CENTRE NATIONAL DE LA RECHERCHE, SCIENTIFIQUE (CNRS)
    Inventors: Sylvain Lemettre, David Bunel, Johan Moulin, Alain Bosseboeuf
  • Patent number: 11295999
    Abstract: Provided is a composition for encapsulating an organic electronic element and an organic electronic device comprising the same, and an encapsulating composition that can form a structure capable of effectively blocking moisture or oxygen introduced from the outside into an organic electronic device, thereby securing a lifetime of the organic electronic device, and that can be applied to a top-emitting organic electronic device to prevent physical and chemical damage of organic electronic elements, while having excellent optical properties and processability, and an organic electronic device comprising the same.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: April 5, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Seung Min Lee, So Young Kim, Se Woo Yang
  • Patent number: 11283048
    Abstract: The present application relates to an organic electronic device, and provides the organic electronic device including an encapsulating structure capable of effectively blocking water or oxygen introduced from the outside into the organic electronic device, thereby securing the lifetime of the organic electronic device and implementing endurance reliability of the encapsulating structure at high temperature and high humidity, and having high shape retention characteristics.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: March 22, 2022
    Assignee: LG CHEM, LTD.
    Inventors: Seung Min Lee, So Young Kim, Se Woo Yang
  • Patent number: 11260636
    Abstract: A polyamide acid of the present invention contains, as a diamine component, 2,2-bistrifluoromethylbenzidine and trans-1,4-cyclohexanediamine, and contains, as a tetracarboxylic acid dianhydride component, a pyromellitic acid anhydride and a 3,3,4,4-biphenyltetracarboxylic acid dianhydride. A ratio of the trans-1,4-cyclohexanediamine to a total amount of the diamine is preferably 0.5-40 mol %. A polyimide is obtained by dehydration ring closure of the polyamide acid.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: March 1, 2022
    Assignee: KANEKA CORPORATION
    Inventor: Mari Uno
  • Patent number: 11239060
    Abstract: In some embodiments, the present disclosure relates to an ion beam etching apparatus. The ion beam etching apparatus includes a substrate holder disposed within a processing chamber and a plasma source in communication with the processing chamber. A vacuum pump is coupled to the processing chamber by way of an inlet. One or more baffles are arranged between the substrate holder and a lower surface of the processing chamber. A by-product redistributor is configured to move a by-product from an etching process from outside of the one or more baffles to directly below the one or more baffles.
    Type: Grant
    Filed: May 29, 2018
    Date of Patent: February 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Te-Hsien Hsieh, Lee-Chuan Tseng
  • Patent number: 11234349
    Abstract: Provided is a display apparatus including a display panel, a covering member, and an intermediate member. The intermediate member includes a base material including an insulating material and a heat transfer particle, and is disposed between the display panel and the covering member The display panel includes: a substrate; an encapsulation member which faces the substrate; and a display device which is arranged between the substrate and the encapsulation member and displays an image, the covering member is arranged to face the display panel, and the intermediate member is disposed in a gap between the covering member and an area of the substrate where the encapsulation member is not disposed.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: January 25, 2022
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jaechun Park, Yunho Kim, Jeongseok Oh
  • Patent number: 11227982
    Abstract: An LED package creates a narrow beam in a very compact package without use of a lens. A plastic is molded around a metal lead frame (12, 14) to form a molded cup (26), where the cup has parabolic walls extending from a bottom area of the cup to a top thereof. The lead frame forms a first set of electrodes exposed at the bottom area of the cup for electrically contacting a set of LED die electrodes (18, 20). The lead frame also forms a second set of electrodes outside of the cup for connection to a power supply. A reflective metal (28) is then deposited on the curved walls of the cup. An LED die (16) is mounted at the bottom area of the cup and electrically connected to the first set of electrodes. The cup is then partially filled with an encapsulant (64) containing a phosphor (66).
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: January 18, 2022
    Assignee: Lumileds LLC
    Inventor: Mark Melvin Butterworth
  • Patent number: 11221519
    Abstract: Provided is a method of manufacturing a light emitting module, the method including: providing a light guiding plate having a first main surface serving as a lighting surface, and a second main surface opposite to the first main surface, the second main surface defining a recess thereon, preparing a light emitting element unit by attaching a wavelength conversion portion to a light emitting element having electrodes and a light emitting surface; providing a light diffusion portion at a bottom of the recess; depositing the light emitting element unit onto the light diffusion portion in the recess; and forming a terminal having an electrical conductivity on the electrodes of the light emitting element.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: January 11, 2022
    Assignee: NICHIA CORPORATION
    Inventors: Mamoru Imada, Toshiaki Moriwaki, Yusaku Achi
  • Patent number: 11217735
    Abstract: Methods and apparatus are provided for LED packages with surface textures. In one novel aspect, microstructures are formed on surfaces of the LED package such that light extract efficiency is improved. In one embodiment, the LED package has a silicone-encapsulating layer scattered with phosphors. In another embodiment, the LED package has a leadframe substrate. The microstructure can be micro lens, micro dents, micro pillars, micro cones, or other shapes. The microstructures can be periodically arranged or randomly arranged. In one novel aspect, the compression molding process is used to form rough surfaces. The molding block or the release film is modified with microstructures. In another novel aspect, sandblasting process is used. In one embodiment, microstructures are formed on sidewalls using the sandblasting process. The hardness, the angle, and/or the size of the blasting media are selected to improve the efficiency of the LED package.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: January 4, 2022
    Assignee: Luminus, Inc.
    Inventors: Saijin Liu, Hongtao Ma, Tao Tong
  • Patent number: 11211357
    Abstract: A method for processing an ultra-high density interconnect wire under light source guidance, comprising preparing a photo-thermal response conductive paste, and putting it into an air pressure injector; driving the air pressure injector; the air pressure injector extrudes the photo-thermal response conductive paste, so that the photo-thermal response conductive paste is connected with the first chip to form an interconnection wire; stopping extruding the photo-thermal response conductive paste, and driving the air pressure injector to pull off the interconnection wire; a linear light source emits light and irradiates on the interconnection wire to bend to an upper side of a second chip bonding pad; an extrusion mechanism presses a free end of the interconnection wire on the second chip bonding pad; the first chip and the second chip are subjected to glue dripping encapsulation.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: December 28, 2021
    Assignee: GUANGDONG UNIVERSITY OF TECHNOLOGY
    Inventors: Yun Chen, Shuquan Ding, Yunbo He, Maoxiang Hou, Xin Chen, Jian Gao, Ni Zhao, Lanyu Zhang, Zhengping Wang
  • Patent number: 11205690
    Abstract: A display panel and an electronic device are provided. The display panel includes a plurality of thin film transistors, the thin film transistor includes: a first metal layer, a second metal layer, an active region, a gate dielectric layer, a gate metal layer, an interlayer dielectric layer, a source metal layer, and a drain metal layer. The active region includes a channel region, a source region, and a drain region. The source metal layer is electrically connected to the source region and the first metal layer through a via hole. The drain metal layer is electrically connected to the drain region and the second metal layer through a via hole.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: December 21, 2021
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Weijing Zeng
  • Patent number: 11189762
    Abstract: A self-emissive element includes a light-emitting diode (LED) and an auxiliary structure. The LED includes a first type semiconductor, a second type semiconductor, a first pad, and a second pad. The second type semiconductor is overlapped with the first type semiconductor in a vertical direction perpendicular. The auxiliary structure includes a cover portion, a protection portion and a first anchor portion. The cover portion is overlapped with the LED in the vertical direction. The protection portion is not overlapped with the LED in the vertical direction. An orthographic projection area of the protection portion in the vertical direction is greater than or equal to an orthographic projection area of the LED in the vertical direction. The first anchor portion and the protection portion are respectively located at different sides of the LED.
    Type: Grant
    Filed: October 23, 2019
    Date of Patent: November 30, 2021
    Assignee: Au Optronics Corporation
    Inventor: Chung-Chan Liu
  • Patent number: 11183674
    Abstract: According to a method for producing a flexible OLED device of the present disclosure, a multilayer stack (100) is provided, the multilayer stack including a base (10), a functional layer region (20) which includes a TFT layer and an OLED layer, a flexible film (30) provided between the base and the functional layer region and supporting the functional layer region, and a release layer (12) provided between the flexible film and the base and bound to the base. The release layer is irradiated with lift-off light (216) transmitted through the base, whereby the flexible film is delaminated from the release layer. The release layer is made of an alloy of aluminum and silicon.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: November 23, 2021
    Assignee: SAKAI DISPLAY PRODUCTS CORPORATION
    Inventor: Katsuhiko Kishimoto
  • Patent number: 11172555
    Abstract: A light emitting apparatus includes a plurality of full-color LED units. Constant current values of the constant current elements are set such that the plurality of full-color LED units come closer to a same chromaticity as compared with a case in which all the constant current elements of all the full-color LED units have a same constant current value. As a result, in at least one of the plurality of full-color LED units, at least one of the plurality of constant current elements is set to a constant current value different from that of the other constant current elements.
    Type: Grant
    Filed: May 26, 2020
    Date of Patent: November 9, 2021
    Assignee: YAZAKI CORPORATION
    Inventors: Shohei Yamamoto, Terumitsu Sugimoto, Moyu Tanaka
  • Patent number: 11152592
    Abstract: A display area drilling and packaging structure includes a back plate assembly, an emitting layer having a drilling area, and a hot melted adhesive layer. The emitting layer is disposed on the back plate assembly, and an annular cutting groove surrounding the drilling is disposed on the emitting layer. The hot melted adhesive layer at least covers an edge of a mouth of the annular cutting groove away from a center. A packaging layer is disposed on the back plate assembly, the hot melted adhesive layer, and the emitting layer.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 19, 2021
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Penghao Gu, Chunyan Xie, Lingzhi Qian, Jiahao Zhang
  • Patent number: 11139279
    Abstract: A light-emitting diode includes a transparent substrate with a first surface, a second surface opposite to the first surface, and a side surface connected to the first surface and the second surface; a first light-emitting structure; a second light-emitting structure; a connecting layer, connected to the first light-emitting structure and the second light-emitting structure; a circuit arranged between the transparent substrate and the first light-emitting structure, and having a portion formed on the first surface without extending to the second surface; and a structure with diffusers, covering the first light-emitting structure and the second light-emitting structure on the first surface without crossing over the side surface.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: October 5, 2021
    Assignee: EPISTAR CORPORATION
    Inventor: Chia-Liang Hsu
  • Patent number: 11127919
    Abstract: The present disclosure relates to the field of display technologies, and provides an OLED light emitting module, a manufacturing method thereof, and a display device. The OLED light emitting module includes a base substrate, an OLED light emitting device on the base substrate, and a metal stack on the OLED light emitting device. The metal stack includes a first metal layer, a second metal layer and a third metal layer arranged in stack. The second metal layer includes an invar alloy. The first metal layer and the third metal layer include a metal material different from the invar alloy.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: September 21, 2021
    Assignees: HEFEI XINSHENG OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Lihao Zhao, Biao Tian, Jianhui Zhang, Yong Cui
  • Patent number: 11098165
    Abstract: A metal aprotic organosilanoxide compound of formula (I): {R1—Si(R2)(R3)—[O—Si(R4)(R5)]m—O}n-M1(?L)o(X1)p (I), wherein M1 is a metal atom Al, Ce, Fe, or V, a composition or formulation containing or prepared from it, and methods of making and using them. Each molecule of the metal aprotic organosilanoxide compound is composed of at least one metal atom and at least one aprotic organosilanoxide ligand. The metal aprotic organosilanoxide compound may be used as such or as a constituent in a variety of silicone formulations for adhesives, coatings, elastomers, encapsulants, pottants, and sealants.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: August 24, 2021
    Assignee: Dow Silicones Corporation
    Inventors: Don Lee Kleyer, Nanguo Liu, Nick Evan Shephard
  • Patent number: 11094530
    Abstract: A method of fabricating a multi-color display includes dispensing a photo-curable fluid that includes a color conversion agent over a display having a backplane and an array of light emitting diodes electrically integrated with backplane circuitry of the backplane, activating a plurality of light emitting diodes in the array of light emitting diodes to illuminate and cure the first photo-curable fluid to form a color conversion layer over each of the first plurality of light emitting diodes to convert light from the plurality of light emitting diodes to light of a first color, and removing an uncured remainder of the first photo-curable fluid. This process is repeated with a fluid having different color conversion components for another color.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: August 17, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Daihua Zhang, Yingdong Luo, Mingwei Zhu, Hou T. Ng, Sivapackia Ganapathiappan, Nag B. Patibandla
  • Patent number: 11075359
    Abstract: A display panel and a fabrication method for forming the display panel are provided. The fabrication method includes providing a substrate disposed with a light-emitting device, and forming a first inorganic material layer. The fabrication method also includes forming a first inorganic layer by thinning the first inorganic material layer, and forming a second inorganic layer. Moreover, the fabrication method includes forming a third layer. The third layer is disposed in a first region. Further, the fabrication method includes patterning the first inorganic layer and the second inorganic layer by a dry etching using the third layer as a mask, while simultaneously thinning the third layer. The first inorganic layer and the second inorganic layer in the first region are retained to form a first inorganic encapsulation layer and a second inorganic encapsulation layer, respectively. The third layer is thinned to form a third encapsulation layer.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: July 27, 2021
    Assignee: WUHAN TIANMA MICRO-ELECTRONICS CO., LTD.
    Inventor: Linshan Guo
  • Patent number: 11069524
    Abstract: Described herein are methods for using remote plasma chemical vapor deposition (RP-CVD) and sputtering deposition to grow layers for light emitting devices. A method includes growing a light emitting device structure on a growth substrate, and growing a tunnel junction on the light emitting device structure using at least one of RP-CVD and sputtering deposition. The tunnel junction includes a p++ layer in direct contact with a p-type region, where the p++ layer is grown by using at least one of RP-CVD and sputtering deposition. Another method for growing a device includes growing a p-type region over a growth substrate using at least one of RP-CVD and sputtering deposition, and growing further layers over the p-type region. Another method for growing a device includes growing a light emitting region and an n-type region using at least one of RP-CVD and sputtering deposition over a p-type region.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: July 20, 2021
    Assignee: LUMILEDS LLC
    Inventors: Isaac Wildeson, Parijat Deb, Erik Charles Nelson, Junko Kobayashi
  • Patent number: 11056612
    Abstract: A light emitting element includes: a semiconductor structure including: a substrate, an n-side nitride semiconductor layer containing an n-type impurity and located on the substrate, and a p-side nitride semiconductor layer containing a p-type impurity and located on the n-side nitride semiconductor layer, wherein a resistance of a peripheral portion of the p-side nitride semiconductor layer is higher than a resistance of an area inside of the peripheral portion in a top view, wherein a p-side nitride semiconductor side of the semiconductor structure is a light extraction face side, and an n-side nitride semiconductor side of the semiconductor structure is a mounting face side; and first protective layer located on an upper face of the p-side nitride semiconductor layer in a region corresponding to the peripheral portion of the p-side nitride semiconductor layer.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: July 6, 2021
    Assignee: NICHIA CORPORATION
    Inventors: Shun Kitahama, Yoshiki Inoue, Kazuhiro Nagamine, Junya Narita
  • Patent number: 11046883
    Abstract: A composite material includes at least one photoluminescent material embedded as a light source in a transparent matrix, wherein a refractive index (nP) of the at least one photoluminescent material and a refractive index (nM) of the matrix differ by at most ±0.2.
    Type: Grant
    Filed: June 7, 2016
    Date of Patent: June 29, 2021
    Assignee: OSRAM OLED GmbH
    Inventor: Jörg Frischeisen
  • Patent number: 11039515
    Abstract: The device comprises a bipolar transistor with emitter, base, collector, base-collector junction and base-emitter junction, a collector-to-base breakdown voltage, a quenching component electrically connected with the base or the collector, and a switching circuitry configured to apply a forward bias to the base-emitter junction. The bipolar transistor is configured for operation at a reverse collector-to-base voltage above the breakdown voltage.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: June 15, 2021
    Assignee: AMS AG
    Inventors: Georg Roehrer, Robert Kappel, Nenad Lilic
  • Patent number: 11038595
    Abstract: An optoelectronic device includes a substrate and a first optoelectronic chip flush with a surface of the substrate. The device includes a cover that covers the substrate and the first optoelectronic chip. The cover comprises a cavity above a first optical transduction region of the first optoelectronic chip. The device also includes a second optoelectronic chip having a second optical transduction region spaced apart from the first optical transduction region and the cavity continues above the second optical transduction region.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: June 15, 2021
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: Alexandre Coullomb, Romain Coffy, Jean-Michel Riviere
  • Patent number: 11038086
    Abstract: Disclosed is a semiconductor light emitting device including: a body with a bottom part having at least one hole formed therein; a semiconductor light emitting device chip to be placed in each of the at least one hole, with the semiconductor light emitting device chip being comprised of a plurality of semiconductor layers including an active layer for generating light by electron-hole recombination, and an electrode electrically connected to the plurality of semiconductor layers; and an encapsulating member for covering the semiconductor light emitting device chip, wherein a hole—defining inner face of the bottom part has a plurality of angles of inclination.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: June 15, 2021
    Assignee: SEMICON LIGHT CO., LTD.
    Inventors: Soo Kun Jeon, Kyoung Min Kim, Eun Hyun Park, Young Kwan Cho, Gye Oul Jeong, Dong So Jung, Seung Ho Baek, Eung Suk Park, Hye Ji Rhee
  • Patent number: 11033193
    Abstract: A light emitting device includes a light emitting element that emits light, and a wiring substrate that includes a light reflective reflecting electrode to which the light emitting element is bonded using a bonding material. The reflecting electrode has a reflecting region which reflects light emitted from the light emitting element. An area of a mounting region surrounded by an outer circumference of the reflecting region is greater than an area of the light emitting element by four times or more seen in a direction perpendicular to the wiring substrate.
    Type: Grant
    Filed: December 26, 2017
    Date of Patent: June 15, 2021
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Shigemitsu Koike
  • Patent number: 11031311
    Abstract: In a described example, a packaged semiconductor device includes: a semiconductor die with a component proximate to a surface of the semiconductor die; the semiconductor die mounted on a substrate. The component is covered with a first polymer layer with a first modulus and at least a portion of the first polymer layer is covered by at least one second polymer layer with a second modulus and the second modulus is greater than the first modulus. The semiconductor die and a portion of the substrate are covered with mold compound.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: June 8, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Luu Thanh Nguyen
  • Patent number: 11021590
    Abstract: A silicone-coated filler comprises: a particulate material mainly composed of an inorganic oxide formed by oxidizing a predetermined element; a first silicone structure bonded to a surface of the particulate material by way of a “-‘the predetermined element’-OSi—” structure; and a second silicone structure including a cross-linking structure with a carbon-carbon structure directly bonded to a silicon atom of the first silicone structure, and a polysiloxane structure bonded to the cross-linking structure.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: June 1, 2021
    Assignee: ADMATECHS CO., LTD.
    Inventors: Shingi Noguchi, Masaru Kuraki, Tempo Nakamura, Tomio Inoue
  • Patent number: 11018036
    Abstract: Methods, apparatus, and assemblies are provided for a substrate carrier adapter insert including an adapter frame including a support rail adapted to support one or more substrates in a substrate carrier, a frame extension coupled to, or integral with, the adapter frame, and a mapping feature formed on the frame extension and disposed to be detected by a sensor for determining whether an adapter insert is present or absent in a substrate carrier. Numerous additional features are disclosed.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: May 25, 2021
    Assignee: Applied Materials, Inc.
    Inventors: John J. Mazzocco, Edward Ng, Douglas MacLeod, David Phillips, Ayan Majumdar, Jeffrey C. Hudgens
  • Patent number: 11005008
    Abstract: A light emitting device includes an LED chip, a light-transmissible member and a light-reflecting member. The LED chip has a plurality of interconnecting side surfaces having a roughened structure and a plurality of corners. The light-transmissible member covers the side surfaces and the corners and includes a light-transmissible material layer having a breadth value W(A) of a viscosity coefficient (A) range of the light-transmissible material, which satisfies a relation of W(A)?B*D/C: where B represents a thickness of the light-transmissible material layer, represents a thickness of the LED chip measured from the first surface to the second surface, and D represents a roughness of the roughened structure. A method for manufacturing the light emitting device is also provided.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: May 11, 2021
    Assignee: Xiamen San'An Optoelectronics Co., Ltd.
    Inventors: Senpeng Huang, Zhen-duan Lin, Weng-Tack Wong, Junpeng Shi, Shunyi Chen, Chih-Wei Chao, Chen-ke Hsu
  • Patent number: 10997899
    Abstract: An electronic display includes emission clock routing without the use of repeaters. This may be accomplished by providing row drivers for each emission clock signal on opposing edges of the display panel, so that each set of row drivers may provide the emission clock signal to only a portion of the micro-drivers in each row. The array of micro-drivers may be further segmented (e.g., into four or more sections, an alternating pattern, uneven sections, etc.) to provide similar advantages. Furthermore, rather than using multiplexors to provide the emission clock signals to the row drivers, the emission clock may be hardwired to the row drivers. This may reduce the number of pins and support the provision of more phases.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 4, 2021
    Assignee: Apple Inc.
    Inventors: Hopil Bae, Mahdi Farrokh Baroughi, Mohammad B. Vahid Far
  • Patent number: 10978628
    Abstract: A device and a connection carrier are disclosed. In an embodiment a device includes a connection carrier, a frame and an encapsulation body, wherein the connection carrier, the encapsulation body and/or the frame have different thermal expansion coefficients, a semiconductor chip mechanically and electronically connected to the connection carrier and a metal layer arranged between the connection carrier and the frame, wherein the encapsulation body surrounds the semiconductor chip and is adjacent to the connection carrier and the frame, wherein the metal layer is not in electrically conductive connection, and wherein the metal layer projects beyond the frame in a lateral direction.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: April 13, 2021
    Assignee: OSRAM OLED GmbH
    Inventors: Stephan Haslbeck, Dirk Becker
  • Patent number: 10963086
    Abstract: A display device includes a substrate, a pad electrode, a pixel electrode, an opposite electrode, an encapsulation member, a planarization layer, and a conductive layer. The substrate includes a display region and a peripheral region. The pad electrode is disposed on the substrate in the peripheral region. The pixel electrode and the opposite electrode are disposed on the substrate in the display region. The encapsulation member is disposed on the opposite electrode. The planarization layer is disposed on the encapsulation member in the display region and the peripheral region. The conductive layer is disposed on the planarization layer. The planarization layer includes a contact hole exposing at least a portion of the pad electrode. The conductive layer contacts the portion of the pad electrode exposed through the contact hole.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: March 30, 2021
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Yusung Cho, Kyungil Kang