Vertical Charge Transfer Patents (Class 257/242)
-
Patent number: 10439075Abstract: A semiconductor device structure includes a region of semiconductor material having an active region and a termination region. An active structure is disposed in the active region and a termination structure is disposed in the termination region. In one embodiment, the termination structure includes a termination trench and a conductive structure within the termination trench and electrically isolated from the region of semiconductor material by a dielectric structure. A dielectric layer is disposed to overlap the termination trench to provide the termination structure as a floating structure. A Schottky contact region is disposed within the active region. A conductive layer is electrically connected to the Schottky contact region and the first conductive layer extends onto a surface of the dielectric layer and laterally overlaps at least a portion of the termination trench.Type: GrantFiled: June 27, 2018Date of Patent: October 8, 2019Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLCInventors: Mohammed Tanvir Quddus, Mihir Mudholkar
-
Patent number: 9029940Abstract: A tunneling field-effect transistor (TFET) device is disclosed. The TFET device includes a source contact on the source region, a plurality of gate contacts at a planar portion of a gate stack and a plurality of drain contacts disposed on a drain region. The source contact of the TFET device aligns with other two adjacent source contacts of other two TFET devices such that each source contact locates in one of three angles of an equilateral triangle.Type: GrantFiled: February 21, 2013Date of Patent: May 12, 2015Assignee: Taiwan Semiconductor Manufacturing company, Ltd.Inventors: Harry-Hak-Lay Chuang, Cheng-Cheng Kuo, Ming Zhu
-
Patent number: 9012961Abstract: The disclosure relates to a method of manufacturing vertical gate transistors in a semiconductor substrate, comprising implanting, in the depth of the substrate, a doped isolation layer, to form a source region of the transistors; forming, in the substrate, parallel trench isolations and second trenches perpendicular to the trench isolations, reaching the isolation layer, and isolated from the substrate by a first dielectric layer; depositing a first conductive layer on the surface of the substrate and in the second trenches; etching the first conductive layer to form the vertical gates of the transistors, and vertical gate connection pads between the extremity of the vertical gates and an edge of the substrate, while keeping a continuity zone in the first conductive layer between each connection pad and a vertical gate; and implanting doped regions on each side of the second trenches, to form drain regions of the transistors.Type: GrantFiled: January 6, 2014Date of Patent: April 21, 2015Assignee: STMicroelectronics (Rousset) SASInventors: Francesco La Rosa, Stephan Niel, Arnaud Regnier, Hélène Dalle-Houilliez
-
Patent number: 8969949Abstract: The present disclosure provides one embodiment of a SRAM cell that includes first and second inverters cross-coupled for data storage, each inverter including at least one pull-up device and at least one pull-down devices; and at least two pass-gate devices configured with the two cross-coupled inverters. The pull-up devices, the pull-down devices and the pass-gate devices include a tunnel field effect transistor (TFET) that further includes a semiconductor mesa formed on a semiconductor substrate and having a bottom portion, a middle portion and a top portion; a drain of a first conductivity type formed in the bottom portion and extended into the semiconductor substrate; a source of a second conductivity type formed in the top portion, the second conductivity type being opposite to the first conductivity type; a channel in a middle portion and interposed between the source and drain; and a gate formed on sidewall of the semiconductor mesa and contacting the channel.Type: GrantFiled: March 10, 2013Date of Patent: March 3, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Bao-Ru Young, Wei Cheng Wu, Yi-Ren Chen, Ming Zhu
-
Patent number: 8957471Abstract: According to one embodiment, a semiconductor memory device includes a substrate, a stacked body, a conductive member, a semiconductor pillar, and a charge storage layer. The stacked body is provided above the substrate. The stacked body includes a plurality of insulating films stacked alternately with a plurality of electrode films. A plurality of terraces are formed in a stairstep configuration along only a first direction in an end portion of the stacked body on the first-direction side. The first direction is parallel to an upper face of the substrate. The plurality of terraces are configured with upper faces of the electrode films respectively. The conductive member is electrically connected to the terrace to connect electrically the electrode film to the substrate by leading out the electrode film in a second direction parallel to the upper face of the substrate and orthogonal to the first direction.Type: GrantFiled: March 18, 2011Date of Patent: February 17, 2015Assignee: Kabushiki Kaisha ToshibaInventor: Yoshiaki Fukuzumi
-
Patent number: 8927347Abstract: A semiconductor device includes: an n?-type base layer; a p-type base layer formed in a part of a front surface portion of the n?-type base layer; an n+-type source layer formed in a part of a front surface portion of the p-type base layer; a gate insulating film formed on the front surface of the p-type base layer between the n+-type source layer and the n?-type base layer; a gate electrode that faces the p-type base layer through the gate insulating film; a p-type column layer formed continuously from the p-type base layer in the n?-type base layer; a p+-type collector layer formed in a part of a rear surface portion of the n?-type base layer; a source electrode electrically connected to the n+-type source layer; and a drain electrode electrically connected to the n?-type base layer and to the p+-type collector layer.Type: GrantFiled: May 20, 2014Date of Patent: January 6, 2015Assignee: Rohm Co., Ltd.Inventors: Toshio Nakajima, Syoji Higashida
-
Patent number: 8921899Abstract: A semiconductor device is provided that includes a fin having a first gate and a second gate formed on a first sidewall of the fin in a first trench, wherein the first gate is formed above the second gate. The device includes a third gate and a fourth gate formed on a second sidewall of the fin in a second trench, wherein the third gate is formed above the fourth gate. Methods of manufacturing and operating the device are also included. A method of operation may include biasing the first gate and the fourth gate to create a current path across the fin.Type: GrantFiled: November 19, 2010Date of Patent: December 30, 2014Assignee: Micron Technology, Inc.Inventors: Werner Juengling, Howard C. Kirsch
-
Patent number: 8895370Abstract: A vertical conduction power device includes respective gate, source and drain areas formed in an epitaxial layer on a semiconductor substrate. The respective gate, source and drain metallizations are formed by a first metallization level. The gate, source and drain terminals are formed by a second metallization level. The device is configured as a set of modular areas extending parallel to each other. Each modular area has a rectangular elongate source area perimetrically surrounded by a gate area, and a drain area defined by first and second regions. The first regions of the drain extend parallel to one another and separate adjacent modular areas. The second regions of the drain area extend parallel to one another and contact ends of the first regions of the drain area.Type: GrantFiled: September 30, 2013Date of Patent: November 25, 2014Assignee: STMicroelectronics S.R.L.Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magri′
-
Patent number: 8878255Abstract: In various embodiments, image sensors incorporate multiple output structures by including multiple sub-arrays, at least one of which includes a region of active pixels, a dark pixel region that is fanned and/or slanted, a dark pixel region that is unfanned and unslanted, a horizontal CCD, and an output structure for conversion of charge to voltage.Type: GrantFiled: January 7, 2013Date of Patent: November 4, 2014Assignee: Semiconductor Components Industries, LLCInventor: Shen Wang
-
Patent number: 8878256Abstract: In various embodiments, image sensors incorporate multiple output structures by including multiple sub-arrays, at least one of which includes a region of active pixels, a dark pixel region that is fanned and/or slanted, a dark pixel region that is unfanned and unslanted, a horizontal CCD, and an output structure for conversion of charge to voltage.Type: GrantFiled: January 7, 2013Date of Patent: November 4, 2014Assignee: Semiconductor Components Industries, LLCInventor: Shen Wang
-
Patent number: 8872264Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.Type: GrantFiled: June 13, 2013Date of Patent: October 28, 2014Assignee: Infineon Technologies Austria AGInventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
-
Patent number: 8791510Abstract: A semiconductor device includes a gate structure on a semiconductor substrate, an impurity region at a side of the gate structure and the impurity region is within the semiconductor substrate, an interlayer insulating layer covering the gate structure and the impurity region, a contact structure extending through the interlayer insulating layer and connected to the impurity region, and an insulating region. The contact structure includes a first contact structure that has a side surface surrounded by the interlayer insulating layer and a second contact structure that has a side surface surrounded by the impurity region. The insulating region is under the second contact structure.Type: GrantFiled: June 5, 2012Date of Patent: July 29, 2014Assignee: Samsung Electronics Co., Ltd.Inventor: Young-Kyu Lee
-
Publication number: 20140191291Abstract: The disclosure relates to a method of manufacturing vertical gate transistors in a semiconductor substrate, comprising implanting, in the depth of the substrate, a doped isolation layer, to form a source region of the transistors; forming, in the substrate, parallel trench isolations and second trenches perpendicular to the trench isolations, reaching the isolation layer, and isolated from the substrate by a first dielectric layer; depositing a first conductive layer on the surface of the substrate and in the second trenches; etching the first conductive layer to form the vertical gates of the transistors, and vertical gate connection pads between the extremity of the vertical gates and an edge of the substrate, while keeping a continuity zone in the first conductive layer between each connection pad and a vertical gate; and implanting doped regions on each side of the second trenches, to form drain regions of the transistors.Type: ApplicationFiled: January 6, 2014Publication date: July 10, 2014Inventors: Francesco La Rosa, Stephan Niel, Arnaud Regnier, Hélène Dalle-Houilliez
-
Patent number: 8766325Abstract: A semiconductor device includes: an n?-type base layer; a p-type base layer formed in a part of a front surface portion of the n?-type base layer; an n+-type source layer formed in a part of a front surface portion of the p-type base layer; a gate insulating film formed on the front surface of the p-type base layer between the n+-type source layer and the n?-type base layer; a gate electrode that faces the p-type base layer through the gate insulating film; a p-type column layer formed continuously from the p-type base layer in the n?-type base layer; a p+-type collector layer formed in a part of a rear surface portion of the n?-type base layer; a source electrode electrically connected to the n+-type source layer; and a drain electrode electrically connected to the n?-type base layer and to the p+-type collector layer.Type: GrantFiled: January 25, 2013Date of Patent: July 1, 2014Assignee: Rohm Co., Ltd.Inventors: Toshio Nakajima, Syoji Higashida
-
Patent number: 8766317Abstract: Provided is a semiconductor device in which on-resistance is largely reduced based on a new principle of operation. In the semiconductor device, if an embedded electrode is at negative potential, a depletion layer is formed from a trench to a neighboring trench so that a channel is turned off. If the embedded electrode is at a positive potential, the depletion layer is not formed in every region between the neighboring trenches so that the channel is turned on.Type: GrantFiled: June 17, 2008Date of Patent: July 1, 2014Assignee: Rohm Co., Ltd.Inventor: Masaru Takaishi
-
Patent number: 8754470Abstract: A tunneling field-effect transistor (TFET) device is disclosed. A frustoconical protrusion structure is disposed over the substrate and protrudes out of the plane of substrate. Isolation features are formed on the substrate. A drain region is disposed over the substrate adjacent to the frustoconical protrusion structure and extends to a bottom portion of the frustoconical protrusion structure as a raised drain region. A source region is formed as a top portion of the frustoconical protrusion structure. A series connection and a parallel connection are made among TFET devices units.Type: GrantFiled: January 18, 2013Date of Patent: June 17, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Harry-Hak-Lay Chuang, Cheng-Cheng Kuo, Ming Zhu
-
Patent number: 8749686Abstract: In various embodiments, image sensors include photosensitive pixels, associated vertical CCDs, sense nodes each accepting charge from one or more of the vertical CCDs, and readout circuitry accepting signals from the sense nodes.Type: GrantFiled: April 27, 2012Date of Patent: June 10, 2014Assignee: Truesense Imaging, Inc.Inventor: Edward T. Nelson
-
Patent number: 8710548Abstract: A semiconductor device includes a first semiconductor layer which is formed above a substrate, a Schottky electrode and an ohmic electrode which are formed on the first semiconductor layer to be spaced from each other and a second semiconductor layer which is formed to cover the first semiconductor layer with the Schottky electrode and the ohmic electrode exposed. The second semiconductor layer has a larger band gap than that of the first semiconductor layer.Type: GrantFiled: June 7, 2010Date of Patent: April 29, 2014Assignee: Panasonic CorporationInventors: Manabu Yanagihara, Kazushi Nakazawa, Tsuyoshi Tanaka
-
Patent number: 8679903Abstract: A method is provided for fabricating a vertical insulated gate transistor. A horizontal isolation region is formed in a substrate to separate and electrically isolate upper and lower portions of the substrate. A vertical semiconductor pillar with one or more flanks and a cavity is formed so as to rest on the upper portion, and a dielectrically isolated gate is formed so as to include an internal portion within the cavity and an external portion resting on the flanks and on the upper portion. One or more internal walls of the cavity are coated with an isolating layer and the cavity is filled with a gate material so as to form the internal portion of the gate within the cavity and the external portion of the gate that rests on the flanks, and to form two connecting semiconductor regions extending between source and drain regions of the transistor.Type: GrantFiled: July 27, 2007Date of Patent: March 25, 2014Assignee: STMicroelectronics, Inc.Inventor: Richard A. Blanchard
-
Patent number: 8624332Abstract: A vertical conduction electronic power device includes respective gate, source and drain areas in an epitaxial layer arranged on a semiconductor substrate. The respective gate, source and drain metallizations may be formed by a first metallization level. Corresponding gate, source and drain terminals or pads may be formed by a second metallization level. The power device is configured as a set of modular areas extending parallel to each other, each having a rectangular elongate source area perimetrically surrounded by a narrow gate area. The modular areas are separated from each other by regions with the drain area extending parallel and connected at the opposite ends thereof to a second closed region with the drain area forming a device outer peripheral edge.Type: GrantFiled: September 26, 2005Date of Patent: January 7, 2014Assignee: STMicroelectronics S.R.L.Inventors: Ferruccio Frisina, Giuseppe Ferla, Angelo Magrì
-
Patent number: 8552472Abstract: An integrated circuit device includes a plurality of pillars protruding from a substrate in a first direction. Each of the pillars includes source/drain regions in opposite ends thereof and a channel region extending between the source/drain regions. A plurality of conductive bit lines extends on the substrate adjacent the pillars in a second direction substantially perpendicular to the first direction. A plurality of conductive shield lines extends on the substrate in the second direction such that each of the shield lines extends between adjacent ones of the bit lines. Related fabrication methods are also discussed.Type: GrantFiled: June 8, 2011Date of Patent: October 8, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Hui-jung Kim, Yong-chul Oh, Yoo-sang Hwang, Hyun-woo Chung
-
Patent number: 8531226Abstract: In one general aspect, an apparatus can include a polarity insensitive input coupled to a gate of a metal-oxide-semiconductor field effect transistor (MOSFET) device. The MOSFET device can have a gate dielectric rating greater than twenty-five volts. The apparatus can also include a fixed polarity output coupled to a source of the MOSFET device.Type: GrantFiled: October 11, 2011Date of Patent: September 10, 2013Assignee: Fairchild Semiconductor CorporationInventors: Joseph D. Montalbo, Steven Sapp
-
Patent number: 8530884Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.Type: GrantFiled: June 15, 2011Date of Patent: September 10, 2013Assignee: Intel CorporationInventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin
-
Patent number: 8482062Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.Type: GrantFiled: September 11, 2012Date of Patent: July 9, 2013Assignee: Infineon Technologies Austria AGInventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
-
Patent number: 8436419Abstract: A semiconductor device includes a high-breakdown-voltage transistor having a semiconductor layer. The semiconductor layer has an element portion and a wiring portion. The element portion has a first wiring on a front side of the semiconductor layer and a backside electrode on a back side of the semiconductor layer. The element portion is configured as a vertical transistor that causes an electric current to flow in a thickness direction of the semiconductor layer between the first wiring and the backside electrode. The backside electrode is elongated to the wiring portion. The wiring portion has a second wiring on the front side of the semiconductor layer. The wiring portion and the backside electrode provide a pulling wire that allows the electric current to flow to the second wiring.Type: GrantFiled: November 8, 2011Date of Patent: May 7, 2013Assignee: DENSO CORPORATIONInventors: Akira Yamada, Nozomu Akagi
-
Patent number: 8421147Abstract: A MOS transistor having an increased gate-drain capacitance is described. One embodiment provides a drift zone of a first conduction type. At least one transistor cell has a body zone, a source zone separated from the drift zone by the body zone, and a gate electrode, which is arranged adjacent to the body zone and which is dielectrically insulated from the body zone by a gate dielectric. At least one compensation zone of the first conduction type is arranged in the drift zone. At least one feedback electrode is arranged at a distance from the body zone, which is dielectrically insulated from the drift zone by a feedback dielectric and which is electrically conductively connected to the gate electrode.Type: GrantFiled: December 22, 2010Date of Patent: April 16, 2013Assignee: Infineon Technologies Austria AGInventors: Armin Willmeroth, Michael Treu
-
Patent number: 8378417Abstract: A semiconductor device includes a semiconductor substrate; a well of a first conductivity type in the semiconductor substrate; a first element; and a first vertical transistor. The first element supplies potential to the well, the first element being in the well. The first element may include, but is not limited to, a first pillar body of the first conductivity type. The first pillar body has an upper portion that includes a first diffusion layer of the first conductivity type. The first diffusion layer is greater in impurity concentration than the well. The first vertical transistor is in the well. The first vertical transistor may include a second pillar body of the first conductivity type. The second pillar body has an upper portion that includes a second diffusion layer of a second conductivity type.Type: GrantFiled: March 31, 2010Date of Patent: February 19, 2013Assignee: Elpida Memory, Inc.Inventors: Kazuo Ogawa, Yoshihiro Takaishi
-
Patent number: 8310003Abstract: A charge accumulation region of a first conductivity type is buried in a semiconductor substrate. A charge transfer destination diffusion layer of the first conductivity type is formed on a surface of the semiconductor substrate. A transfer gate electrode is formed on the charge accumulation region, and charge is transferred from the charge accumulation region to the charge transfer destination diffusion layer.Type: GrantFiled: July 27, 2009Date of Patent: November 13, 2012Assignee: Kabushiki Kaisha ToshibaInventor: Yusuke Kohyama
-
Patent number: 8264033Abstract: A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.Type: GrantFiled: July 21, 2009Date of Patent: September 11, 2012Assignee: Infineon Technologies Austria AGInventors: Frank Pfirsch, Maria Cotorogea, Franz Hirler, Franz-Josef Niedernostheide, Thomas Raker, Hans-Joachim Schulze, Hans Peter Felsl
-
Patent number: 8247847Abstract: A solid-state imaging device including a first transfer electrode portion and a second transfer electrode portion having a pattern area ratio higher than that of the first transfer electrode portion. The first transfer electrode portion includes a plurality of first transfer electrodes having a single-layer structure of metal material. The second transfer electrode portion includes a plurality of second transfer electrodes having a single-layer structure of polycrystalline silicon or amorphous silicon.Type: GrantFiled: November 4, 2009Date of Patent: August 21, 2012Assignee: Sony CorporationInventors: Kaori Takimoto, Masayuki Okada, Takeshi Takeda
-
Patent number: 7956387Abstract: A transistor, which is formed in a semiconductor substrate having a top surface, includes first and second source/drain regions, a channel connecting the first and second source/drain regions, and a gate electrode for controlling an electrical current flowing in the channel. The gate electrode is disposed in a lower portion of a gate groove defined in the top surface of the semiconductor substrate. The upper portion of the groove is filled with an insulating material. The channel includes a fin-like portion in the shape of a ridge having a top side and two lateral sides in a cross-section perpendicular to a direction defined by a line connecting the first and second source/drain regions. The gate electrode encloses the channel at the top side and the two lateral sides thereof.Type: GrantFiled: September 8, 2006Date of Patent: June 7, 2011Assignee: Qimonda AGInventor: Till Schloesser
-
Patent number: 7923717Abstract: A switching device has an S (Superconductor)-N (Normal Metal)-S superlattice to control the stream of electrons without any dielectric materials. Each layer of said Superconductor has own terminal. The superlattice spacing is selected based on “Dimensional Crossover Effect”. This device can operate at a high frequency without such energy losses as devices breaking the superconducting state. The limit of the operation frequency in the case of the Nb/Cu superlattice is expected to be in the order of 1018 Hz concerning plasmon loss energy of the normal metals (Cu; in the order of 103 eV).Type: GrantFiled: December 28, 2007Date of Patent: April 12, 2011Inventor: Katsuyuki Tsukui
-
Patent number: 7920198Abstract: A method of transferring charge from a photosensitive array using a plurality of vertical shift registers, each having a plurality of vertical elements including first and last vertical element is disclosed The vertical shift registers are capable of transferring charge in a first direction from the first to the last vertical element The method also includes using at least one horizontal shift register having a plurality of horizontal elements. Each of the horizontal elements is arranged to receive charge transferred from the last vertical element of a respective one of the plurality of vertical shift registers, and shift the charge in a horizontal direction. The method includes operating the horizontal shift register during a plurality of horizontal operating intervals and operating the plurality of vertical shift registers during at least a portion of the plurality of horizontal operating intervals.Type: GrantFiled: August 1, 2008Date of Patent: April 5, 2011Assignee: Analog Devices, Inc.Inventors: David P. Foley, Eitake Ibaragi
-
Patent number: 7888712Abstract: A semiconductor device includes a first conductive type SiC semiconductor substrate; a second conductive type well formed on the SiC semiconductor substrate; a first impurity diffusion layer formed by introducing a first conductive type impurity so as to be partly overlapped with the well in a region surrounding the well; a second impurity diffusion layer formed by introducing the first conductive type impurity in a region spaced apart for a predetermined distance from the impurity diffusion layer in the well; and a gate electrode opposed to a channel region between the first and the second impurity diffusion layers with gate insulating film sandwiched therebetween.Type: GrantFiled: April 18, 2006Date of Patent: February 15, 2011Assignee: Rohm Co., Ltd.Inventor: Mineo Miura
-
Patent number: 7858481Abstract: A method of fabricating a MOS transistor having a thinned channel region is described. The channel region is etched following removal of a dummy gate. The source and drain regions have relatively low resistance with the process.Type: GrantFiled: June 15, 2005Date of Patent: December 28, 2010Assignee: Intel CorporationInventors: Justin K. Brask, Robert S. Chau, Suman Datta, Mark L. Doczy, Brian S. Doyle, Jack T. Kavalieros, Amlan Majumdar, Matthew V. Metz, Marko Radosavljevic
-
Patent number: 7732843Abstract: Forming an impurity region 6 and an impurity region 5 having a lower concentration than the impurity region 6 in a lower layer region of a gate electrode close to the boundary with a signal electron-voltage conversion section of a horizontal CCD outlet makes it possible to smooth a potential distribution at the time of transfer, improve the transfer efficiency, increase the number of saturated electrons and reduce variations in the transfer efficiency and variations in saturation.Type: GrantFiled: August 4, 2008Date of Patent: June 8, 2010Assignee: Panasonic CorporationInventor: Keishi Tachikawa
-
Patent number: 7704836Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.Type: GrantFiled: March 31, 2008Date of Patent: April 27, 2010Assignee: Siliconix incorporatedInventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
-
Patent number: 7648878Abstract: A pad oxide layer is formed on a substrate. A pad nitride layer is formed on the pad oxide layer. The pad nitride layer and the pad oxide layer are patterned. Predetermined portions of the substrate are etched using the pad nitride layer as an etch barrier to thereby form trenches used as device isolation regions. The trenches are filled with an insulation layer to thereby form device isolation regions. The pad nitride layer is removed. Recesses are formed by etching predetermined portions of the pad oxide layer and the substrate. The pad oxide layer is removed. A gate oxide layer is formed on the recesses and on the substrate. Gate structures of which bottom portions are buried in the recesses on the gate oxide layer are formed.Type: GrantFiled: December 20, 2005Date of Patent: January 19, 2010Assignee: Hynix Semiconductor Inc.Inventor: Tae-Woo Jung
-
Patent number: 7586130Abstract: A vertical field effect transistor includes: an active region with a bundle of linear structures functioning as a channel region; a lower electrode, functioning as one of source and drain regions; an upper electrode, functioning as the other of the source and drain regions; a gate electrode for controlling the electric conductivity of at least a portion of the bundle of linear structures included in the active region; and a gate insulating film arranged between the active region and the gate electrode to electrically isolate the gate electrode from the bundle of linear structures. The transistor further includes a dielectric portion between the upper and lower electrodes. The upper electrode is located over the lower electrode with the dielectric portion interposed and includes an overhanging portion sticking out laterally from over the dielectric portion. The active region is located right under the overhanging portion of the upper electrode.Type: GrantFiled: February 1, 2006Date of Patent: September 8, 2009Assignee: Panasonic CorporationInventors: Takahiro Kawashima, Tohru Saitoh, Takeshi Takagi
-
Patent number: 7557390Abstract: A solid image capturing element comprising a plurality of vertical shift registers arranged to each correspond to a column of a plurality of light receiving pixels in a matrix arrangement, a horizontal shift register provided on an output side of the plurality of vertical shift registers, and an output section provided on an output side of the horizontal shift register. In this solid image capturing element, a reverse conductive semiconductor region is formed over one major surface of one conductive semiconductor substrate, the plurality of light receiving pixels, the plurality of vertical shift registers, the horizontal shift register, and the output section are formed in the semiconductor region, and a portion of the semiconductor region where the output section is formed has a higher dopant concentration than the portion of the semiconductor region where the horizontal shift register is formed.Type: GrantFiled: October 17, 2003Date of Patent: July 7, 2009Assignee: Sanyo Electric co., Ltd.Inventors: Yoshihiro Okada, Yuzo Otsuru
-
Patent number: 7538366Abstract: A nitride semiconductor device includes: a conductive substrate; a first semiconductor layer provided on the substrate; a second semiconductor layer provided on the first semiconductor layer; a third semiconductor layer on the second semiconductor layer; a first main electrode connected to the third semiconductor layer; a second main electrode connected to the third semiconductor layer; and a control electrode provided on the third semiconductor layer. The first semiconductor layer is made of AlXGa1?XN (0?X?1) of a first conductivity type. The second semiconductor layer is made of a first nitride semiconductor. The third semiconductor layer is made of a second nitride semiconductor which is undoped or of n-type and has a wider bandgap than the first nitride semiconductor.Type: GrantFiled: April 25, 2007Date of Patent: May 26, 2009Assignee: Kabushiki Kaisha ToshibaInventors: Wataru Saito, Akira Yoshioka, Hidetoshi Fujimoto, Yasunobu Saito, Takao Noda, Tomohiro Nitta, Yorito Kakiuchi
-
Patent number: 7510955Abstract: A multi-fin field effect transistor includes a substrate, an oxide layer, a conductive layer, a gate oxide layer, and a doped region is provided. The substrate is surrounded by a trench, and there are at least two fin-type silicon layers formed in the substrate in a region prepared to form a gate thereon. The oxide layer is disposed in the trench and the top surface of the oxide layer is lower than that of the fin-type silicon layers. The conductive layer is disposed in the region prepared to form a gate. The top surface of the conductive layer is higher than that of the fin-type silicon layers. The gate oxide layer is disposed between the conductive layer and the fin-type silicon layers and disposed between the conductive layer and the substrate. The doped region is disposed in the substrate on both sides of the conductive layer.Type: GrantFiled: August 2, 2006Date of Patent: March 31, 2009Assignee: ProMOS Technologies Inc.Inventor: Hsiao-Che Wu
-
Patent number: 7479669Abstract: Transistors and/or methods of fabricating transistors that include a source contact, drain contact and gate contact are provided. In some embodiments, a channel region is provided between the source and drain contacts and at least a portion of the channel regions includes a hybrid layer comprising semiconductor material. In particular embodiments of the present invention, the transistor is a current aperture transistor. The channel region may include pendeo-epitaxial layers or epitaxial laterally overgrown layers. Transistors and methods of fabricating current aperture transistors that include a trench that extends through the channel and barrier layers and includes semiconductor material therein are also provided.Type: GrantFiled: October 12, 2007Date of Patent: January 20, 2009Assignee: Cree, Inc.Inventor: Adam William Saxler
-
Patent number: 7459744Abstract: A programmable storage device includes a first diffusion region underlying a portion of a first trench defined in a semiconductor substrate and a second diffusion region occupying an upper portion of the substrate adjacent to the first trench. The device includes a charge storage stack lining sidewalls and a portion of a floor of the first trench. The charge storage stack includes a layer of discontinuous storage elements (DSEs). Electrically conductive spacers formed on opposing sidewalls of the first trench adjacent to respective charge storage stacks serve as control gates for the device. The DSEs may be silicon, polysilicon, metal, silicon nitride, or metal nitride nanocrystals or nanoclusters. The storage stack includes a top dielectric of CVD silicon oxide overlying the nanocrystals overlying a bottom dielectric of thermally formed silicon dioxide. The device includes first and second injection regions in the layer of DSEs proximal to the first and second diffusion regions.Type: GrantFiled: September 22, 2006Date of Patent: December 2, 2008Assignee: Freescale Semiconductor, Inc.Inventors: Cheong M. Hong, Chi-Nan Li
-
Patent number: 7425735Abstract: A phase-changeable memory device includes a phase-changeable material pattern and first and second electrodes electrically connected to the phase-changeable material pattern. The first and second electrodes are configured to provide an electrical signal to the phase-changeable material pattern. The phase-changeable material pattern includes a first phase-changeable material layer and a second phase-changeable material layer. The first and second phase-changeable material patterns have different chemical, physical, and/or electrical characteristics. For example, the second phase-changeable material layer may have a greater resistivity than the first phase-changeable material layer. For instance, the first phase-changeable material layer may include nitrogen at a first concentration, and the second phase-changeable material layer may include nitrogen at a second concentration that is greater than the first concentration. Related devices and fabrication methods are also discussed.Type: GrantFiled: January 26, 2007Date of Patent: September 16, 2008Assignee: Samsung Electronics Co., Ltd.Inventors: Jeong-Hee Park, Ju-Chul Park, Jun-Soo Bae, Bong-Jin Kuh, Yong-Ho Ha
-
Patent number: 7420235Abstract: In the solid-state imaging device of the present invention having a photoelectric conversion section and a charge transfer section equipped with a charge transfer electrode for transferring an electric charge generated in the photoelectric conversion section, the charge transfer electrode has an alternate arrangement of a first layer electrode including a first layer electrically conducting film and a second layer electrode including a second layer electrically conducting film, which are formed on a gate oxide film including a laminate film consisting of a silicon oxide film and a metal oxide thin film, and the first layer electrode and the second layer electrode are separated by insulation with an interelectrode insulating film including a sidewall insulating film formed by a CVD process to cover the lateral wall of the first layer electrode.Type: GrantFiled: August 7, 2006Date of Patent: September 2, 2008Assignee: Fujifilm CorporationInventor: Maki Saito
-
Patent number: 7314765Abstract: A switching device has an S (Superconductor)-N (Normal Metal)-S superlattice to control the stream of electrons without any dielectric materials. Each layer of said Superconductor has own terminal. The superlattice spacing is selected based on “Dimensional Crossover Effect”. This device can operate at a high frequency without such energy losses as devices breaking the superconducting state. The limit of the operation frequency in the case of the Nb/Cu superlattice is expected to be in the order of 1018 Hz concerning plasmon loss energy of the normal metals (Cu; in the order of 103 eV).Type: GrantFiled: October 26, 2005Date of Patent: January 1, 2008Inventor: Katsuyuki Tsukui
-
Patent number: 7276772Abstract: A semiconductor device, including: a semiconductor substrate of a first conduction type; an active region used as a function-element-forming region on the semiconductor substrate; a low-resistance region of a second conduction type formed on an outermost periphery of the active region to surround the active region and having contact with the semiconductor substrate, the second conduction type being different from the first conduction type; and an electrode connected to the function element and the low-resistance region. A diode is formed by the semiconductor substrate and the low-resistance region. The function element and the diode are electrically connected in parallel between the semiconductor substrate and the electrode, and, between the semiconductor substrate and the electrode, resistance of the low-resistance region is lower than resistance of an electrical conduction path via the function element.Type: GrantFiled: March 5, 2007Date of Patent: October 2, 2007Assignee: Rohm Co., Ltd.Inventor: Kenichi Yoshimochi
-
Patent number: 7242058Abstract: A semiconductor device has a semiconductor substrate and a trench region having at least one trench disposed on a surface of the semiconductor substrate and having a trench length, a trench width and a trench depth. A well region is disposed in the substrate and surrounds the trench region. A source region and a drain region are disposed above the well region and around respective inner walls of the trench. The source region and the drain region are disposed in confronting relation relative one another and have a conductivity type different from a conductivity type of the well region. A gate insulating film is disposed on the surface of the semiconductor substrate and on an inner base and the inner walls of the trench. A gate electrode is disposed on the gate insulating film. A length of the gate electrode is shorter than the trench length and equal to a distance between the source region and the drain region.Type: GrantFiled: June 17, 2005Date of Patent: July 10, 2007Assignee: Seiko Instruments Inc.Inventor: Tomomitsu Risaki
-
Patent number: 7205628Abstract: A semiconductor device, including: a semiconductor substrate of a first conduction type; an active region used as a function-element-forming region on the semiconductor substrate; a low-resistance region of a second conduction type formed on an outermost periphery of the active region to surround the active region and having contact with the semiconductor substrate, the second conduction type being different from the first conduction type; and an electrode connected to the function element and the low-resistance region. A diode is formed by the semiconductor substrate and the low-resistance region. The function element and the diode are electrically connected in parallel between the semiconductor substrate and the electrode, and, between the semiconductor substrate and the electrode, resistance of the low-resistance region is lower than resistance of an electrical conduction path via the function element.Type: GrantFiled: December 2, 2004Date of Patent: April 17, 2007Assignee: Rohm Co., Ltd.Inventor: Kenichi Yoshimochi