With Means To Control Triggering (e.g., Gate Electrode Configuration, Zener Diode Firing, Dv/dt Control, Transient Control By Ferrite Bead, Etc.) Patents (Class 257/175)
  • Patent number: 11532610
    Abstract: An Electrostatic Discharge protection circuit with low parasitic capacitance is provided, comprising a first bipolar junction transistor and a first ESD power clamp device. The first bipolar junction transistor is an NPN type of bipolar junction transistor, including a base and an emitter commonly connected to an I/O terminal and a collector connected with the first ESD power clamp device. The first ESD power clamp device is further connected to ground, and can be a Zener diode, PNP type, NPN type of bipolar junction transistor or the like. When a positive ESD pulse is injected, an ESD protection path is consisting of the first bipolar junction transistor and the first ESD power clamp device. When a negative ESD pulse is injected, the ESD protection path is consisting of a parasitic silicon controlled rectifier, thereby reducing parasitic capacitance effectively.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: December 20, 2022
    Assignee: Amazing Microelectronic Corp.
    Inventor: Yu-Shu Shen
  • Patent number: 11515155
    Abstract: Methods of improved selectively for SAM-based selective depositions are described. Some of the methods include forming a SAM on a second surface and a carbonized layer on the first surface. The substrate is exposed to an oxygenating agent to remove the carbonized layer from the first surface, and a film is deposited on the first surface over the protected second surface. Some of the methods include overdosing a SAM molecule to form a SAM layer and SAM agglomerates, depositing a film, removing the agglomerates, reforming the SAM layer and redepositing the film.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: November 29, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chang Ke, Michael S. Jackson, Liqi Wu, Lei Zhou, Shuyi Zhang, David Thompson, Paul F. Ma, Biao Liu, Cheng Pan
  • Patent number: 10950433
    Abstract: Methods of improved selectively for SAM-based selective depositions are described. Some of the methods include forming a SAM on a second surface and a carbonized layer on the first surface. The substrate is exposed to an oxygenating agent to remove the carbonized layer from the first surface, and a film is deposited on the first surface over the protected second surface. Some of the methods include overdosing a SAM molecule to form a SAM layer and SAM agglomerates, depositing a film, removing the agglomerates, reforming the SAM layer and redepositing the film.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: March 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Chang Ke, Michael S. Jackson, Liqi Wu, Lei Zhou, Shuyi Zhang, David Thompson, Paul F. Ma, Biao Liu, Cheng Pan
  • Patent number: 10871598
    Abstract: The present technology relates to a solid-state imaging device, a production method, and an electronic apparatus that can prevent sensitivity unevenness from generating. The solid-state imaging device includes a pixel array unit having a plurality of pixels, a microlens formed by laminating a plurality of lens layers for the every pixel, and a film formed between the lens layers with a uniform film thickness having a refractive index lower than a refractive index of the lens layer. The present technology is applicable to an amplification type solid-state imaging device such as a surface irradiation type or rear irradiation type CMOS image sensor, and a charge transfer type solid-state imaging device such as a CCD image sensor.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: December 22, 2020
    Assignee: Sony Corporation
    Inventor: Hikaru Iwata
  • Patent number: 10483257
    Abstract: An area-efficient, low voltage ESD protection device (200) is provided for protecting low voltage pins (229, 230) against ESD events by using one or more stacked low voltage NPN bipolar junction transistors, each formed in a p-type material with an N+ collector region (216) and P+ base region (218) formed on opposite sides of an N+ emitter region (217) with separate halo extension regions (220-222) formed around at least the collector and emitter regions to improve the second trigger or breakdown current (It2) and set the snapback voltage (Vsb) and triggering voltage (Vt1) at the desired level.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: November 19, 2019
    Assignee: NXP USA, Inc.
    Inventors: Chai Ean Gill, Changsoo Hong
  • Patent number: 10014293
    Abstract: A semiconductor device of a circuit is provided. The circuit is configured to be operated under a power supply. The semiconductor device of the circuit includes a first transistor and a second transistor. The first transistor includes a first source region in a first bulk region; a first drain region defined by a well and a doped region, wherein the first source region and the doped region are separate by a distance, which is a factor which determines a breakdown voltage of the first transistor, the breakdown voltage being associated with the power supply; and a first gate. The second transistor includes a second source region in a second bulk region, the second source region electrically connected with the first source region and the first gate.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: July 3, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Jia-Rui Lee, Kuo-Ming Wu, Yi-Chun Lin, Alexander Kalnitsky
  • Patent number: 9773741
    Abstract: An apparatus includes a first component layer. The component layer includes a first semiconductor device. The apparatus further includes a first hydrophilic layer and a first hydrophobic layer. The first hydrophobic layer is positioned between the first component layer and the first hydrophilic layer. The apparatus further includes a first contact extending through the first hydrophobic layer and the first hydrophilic layer.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: September 26, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Yang Du, William Xia
  • Patent number: 8981476
    Abstract: A semiconductor device includes: first and second n-type wells formed in p-type semiconductor substrate, the second n-type well being deeper than the first n-type well; first and second p-type backgate regions formed in the first and second n-type wells; first and second n-type source regions formed in the first and second p-type backgate regions; first and second n-type drain regions formed in the first and second n-type wells, at positions opposed to the first and second n-type source regions, sandwiching the first and the second p-type backgate regions; and field insulation films formed on the substrate, at positions between the first and second p-type backgate regions and the first and second n-type drain regions; whereby first transistor is formed in the first n-type well, and second transistor is formed in the second n-type well with a higher reverse voltage durability than the first transistor.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Kazuhiko Takada
  • Patent number: 8963200
    Abstract: Methods and apparatus for increased holding voltage SCRs. A semiconductor device includes a semiconductor substrate of a first conductivity type; a first well of the first conductivity type; a second well of a second conductivity type adjacent to the first well, an intersection of the first well and the second well forming a p-n junction; a first diffused region of the first conductivity type formed at the first well and coupled to a ground terminal; a first diffused region of the second conductivity type formed at the first well; a second diffused region of the first conductivity type formed at the second well and coupled to a pad terminal; a second diffused region of the second conductivity type formed in the second well; and a Schottky junction formed adjacent to the first diffused region of the second conductivity type coupled to a ground terminal. Methods for forming devices are disclosed.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jam-Wem Lee, Tzu-Heng Chang, Tsung-Che Tsai, Ming-Hsiang Song
  • Patent number: 8963201
    Abstract: One embodiment of the present invention relates to a silicon-controlled-rectifier (SCR). The SCR includes a longitudinal silicon fin extending between an anode and a cathode and including a junction region there between. One or more first transverse fins traverses the longitudinal fin at one or more respective tapping points positioned between the anode and the junction region. Other devices and methods are also disclosed.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: February 24, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventors: Mayank Shrivastava, Christian Russ, Harald Gossner
  • Patent number: 8785973
    Abstract: In an ultra high voltage lateral GaN structure having a 2DEG region extending between two terminals, an isolation region is provided between the two terminals to provide for reversible snapback.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: July 22, 2014
    Assignee: National Semiconductor Corporation
    Inventor: Vladislav Vashchenko
  • Patent number: 8754443
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
    Type: Grant
    Filed: September 15, 2012
    Date of Patent: June 17, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Suraj J. Mathew, Chandra Mouli
  • Patent number: 8748936
    Abstract: A semiconductor device includes a first well region of a first conductivity type, a second well region of a second conductive type within the first well region. A first region of the first conductivity type and a second region of the second conductivity type are disposed within the second well region. A third region of the first conductivity type and a fourth region of the second conductivity type are disposed within the first well region, wherein the third region and the fourth region are separated by the second well region. The semiconductor device also includes a switch device coupled to the third region.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 10, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 8653510
    Abstract: In certain embodiments, a field effect transistor (FET) can include a substrate, a source electrode, a drain electrode, a ferroelectric material layer, a first gate electrode, and a second gate electrode to maintain an optimal polarization state of the ferroelectric material layer. In other embodiments, a FET can include a film, first and second gates on the film, a ferroelectric material layer covering the film and gates, an insulating layer substantially covering the ferroelectric material layer, a source and a drain on the insulating layer, and a pentacene layer.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: February 18, 2014
    Assignee: SRI International
    Inventors: John Hodges, Jr., Marc Rippen, Carl Biver, Jr.
  • Publication number: 20130313607
    Abstract: Device structures, fabrication methods, operating methods, and design structures for a silicon controlled rectifier. The method includes applying a mechanical stress to a region of a silicon controlled rectifier (SCR) at a level sufficient to modulate a trigger current of the SCR. The device and design structures include a SCR with an anode, a cathode, a first region, and a second region of opposite conductivity type to the first region. The first and second regions of the SCR are disposed in a current-carrying path between the anode and cathode of the SCR. A layer is positioned on a top surface of a semiconductor substrate relative to the first region and configured to cause a mechanical stress in the first region of the SCR at a level sufficient to modulate a trigger current of the SCR.
    Type: Application
    Filed: August 1, 2013
    Publication date: November 28, 2013
    Applicant: International Business Machines Corporation
    Inventors: Renata Camillo-Castillo, Erik M. Dahlstrom, Robert J. Gauthier, JR., Ephrem G. Gebreselasie, Richard A. Phelps, Yun Shi, Andreas D. Stricker
  • Patent number: 8575695
    Abstract: This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: November 5, 2013
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Wilson Ma, Lingpeng Guan, Yeeheng Lee, John Chen
  • Patent number: 8569867
    Abstract: According to one embodiment, a semiconductor device that has a rectification element includes a semiconductor substrate, a first well region of a first conductivity type formed on the semiconductor substrate, a second well region of a second conductivity type formed on the semiconductor substrate, and a plurality of fins arranged over the first well region and the second well region at a first pitch in the same direction. In the semiconductor device, the rectification element includes a cathode region, an anode region, a well contact region, and a trigger region that are configured using fins. These regions are connected to each wiring portion to form a PNP-type bipolar transistor and an NPN-type bipolar transistor.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: October 29, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Satoshi Inaba
  • Patent number: 8492866
    Abstract: Disclosed is a Zener diode having a scalable reverse-bias breakdown voltage (Vb) as a function of the position of a cathode contact region relative to the interface between adjacent cathode and anode well regions. Specifically, cathode and anode contact regions are positioned adjacent to corresponding cathode and anode well regions and are further separated by an isolation region. However, while the anode contact region is contained entirely within the anode well region, one end of the cathode contact region extends laterally into the anode well region. The length of this end can be predetermined in order to selectively adjust the Vb of the diode (e.g., increasing the length reduces Vb of the diode and vice versa). Also disclosed are an integrated circuit, incorporating multiple instances of the diode with different reverse-bias breakdown voltages, a method of forming the diode and a design structure for the diode.
    Type: Grant
    Filed: January 9, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Frederick G. Anderson, Natalie B. Feilchenfeld, David L. Harmon, Richard A. Phelps, Yun Shi, Michael J. Zierak
  • Patent number: 8455919
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: June 4, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Suraj J. Mathew, Chandra Mouli
  • Patent number: 8405123
    Abstract: In a gated diode ESD protection structure, the gate is split into two parts to divide the total reverse voltage between two gate regions.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: March 26, 2013
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Konstantin G. Korablev
  • Patent number: 8390024
    Abstract: An electrostatic discharge (ESD) protection circuit includes at least one bipolar transistor. At least one isolation structure is disposed in a substrate. The at least one isolation structure is configured to electrically isolate two terminals of the at least one bipolar transistor. At least one diode is electrically coupled with the at least one bipolar transistor, wherein a junction interface of the at least one diode is disposed adjacent the at least one isolation structure.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: March 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liping Ren, Hsiao-Chin Tuan, Dah-Chuen Ho
  • Patent number: 8384127
    Abstract: A structure is designed with an external terminal (100) and a reference terminal (102). A first transistor (106) is formed on a substrate. The first transistor has a current path coupled between the external terminal and the reference terminal. A second transistor (118) has a current path coupled between the external terminal and the substrate. A third transistor (120) has a current path coupled between the substrate and the reference terminal.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: February 26, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Robert Steinhoff, Jonathan S. Brodsky, Thomas A. Vrotsos
  • Publication number: 20130009208
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
    Type: Application
    Filed: September 15, 2012
    Publication date: January 10, 2013
    Inventors: Suraj J Mathew, Chandra Mouli
  • Patent number: 8253165
    Abstract: A semiconductor device includes a first well region of a first conductivity, a second well region of a second conductivity type, a source region of the second conductivity type within the first well region, and a drain region of the second conductivity type at least partially within the second well region. A well contact to the first well region is coupled to the source. A third doped region of the first conductivity type and a fourth doped region of the second conductivity type are located in the second well region. A first transistor includes the third doped region, the second well region, and the first well region. The first transistor is coupled to a switch device. A second transistor includes the second well region, the first well region, and the source region. The first and the second transistors are configured to provide a current path during an ESD event.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: August 28, 2012
    Assignee: Macronix International Co., Ltd.
    Inventors: Shih-Yu Wang, Chia-Ling Lu, Yan-Yu Chen, Yu-Lien Liu, Tao-Cheng Lu
  • Patent number: 8217421
    Abstract: A new ESD protection device with an integrated-circuit vertical transistor structure is disclosed, which includes a heavily doped p-type substrate (P+ substrate), a n-type well (N well) in the P+ substrate, a heavily doped p-type diffusion (P+ diffusion) in the N well, a heavily doped n-type diffusion (N+ diffusion) in the N well, and a p-type well (P well) surrounding the N well in the P+ substrate. A bond pad is connected to both the P+ and N+ diffusions, and a ground is coupled to the P+ substrate. Another P+ diffusion is implanted in the N well or another N+ diffusion is implanted in the P well to form a Zener diode, which behaves as a trigger for the PNP transistor when a positive ESD zaps. A parasitic diode is formed at the junction between the P+ substrate and the N well, to bypass a negative ESD stress on the bond pad.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: July 10, 2012
    Assignee: Amazing Microelectronic Corp.
    Inventors: Zi-Ping Chen, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Patent number: 8198703
    Abstract: A Zener diode is fabricated on a semiconductor substrate having semiconductor material thereon. The Zener diode includes a first well region having a first conductivity type, formed in the semiconductor material. The Zener diode also includes a first region having a second conductivity type, formed in the first well region (the second conductivity type is opposite the first conductivity type). The Zener diode also includes a second region having the first conductivity type, wherein the second region is formed in the first well region and overlying the first region. An electrode is formed in the first region, and the electrode is electrically coupled to the second region.
    Type: Grant
    Filed: January 18, 2010
    Date of Patent: June 12, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Patent number: 8119487
    Abstract: A Semiconductor device and method for fabricating the same are disclosed. The method includes implanting first conduction type impurities into a semiconductor substrate to form a first well, implanting second conduction type impurities into the first well to form a second well, implanting second conduction type impurities into the second well to form an impurity region, forming a gate on the semiconductor substrate, and implanting second conduction type impurities to form a drain region in the impurity region on one side of the gate.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: February 21, 2012
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Jong Min Kim
  • Publication number: 20120018778
    Abstract: A new ESD protection device with an integrated-circuit vertical transistor structure is disclosed, which includes a heavily doped p-type substrate (P+ substrate), a n-type well (N well) in the P+ substrate, a heavily doped p-type diffusion (P+ diffusion) in the N well, a heavily doped n-type diffusion (N+ diffusion) in the N well, and a p-type well (P well) surrounding the N well in the P+ substrate. A bond pad is connected to both the P+ and N+ diffusions, and a ground is coupled to the P+ substrate. Another P+ diffusion is implanted in the N well or another N+ diffusion is implanted in the P well to form a Zener diode, which behaves as a trigger for the PNP transistor when a positive ESD zaps. A parasitic diode is formed at the junction between the P+ substrate and the N well, to bypass a negative ESD stress on the bond pad.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 26, 2012
    Applicant: AMAZING MICROELECTRONIC CORP.
    Inventors: ZI-PING CHEN, Kun-Hsien Lin, Ryan Hsin-Chin Jiang
  • Publication number: 20120012892
    Abstract: Memory devices and methods of making memory devices are shown. Methods and configurations as shown provide folded and vertical memory devices for increased memory density. Methods provided allow trace wiring in a memory array to be formed on or near a surface of a memory device.
    Type: Application
    Filed: July 19, 2010
    Publication date: January 19, 2012
    Inventors: Suraj J. Mathew, Chandra Mouli
  • Patent number: 8034716
    Abstract: Semiconductor structures and methods of making a vertical diode structure are provided. The vertical diode structure may have associated therewith a diode opening extending through an insulation layer and contacting an active region on a silicon wafer. A titanium silicide layer may be formed over the interior surface of the diode opening and contacting the active region. The diode opening may initially be filled with an amorphous silicon plug that is doped during deposition and subsequently recrystallized to form large grain polysilicon. The silicon plug has a top portion that may be heavily doped with a first type dopant and a bottom portion that may be lightly doped with a second type dopant. The top portion may be bounded by the bottom portion so as not to contact the titanium silicide layer. In one embodiment of the vertical diode structure, a programmable resistor contacts the top portion of the silicon plug and a metal line contacts the programmable resistor.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: October 11, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Fernando Gonzalez, Tyler A. Lowrey, Trung T. Doan, Raymond A. Turi, Graham R. Wolstenholme
  • Patent number: 7910951
    Abstract: In a CMOS implemented free or parasitic pnp transistor, triggering is controlled by introducing a low side zener reference voltage.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: March 22, 2011
    Assignee: National Semiconductor Corporation
    Inventor: Vladislav Vashchenko
  • Patent number: 7902570
    Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: March 8, 2011
    Assignee: Princeton Lightwave, Inc.
    Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala
  • Patent number: 7834378
    Abstract: A composite dual SCR circuit that acts to protect the Vcc node as well as an I/O node or pin. The dual SCR uses the Vcc to control or program the triggering point of the SCR connected to an I/O node. When Vcc is low, the SCR protecting an I/O node triggers a few volts above ground, but when Vcc is high the trigger point of the SCR protecting the I/O node is much higher. The dual SCR incorporates added diffusions to an existing first SCR structure between the power node and the ground node thereby forming a second SCR. The first and second SCRs share a common cathode transistor. In one illustrative embodiment, only one SCR is constructed incorporating the Vcc to control the triggering of the SCR.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: November 16, 2010
    Assignee: Fairchild Korea Semiconductor Ltd
    Inventors: Junhyeong Ryu, Taeghyun Kang, Moonho Kim
  • Patent number: 7804671
    Abstract: An electrostatic discharge protection circuit has a substrate; a first P-well installed on the substrate and having a first P+-doped region and a first N+-doped region, both of which are connected to ground; a second P-well installed on the substrate and having a second P+-doped region and a second N+-doped region, both of which are connected to a power supply voltage; and a third P-well installed on the substrate and having a third N+-doped region, a third P+-doped region, and a fourth N+-doped region, all of which are for input/output signals.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: September 28, 2010
    Assignee: VIA Technologies Inc.
    Inventors: Bob Cheng, Tony Ho, Bouryi Sze
  • Patent number: 7791102
    Abstract: Methods and devices are provided for protecting semiconductor devices against electrostatic discharge events. An electrostatic discharge protection device comprises a silicon substrate, a P+-type anode region disposed within the silicon substrate, and an N-well device region disposed within the silicon substrate in series with the P+-type anode region. A first P-well device region is disposed within the silicon substrate in series with the first N-well device region and an N+-type cathode region is disposed within the silicon substrate. A gate electrode is disposed at least substantially overlying the first N-well and P-well device regions of the silicon substrate.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: September 7, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Akram Salman, Stephen Beebe
  • Patent number: 7763940
    Abstract: An electronic device having an LV-well element trigger structure that reduces the effective snapback trigger voltage in MOS drivers or ESD protection devices. A reduced triggering voltage facilitates multi-finger turn-on and thus uniform current flow and/or helps to avoid competitive triggering issues.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: July 27, 2010
    Assignee: Sofics BVBA
    Inventors: Markus Paul Josef Mergens, Bart Keppens, Koen Verhaege, John Armer, Cong Son Trinh
  • Patent number: 7732817
    Abstract: A partition-wall structure having a concave portion corresponding to a pattern formed by a functional liquid, including: a first concave portion provided corresponding to a first pattern; a second concave portion provided corresponding to a second pattern that is coupled to the first pattern and whose width is smaller than a width of the first pattern; and a convex portion provided in the first pattern.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: June 8, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Toshimitsu Hirai, Toshihiro Ushiyama
  • Patent number: 7719026
    Abstract: A protective SCR integrated circuit device is disclosed built on adjacent N and P wells and defining an anode and a cathode. In addition to the anode and cathode contact structures, the device has an n-type stack (N+/ESD) structure bridging the N-Well and the P-Well, and a p-type stack (P+/PLDD) structure in the P-Well. The separation of the n-type stack structure and the p-type stack structure provides a low triggering voltage without involving any external circuitry or terminal, that together with other physical dimensions and processing parameters also provide a relatively high holding voltage without sacrificing the ESD protection robustness. In an embodiment, the triggering voltage may be about 8V while exhibiting a holding voltage, that may be controlled by the lateral dimension of the n-type stack of about 5-7 V.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: May 18, 2010
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Lifang Lou, Jay R. Chapin, Donna Robinson-Hahn
  • Patent number: 7714355
    Abstract: In a BSCR or BJT ESD clamp, the breakdown voltage and DC voltage tolerance are controlled by controlling the size of the collector of the BJT device by masking part of the collector.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 11, 2010
    Assignee: National Semiconductor Corp
    Inventors: Vladislav Vashchenko, Alexei Sadovnikov, Peter J. Hopper, Andy Strachan
  • Patent number: 7705368
    Abstract: An insulated gate type thyristor includes: a first current terminal semiconductor region of a first conductivity type having a high impurity concentration; a first base semiconductor region of a second conductivity type opposite to the first conductivity type having a low impurity concentration and formed on the first current terminal semiconductor region; a second base semiconductor region of the first conductivity type having a low impurity concentration and formed on the first base semiconductor region; a second current terminal semiconductor region of the second conductivity type having a high impurity concentration and formed on the second base semiconductor region; a trench passing through the second current terminal semiconductor region and entering the second base semiconductor region leaving some depth thereof, along a direction from a surface of the second current terminal semiconductor region toward the first base semiconductor region; and an insulated gate electrode structure formed in the trench.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: April 27, 2010
    Assignee: Fujifilm Corporation
    Inventors: Vladimir Rodov, Hidenori Akiyama
  • Patent number: 7667241
    Abstract: An electrostatic discharge protection device for protecting a node includes a transistor, a silicon controlled rectifier, a second contact region laterally displaced from the first contact region, and a collection region adjacent the source region. The transistor includes a semiconductor substrate, a source region, a channel region adjacent the source region, a gate over the channel region, and a drain region laterally displaced from the channel. The silicon controlled rectifier includes the source region, a portion of the substrate, a doped well, and a first contact region in the well, laterally displaced from the drain region. The collection region, the source region and the gate, are metallically connected. The node, the first contact region, and the second contact region, are metallically connected, and the drain region is not metallically connected to the node.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: February 23, 2010
    Assignee: Cypress Semiconductor Corporation
    Inventors: Andrew Walker, Helmut Puchner
  • Patent number: 7666787
    Abstract: An interconnect structure of the single or dual damascene type and a method of forming the same, which substantially reduces the electromigration problem that is exhibited by prior art interconnect structures, are provided. In accordance with the present invention, a grain growth promotion layer, which promotes the formation of a conductive region within the interconnect structure that has a bamboo microstructure and an average grain size of larger than 0.05 microns is utilized. The inventive structure has improved performance and reliability.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Shom Ponoth
  • Patent number: 7652308
    Abstract: Semiconductor devices having a gate-all-around (GAA) structure capable of higher operating performance may be provided. A semiconductor device may include a semiconductor substrate, at least one gate electrode, and at least one gate insulating layer. The semiconductor substrate may have a body, at least one supporting post protruding from the body, and at least one pair of fins separated from the body, wherein both ends of each fin of the at least one pair of fins are connected to and supported by the at least one supporting post. The at least one gate electrode may enclose a portion of at least one fin of the at least one pair of fins of the semiconductor substrate, and may be insulated from the semiconductor substrate. The at least one gate insulating layer may be interposed between the at least one gate electrode and the at least one pair of fins of the semiconductor substrate.
    Type: Grant
    Filed: January 17, 2007
    Date of Patent: January 26, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-Dong Park, Suk-Pil Kim
  • Patent number: 7638857
    Abstract: A silicon controlled rectifier structure is provided in a substrate having a first conductive type. A well region formed within the substrate has a second conductive type. A first dopant region formed within the substrate and the well region has the first conductive type. A second dopant region formed within the substrate and a portion of the well region has the second conductive type. A third dopant region formed under the second dopant region has the first conductive type, in which the second and the third regions form a vertical Zener diode. A fourth dopant region formed within the substrate and separated from the second dopant region by a separation structure has the second conductive type. A fifth dopant region is formed within the substrate in a manner that the fourth dopant region is between the isolation structure and the fifth dopant region, and has the first conductive type.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: December 29, 2009
    Assignee: United Microelectronics Corp.
    Inventors: Hsin-Yen Hwang, Shu-Hsuan Su, Tien-Hao Tang
  • Patent number: 7626193
    Abstract: A single-photon detector is disclosed that provides reduced afterpulsing without some of the disadvantages for doing so in the prior art. An embodiment of the present invention provides a stimulus pulse to the active area of an avalanche photodetector to stimulate charges that are trapped in energy trap states to detrap. In some embodiments of the present invention, the stimulus pulse is a thermal pulse.
    Type: Grant
    Filed: March 27, 2006
    Date of Patent: December 1, 2009
    Assignee: Princeton Lightwave, Inc.
    Inventors: Mark Allen Itzler, Rafael Ben-Michael, Sabbir Sajjad Rangwala
  • Patent number: 7612431
    Abstract: Embodiments of the present invention include a method of manufacturing a trench transistor. The method includes forming a substrate of a first conductivity type and implanting a dopant of a second conductivity type, forming a body region of the substrate. The method further includes forming a trench in the body region and depositing an insulating layer in the trench and over the body region wherein the insulating layer lines the trench. The method further includes filling the trench with polysilicon forming a top surface of the trench and forming a diode in the body region wherein a portion of the diode is lower than the top surface of the trench.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: November 3, 2009
    Assignee: Vishay-Siliconix
    Inventors: Qufei Chen, Robert Xu, Kyle Terrill, Deva Pattanayak
  • Publication number: 20090219426
    Abstract: An embodiment of an embedded cache memory in an image sensor comprises a memory cell array wherein the memory cells are substantially isolated from laterally adjacent memory. The memory cell array includes a plurality of memory cells. Each of the memory cells is formed in a standard CMOS image sensor process without the need for SOI processes. Each cell includes first and second n-type and p-type regions arranged around a vertically integrated gate. Data is written to a cell by causing carriers to accumulate in the body of the device through carrier generation mechanisms that may include impact ionization, band-to-band tunneling and/or channel-initiated secondary hot electrons.
    Type: Application
    Filed: March 3, 2008
    Publication date: September 3, 2009
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Chandra Mouli
  • Patent number: 7542258
    Abstract: An overcurrent protection circuit for a power switching transistor wherein the power switching transistor has a control electrode and two main electrodes, the circuit comprising a circuit including a protection switch for sensing the rate of change of voltage with respect to time at one of the main electrodes of the power switching transistor and for controlling the protection switch to remove a control signal to the control electrode of the power switching transistor to turn off the power switching transistor if the rate of change exceeds a predefined value.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: June 2, 2009
    Assignee: Lutron Electronics Co., Inc.
    Inventor: Richard L. Black
  • Patent number: 7511357
    Abstract: A MOSFET device that includes a first Zener diode connected between a gate metal and a drain metal of said semiconductor power device for functioning as a gate-drain (GD) clamp diode. The GD clamp diode includes multiple back-to-back doped regions in a polysilicon layer doped with dopant ions of a first conductivity type next to a second conductivity type disposed on an insulation layer above the MOSFET device, having an avalanche voltage lower than a source/drain avalanche voltage of the MOSFET device wherein the Zener diode is insulated from a doped region of the MOSFET device for preventing a channeling effect.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: March 31, 2009
    Assignee: Force-MOS Technology Corporation
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7417282
    Abstract: The present invention disclosed herein is a Vertical Double-Diffused Metal Oxide Semiconductor (VDMOS) device incorporating a reverse diode. This device includes a plurality of source regions isolated from a drain region. A source region in close proximity to the drain region is a first diffusion structure in which a heavily doped diffusion layer of a second conductivity type is formed in a body region of a second conductivity type. Another source region is a second diffusion structure in which a heavily doped diffusion layer of a first conductivity type and a heavily doped diffusion layer of the second conductivity type are formed in the body region of the second conductivity type. An impurity diffusion structure of the source region in close proximity to the drain region is changed to be operated as a diode, thereby forming a strong current path to ESD (Electro-Static Discharge) or EOS (Electrical Over Stress). As a result, it is possible to prevent the device from being broken down.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: August 26, 2008
    Assignee: Samsung Electronics, Co., Ltd.
    Inventors: Sung-Pil Jang, Han-Gu Kim, Chan-Hee Jeon