Charge Transfer Device Patents (Class 257/215)
  • Patent number: 10348954
    Abstract: An image acquisition device reciprocates a focal position of an objective lens with respect to a sample in the optical axis direction of the objective lens, while moving a field position of the objective lens with respect to the sample. This makes it possible to acquire contrast information of image data at the field position of the objective lens sequentially as the field position moves with respect to the sample. The image acquisition device acquires the image data by the rolling readout of the image pickup element according to the reciprocation of the focal position of the objective lens.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: July 9, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumio Iwase, Masatoshi Okugawa
  • Patent number: 10330910
    Abstract: In an image acquisition device, an optical path difference generating member can form an optical path length difference of a second optical image without splitting light in a second optical path. This can suppress the quantity of light required for the second optical path to obtain information of the focal position, whereby a quantity of light can be secured for a first imaging device to capture an image. The image acquisition device synchronizes the movement of a predetermined part of a sample within a field of an objective lens with rolling readout such that each pixel column of a second imaging device is exposed to an optical image of the predetermined part in the sample.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: June 25, 2019
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumio Iwase, Masatoshi Okugawa
  • Patent number: 10299664
    Abstract: The solid-state imaging device includes a semiconductor layer, an electrode, a wiring layer, a plurality of filters, an input terminal, and a voltage generation circuit. The voltage generation circuit generates a first voltage and a second voltage. The plurality of filters include a first filter and a second filter. The light transmittance of the first filter has a peak in a wavelength range corresponding to blue. The light transmittance of the second filter has a peak at a wavelength of 450 nm or more, and in the second filter, the transmittance of light having a wavelength of 450 nm or less is greater than the minimum value of the transmission of light having a wavelength longer than 450 nm. The first voltage and the second voltage are selectively applied to the electrode.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: May 28, 2019
    Assignee: OLYMPUS CORPORATION
    Inventor: Jun Aoki
  • Patent number: 10277840
    Abstract: A method of binning charges in a charge coupled device (CCD) image sensor is described. The frequency at which an HCCD in the CCD image sensor is clocked may be a multiple of the frequency at which a summing element coupled to the end of the HCCD is clocked, such that charges may be binned at a gate within the HCCD or at the summing element before being read out. The clock signal for the summing element may have a 50% duty cycle in order to provide additional time for charge to flow across an output gate to a floating diffusion node in an output stage of the CCD image sensor. For cases where the HCCD clock frequency is more than twice the summing element clock frequency, charges may be binned at the summing element. Otherwise, charges may be binned at another gate within the HCCD.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: April 30, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventor: Christopher Parks
  • Patent number: 10192842
    Abstract: A sensor package comprises a sensor chip bonded to an intermediate carrier, with the sensor element over an opening in the carrier. The package is for soldering to a board, during which the intermediate carrier protects the sensor part of the sensor chip.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: January 29, 2019
    Assignee: ams International AG
    Inventors: Hendrik Bouman, Roel Daamen, Coenraad Tak
  • Patent number: 10186539
    Abstract: An image sensor assembly having a sensor window positioned in front of an image sensor, having structure and/or characteristics to prevent the formation of condensation on the sensor window. Structure to prevent the formation of condensation includes thin films which can have anti-condensation, anti-reflective, electrically conductive, and/or thermally conductive properties. The sensor window can further have a textured surface to displace water so as to avoid condensation formation on the window surface. The sensor window, and in some embodiments a frame, can be maintained at an elevated temperature proximate to the image sensor during operation to prevent the formation of condensation.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: January 22, 2019
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Evan Thrush, Steve Swihart, Hari Jayamohan
  • Patent number: 10103182
    Abstract: A photoelectric conversion apparatus includes a semiconductor substrate having one principle surface including recessed portions, and insulation bodies in the recessed portions. The semiconductor substrate includes photoelectric conversion elements each of which includes a first semiconductor region of a first conductivity type, a second semiconductor region of a second conductivity type, and a third semiconductor region of the second conductivity type which has at least a portion disposed nearer to the principle surface relative to the second semiconductor region. The second semiconductor region has a polarity of signal charge. The second semiconductor region is in contact with the first and third semiconductor regions. Signal charge paths are disposed between the recessed portions in a cross section perpendicular to the principle surface. At least one of the second and third semiconductor regions is positioned in directions of at least two of the signal charge paths.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: October 16, 2018
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tatsuya Suzuki, Toru Koizumi, Masanori Ogura, Takanori Suzuki, Jun Iba
  • Patent number: 9991297
    Abstract: An imaging device is provided, in which the dynamic range of still pictures can be suppressed from being decreased. In the imaging device, a photodiode including an n-type impurity region and a photodiode including an n-type impurity region are formed in a p-type well. An n-type impurity region is formed between the n-type impurity region on one side and that on the other side so as to contact each of the two. The impurity concentration of the last-formed n-type impurity region is set to be lower than those of the first-formed n-type impurity regions.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: June 5, 2018
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Koji Iizuka, Takahiro Tomimatsu
  • Patent number: 9905597
    Abstract: A sensor package structure includes a substrate, a sensing member, a shielding member, a metallic wire, and an encapsulating compound. The substrate includes a die bonding zone and a wiring zone. The sensing member is mounted on the die bonding zone and includes a sensing zone, a carrying zone arranged around the sensing zone, and a connecting zone arranged outside of the carrying zone. The shielding member includes a translucent covering portion and a supporting portion connected to a peripheral portion of the covering portion. The supporting portion having a coefficient of thermal expansion less than 10 ppm/° C. is fixed on the carrying zone. The metallic wire connects the wiring zone and the connecting zone. The encapsulating compound is disposed on the wiring zone and covers a peripheral side of the sensing member, the connecting zone, and a peripheral side of the shielding member.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: February 27, 2018
    Assignee: KINGPAK TECHNOLOGY INC.
    Inventors: Jo-Wei Yang, Chung-Hsien Hsin, Ming-Hui Chen
  • Patent number: 9837454
    Abstract: Provided is an image sensor having improved performance. An image sensor in accordance with an embodiment of the present invention including a pixel array in which a plurality of pixels are two-dimensionally arranged, wherein each of the plurality of pixels may include: a photoelectric conversion element formed in a substrate; a transfer gate overlapping with a portion of the photoelectric conversion element and formed on the substrate; and a color filter over the photoelectric conversion element, wherein the plurality of pixels include two adjacent pixels which have the same color filter, and wherein one of the two adjacent pixels comprises an incident light control pattern.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: December 5, 2017
    Assignee: SK Hynix Inc.
    Inventor: Yun-Hui Yang
  • Patent number: 9818789
    Abstract: A solid-state imaging device includes a P-well, a gate insulating film, a gate electrode, a P+-type pinning layer that is located in the P-well so as to be outside the gate electrode and start from a first end portion of the gate electrode, a P?-type impurity region that is located in the P-well so as to extend under the gate electrode from a first end portion side and be in contact with the pinning layer, an N?-type impurity region that is in contact with the P?-type impurity region and the gate insulating film, and an N??-type impurity region that surrounds at least a portion of the N?-type impurity region in plan view.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: November 14, 2017
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Kazunobu Kuwazawa, Noriyuki Nakamura, Mitsuo Sekisawa, Takehiro Endo
  • Patent number: 9818790
    Abstract: A solid-state imaging device includes a P-well, a gate insulating film, a gate electrode, a P+-type pinning layer that is located in the P-well so as to be outside the gate electrode and start from a first end portion of the gate electrode, a P?-type impurity region that is located in the P-well so as to extend under the gate electrode from a first end portion side and be in contact with the pinning layer, an N?-type impurity region that is located in the P-well so as to extend under the pinning layer and the P?-type impurity region and be in contact with the P?-type impurity region and the gate insulating film, and an N+-type impurity region that is located in the P-well and includes a portion that is under a second end portion of the gate electrode.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: November 14, 2017
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Kazunobu Kuwazawa, Noriyuki Nakamura, Mitsuo Sekisawa, Takehiro Endo
  • Patent number: 9723232
    Abstract: A solid-state image sensor is provided. The solid-state image sensor includes a substrate. The substrate includes an electrode layer, an insulating layer arranged on the electrode layer, and a semiconductor layer arranged on the insulating layer. The semiconductor layer includes a first semiconductor region of a first conductivity type, a second semiconductor region configured to accumulate charges generated by photoelectric conversion, the second semiconductor region being arranged on the first semiconductor region and having a second conductivity type opposite to the first conductivity type, and a third semiconductor region of the second conductivity type to which the charges accumulated in the second semiconductor region are transferred.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: August 1, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventors: Takashi Moriyama, Kiyofumi Sakaguchi
  • Patent number: 9674951
    Abstract: A method of forming a fine electrode, including: forming a base part on a substrate; disposing a transparent electrode solution at a boundary portion between a circumferential surface of the base part and an upper surface of the substrate; forming a transparent electrode by partially removing the transparent electrode solution; and removing the base part from the substrate.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: June 6, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun Sup Lee, Jung-Hun Noh, Keun Kyu Song, Sang-Hee Jang, Byung Seok Choi
  • Patent number: 9664780
    Abstract: A distance sensor includes: a light receiving area including a first longer side and a second longer side; a photo gate electrode arranged on the light receiving area; a plurality of signal charge collection regions along the first longer side; a plurality of signal charge collection regions along the second longer side; a plurality of transfer electrodes along the first longer side provided with charge transfer signals having mutually-differing phases; a plurality of transfer electrodes along the second longer side provided with the charge transfer signals having mutually-differing phases; and a potential adjusting means positioned between the first and second longer sides and raises potential of an area extending in a direction in which the first and second longer sides extend to be higher than potential of side areas of the first and second longer sides.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: May 30, 2017
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Mitsuhito Mase, Jun Hiramitsu, Takashi Suzuki
  • Patent number: 9608036
    Abstract: A solid-state imaging device includes a pixel having a photoelectric conversion element which generates a charge in response to incident light, a first transfer gate which transfers the charge from the photoelectric conversion element to a charge holding section, and a second transfer gate which transfers the charge from the charge holding section to a floating diffusion. The first transfer gate includes a trench gate structure having at least two trench gate sections embedded in a depth direction of a semiconductor substrate, and the charge holding section includes a semiconductor region positioned between adjacent trench gate sections.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: March 28, 2017
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Takahiro Kawamura
  • Patent number: 9554071
    Abstract: An imaging device that stores charge from a photosensor under at least one storage gate. A driver used to operate the at least one storage gate, senses how much charge was transferred to the storage gate. The sensed charge is used to obtain at least one signature of the image scene. The at least one signature may then be used for processing such as e.g., motion detection, auto-exposure, and auto-white balancing.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: January 24, 2017
    Assignee: Micron Technology, Inc.
    Inventor: Roger Panicacci
  • Patent number: 9478685
    Abstract: Photodetector devices and methods for making the photodetector devices are disclosed herein. In an embodiment, the device may include a substrate; and one or more core structures, each having one or more shell layers disposed at least on a portion of a sidewall of the core structure. Each of the one or more structures extends substantially perpendicularly from the substrate. Each of the one or more core structures and the one or more shell layers form a Schottky barrier junction or a metal-insulator-semiconductor (MiS) junction.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: October 25, 2016
    Assignee: ZENA TECHNOLOGIES, INC.
    Inventors: Young-June Yu, Munib Wober
  • Patent number: 9443896
    Abstract: An imaging device includes a semiconductor substrate; and a unit pixel cell provided to a surface of the semiconductor substrate. The unit pixel cell includes: a photoelectric converter that includes a pixel electrode and a photoelectric conversion layer located on the pixel electrode, the photoelectric converter converting incident light into electric charges; a charge detection transistor that includes a part of the semiconductor substrate and detects the electric charges; and a reset transistor that includes a first gate electrode and initializes a voltage of the photoelectric converter. The pixel electrode is located above the charge detection transistor. The reset transistor is located between the charge detection transistor and the pixel electrode. When viewed from a direction normal to the surface of the semiconductor substrate, the pixel electrode covers an entire portion of the first gate electrode.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: September 13, 2016
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Junji Hirase
  • Patent number: 9362320
    Abstract: Integrated circuit (IC), and method of forming an IC, in which a photodiode having a photodiode output is coupled to a column line. A transfer transistor is coupled to the photodiode and to the column line. A first reset transistor is coupled to the photodiode and to the column line at a first node. The first node is between the transfer transistor and the column line. A second reset transistor is coupled to the photodiode and to the column line at a second node. The second node is between the first node and the column line. A source follower transistor is coupled to the photodiode and to the column line. The source follower transistor is between the second node and the column line. A level shifter is coupled to the photodiode and to the column line. The level shifter is between the first node and the second node.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: June 7, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yuichiro Yamashita, Po-Sheng Chou
  • Patent number: 9356067
    Abstract: Image sensors are provided. The image sensors may include first and second stacked impurity regions having different conductivity types. The image sensors may also include a floating diffusion region in the first impurity region. The image sensors may further include a transfer gate electrode surrounding the floating diffusion region in the first impurity region. Also, the transfer gate electrode and the floating diffusion region may overlap the second impurity region.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: May 31, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jongcheol Shin
  • Patent number: 9349903
    Abstract: An image sensing module includes an image sensing unit, a light transmitting unit, a substrate unit and lens unit. The image sensing unit includes an image sensing element having an image sensing area on the top side of the image sensing element. The light transmitting unit includes a light transmitting element supported above the image sensing element by a plurality of support members. The substrate unit includes a flexible substrate disposed on the image sensing element and electrically connected to the image sensing element through a plurality of electrical conductors, and the flexible substrate has at least one through opening for receiving the light transmitting element. The lens unit includes an opaque holder disposed on the flexible substrate to cover the light transmitting element and a lens assembly connected to the opaque holder and disposed above the light transmitting element.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: May 24, 2016
    Assignee: AZUREWAVE TECHNOLOGIES, INC.
    Inventor: Chi-Hsing Hsu
  • Patent number: 8975667
    Abstract: A solid-state imaging device including, active elements configured to handle the charge captured in a photoreceiving region, an element isolation region configured to isolate regions of the active element, a first impurity region configured to surround the element isolation region, and a second impurity region including an impurity region lower in impurity concentration than the first impurity region, the second impurity region being provided between the first impurity region and active elements.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: March 10, 2015
    Assignee: Sony Corporation
    Inventors: Akiko Honjo, Shinya Yamakawa
  • Patent number: 8952427
    Abstract: A range image sensor capable of improving its aperture ratio and yielding a range image with a favorable S/N ratio is provided. A range image sensor RS has an imaging region constituted by a plurality of one-dimensionally arranged units on a semiconductor substrate 1 and yields a range image according to a charge amount issued from the units.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: February 10, 2015
    Assignee: Hamamatsu Photonics K.K
    Inventors: Takashi Suzuki, Mitsuhito Mase
  • Patent number: 8937341
    Abstract: A charge-coupled unit formed in a semiconductor substrate and including an array of identical electrodes forming rows and columns, wherein: each electrode extends in a cavity with insulated walls formed of a groove, oriented along a row, dug into the substrate thickness, and including, at one of its ends, a protrusion extending towards at least one adjacent row.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: January 20, 2015
    Assignee: STMicrelectronics (Crolles 2) SAS
    Inventor: François Roy
  • Patent number: 8907375
    Abstract: A method of manufacturing a semiconductor device includes the steps of forming a gate electrode of a transistor on an insulator layer on a surface of a semiconductor substrate, forming an isolation region by performing ion implantation of an impurity of a first conductivity type into the semiconductor substrate, forming a lightly doped drain region by performing, after forming a mask pattern including an opening portion narrower than a width of the gate electrode on an upper layer of the gate electrode of the transistor, ion implantation of an impurity of a second conductivity type near the surface of the semiconductor substrate with the mask pattern as a mask, and forming a source region and a drain region of the transistor by performing ion implantation of an impurity of the second conductivity type into the semiconductor substrate after forming the gate electrode of the transistor.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 9, 2014
    Assignee: Sony Corporation
    Inventor: Masashi Yanagita
  • Patent number: 8878255
    Abstract: In various embodiments, image sensors incorporate multiple output structures by including multiple sub-arrays, at least one of which includes a region of active pixels, a dark pixel region that is fanned and/or slanted, a dark pixel region that is unfanned and unslanted, a horizontal CCD, and an output structure for conversion of charge to voltage.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Shen Wang
  • Patent number: 8878264
    Abstract: A global shutter pixel cell includes a serially connected anti-blooming (AB) transistor, storage gate (SG) transistor and transfer (TX) transistor. The serially connected transistors are coupled between a voltage supply and a floating diffusion (FD) region. A terminal of a photodiode (PD) is connected between respective terminals of the AB and the SG transistors; and a terminal of a storage node (SN) diode is connected between respective terminals of the SG and the TX transistors. A portion of the PD region is extended under the SN region, so that the PD region shields the SN region from stray photons. Furthermore, a metallic layer, disposed above the SN region, is extended downwardly toward the SN region, so that the metallic layer shields the SN region from stray photons. Moreover, a top surface of the metallic layer is coated with an anti-reflective layer.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 4, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Sergey Velichko, Jingyi Bai
  • Patent number: 8878256
    Abstract: In various embodiments, image sensors incorporate multiple output structures by including multiple sub-arrays, at least one of which includes a region of active pixels, a dark pixel region that is fanned and/or slanted, a dark pixel region that is unfanned and unslanted, a horizontal CCD, and an output structure for conversion of charge to voltage.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: November 4, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventor: Shen Wang
  • Patent number: 8852987
    Abstract: A method of manufacturing an image pickup device includes a step of forming a filling member such that the filling member covers a light guiding part and a peripheral part provided in a film. The light guiding part is positioned on an image pickup region of the image pickup device and has openings that correspond to respective photoelectric conversion portions. The peripheral part is positioned on a peripheral region of the image pickup device. The filling member fills in the openings. The method includes a step of processing the filling member. The method includes a step of forming light guiding members, which is performed after the step of processing filling member has been performed, by a polishing process performed on the filling member so that the light guiding part is exposed. The light guiding members are part of the filling member and disposed in the openings.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: October 7, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Yusuke Tsukagoshi, Tadashi Sawayama, Akihiro Kawano, Sho Suzuki, Takehito Okabe, Masatsugu Itahashi
  • Patent number: 8816405
    Abstract: An elevated photosensor for image sensors and methods of forming the photosensor. The photosensor may have light sensors having indentation features including, but not limited to, v-shaped, u-shaped, or other shaped features. Light sensors having such an indentation feature can redirect incident light that is not absorbed by one portion of the photosensor to another portion of the photosensor for additional absorption. In addition, the elevated photosensors reduce the size of the pixel cells while reducing leakage, image lag, and barrier problems.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: August 26, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 8772844
    Abstract: Capacitance between a detection capacitor and a reset transistor is the largest among the capacitances between the detection capacitor and transistors placed around the detection capacitor. In order to reduce this capacitance, it is effective to reduce the channel width of the reset transistor. It is possible to reduce the effective channel width by distributing, in the vicinity of the channel of the reset transistor and the boundary line between an active region and an element isolation region, ions which enhance the generation of carriers of an opposite polarity to the channel.
    Type: Grant
    Filed: December 29, 2011
    Date of Patent: July 8, 2014
    Assignee: Wi Lan, Inc.
    Inventors: Motonari Katsuno, Ryouhei Miyagawa, Masayuki Matsunaga
  • Patent number: 8736000
    Abstract: A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: May 27, 2014
    Assignee: Sandia Corporation
    Inventors: Ronald P. Manginell, Matthew W. Moorman, David R. Wheeler
  • Patent number: 8716760
    Abstract: A charge transfer device formed in a semiconductor substrate and including an array of electrodes forming rows and columns, wherein: the electrodes extend, in rows, in successive grooves with insulated walls, disposed in the substrate thickness and parallel to the charge transfer direction.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: May 6, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: François Roy
  • Patent number: 8686477
    Abstract: Pixel array structures to provide a ground contact for a CMOS pixel cell. In an embodiment, an active area of a pixel cell includes a photodiode disposed in a first portion of an active area, where a second portion of the active area extends from a side of the first portion. The second portion includes a doped region to provide a ground contact for the active area. In another embodiment, the pixel cell includes a transistor to transfer the charge from the photodiode, where a gate of the transistor is adjacent to the second portion and overlaps the side of the first portion.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: April 1, 2014
    Assignee: OmniVision Technologies, Inc.
    Inventors: Sohei Manabe, Jeong-Ho Lyu
  • Patent number: 8653529
    Abstract: In a semiconductor device in which a glass substrate is attached to a surface of a semiconductor die with an adhesive layer being interposed therebetween, it is an object to fill a recess portion of an insulation film formed on a photodiode with the adhesive layer without bubbles therein. In a semiconductor die in which an optical semiconductor integrated circuit including a photodiode having a recess portion of an interlayer insulation film in the upper portion, an NPN bipolar transistor, and so on are formed, generally, a light shield film covers a portion except the recess portion region on the photodiode and except a dicing region. In the invention, an opening slit is further formed in the light shield film, extending from the recess portion to the outside of the recess portion, so as to attain the object.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: February 18, 2014
    Assignee: ON Semiconductor Trading, Ltd.
    Inventors: Shinzo Ishibe, Katsuhiko Kitagawa
  • Patent number: 8643063
    Abstract: A charge transfer device formed in a semiconductor substrate and including an array of electrodes distributed in rows and columns, wherein: each electrode is formed in a cavity with insulated walls formed of a groove which generally extends in the row direction, having a first end closer to an upper row and a second end closer to a lower row; and the electrodes of two adjacent rows are symmetrical with respect to a plane orthogonal to the sensor and comprising the direction of a row.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: February 4, 2014
    Assignee: STMicroelectronics (Crolles 2) SAS
    Inventor: François Roy
  • Patent number: 8552562
    Abstract: A profiled contact for a device, such as a high power semiconductor device is provided. The contact is profiled in both a direction substantially parallel to a surface of a semiconductor structure of the device and a direction substantially perpendicular to the surface of the semiconductor structure. The profiling can limit the peak electric field between two electrodes to approximately the same as the average electrical field between the electrodes, as well as limit the electric field perpendicular to the semiconductor structure both within and outside the semiconductor structure.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: October 8, 2013
    Assignee: Sensor Electronic Technology, Inc.
    Inventors: Grigory Simin, Michael Shur, Remigijus Gaska
  • Publication number: 20130228828
    Abstract: A range sensor includes a charge generating region, a signal charge collecting region, an unnecessary charge collecting region, a photogate electrode, a transfer electrode, and an unnecessary charge collecting gate electrode. Outer peripheries of the charge generating region extend to sides of a polygonal pixel region except for corner portions thereof. The signal charge collecting region is disposed at a center portion of the pixel region and inside the charge generating region so as to be surrounded by the charge generating region. The unnecessary charge collecting region is disposed in the corner portion of the pixel region and outside the charge generating region. The photogate electrode is disposed on the charge generating region. The transfer electrode is disposed between the signal charge collecting region and the charge generating region. The unnecessary charge collecting gate electrode is disposed between the unnecessary charge collecting region and the charge generating region.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 5, 2013
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Mitsuhito MASE, Takashi SUZUKI, Jun HIRAMITSU
  • Patent number: 8525242
    Abstract: A solid-state image pickup device including: a pixel region on a semiconductor substrate, the pixel region including: a sensor region for photoelectrically converting incident light; a vertical CCD formed on one side of the sensor region with a readout region interposed between the sensor region and the vertical CCD; and a channel stop region formed on a side opposite from the sensor region with the vertical CCD interposed between the sensor region and the channel stop region; and a vertical transfer electrode on the vertical CCD with an insulating film interposed between the vertical transfer electrode and the vertical CCD. The vertical transfer electrode is formed above the vertical CCD such that width of the vertical transfer electrode and width of a channel region of the vertical CCD are substantially equal to each other.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: September 3, 2013
    Assignee: Sony Corporation
    Inventor: Hideo Kanbe
  • Patent number: 8513709
    Abstract: A unit pixel of a photo detecting apparatus includes a photogate, a transfer gate and a floating diffusion region. The photogate includes a junction gate extending in a first direction and a plurality of finger gates extending from the junction gate in a second direction substantially perpendicular to the first direction. The transfer gate is formed adjacent to the junction gate. The floating diffusion region is formed adjacent to the first transfer gate.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: August 20, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young Gu Jin, Kwan-Young Oh, Samuel Sungmok Lee, Kwang-Chol Choe, Se-Won Seo, Yoon-Dong Park, Eric Fossum, Kyoung-Lae Cho
  • Patent number: 8507801
    Abstract: A printed wiring board is formed by adhering a coverlay film having a resistance layer formed on a surface of the coverlay film body to a printed wiring board body having a conductive layer formed on a surface of a substrate through an adhesive layer. The resistance layer is separated from and opposed to the conductive layer through the adhesive layer.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: August 13, 2013
    Assignee: Shin-Etsu Polymer Co., Ltd.
    Inventors: Toshiyuki Kawaguchi, Kazutoki Tahara, Tsutomu Saga
  • Patent number: 8477226
    Abstract: A charge coupled device imager, which can operate in time delay and integration mode, can be adapted to include variable columns having one or more blocking gates or other barriers that can be independently controlled and used to divide a used portion from an unused portion. The blocking gates may require less power to electrically insulate used from the unused sections. In this regard, an imager's charge handling capacity and dynamic range can be improved, while lowering CCD operating power requirements. Blooming drains can also be included to enhance the functionality of the imager and enable bidirectional imaging capability.
    Type: Grant
    Filed: March 23, 2010
    Date of Patent: July 2, 2013
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Bron R. Frias, Nathan Bluzer, Paul A. Tittel
  • Patent number: 8476102
    Abstract: A method for manufacturing a solid state image pickup device including a first active region provided with a first conversion unit, a second active region provided with a second conversion unit, and a third active region adjoining the first and the second active regions with a field region therebetween and being provided with a pixel transistor, the method including the steps of ion-implanting first conductivity type impurity ions to form a semiconductor region serving as a potential barrier against the signal carriers at a predetermined depth in the third active region and ion-implanting second conductivity type impurity ions into the third active region with energy lower than the above-described ion-implantation energy.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: July 2, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideaki Takada, Toru Koizumi, Yasuo Yamazaki, Tatsuya Ryoki
  • Patent number: 8466512
    Abstract: A method for producing a semiconductor device includes preparing a structure having a substrate, a planar semiconductor layer and a columnar semiconductor layer, forming a second drain/source region in the upper part of the columnar semiconductor layer, forming a contact stopper film and a contact interlayer film, and forming a contact layer on the second drain/source region. The step for forming the contact layer includes forming a pattern and etching the contact interlayer film to the contact stopper film using the pattern to form a contact hole for the contact layer and removing the contact stopper film remaining at the bottom of the contact hole by etching. The projection of the bottom surface of the contact hole onto the substrate is within the circumference of the projected profile of the contact stopper film formed on the top and side surface of the columnar semiconductor layer onto the substrate.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: June 18, 2013
    Assignee: Unisantis Electronics Singapore Pte Ltd.
    Inventors: Fujio Masuoka, Shintaro Arai, Hiroki Nakamura, Tomohiko Kudo, R. Ramana Murthy, Nansheng Shen, Kavitha Devi Buddharaju, Navab Singh
  • Patent number: 8426280
    Abstract: There is provided a charge trap type non-volatile memory device and a method for fabricating the same, the charge trap type non-volatile memory device including: a tunnel insulation layer formed over a substrate; a charge trap layer formed over the tunnel insulation layer, the charge trap layer including a charge trap polysilicon thin layer and a charge trap nitride-based layer; a charge barrier layer formed over the charge trap layer; a gate electrode formed over the charge barrier layer; and an oxide-based spacer formed over sidewalls of the charge trap layer and provided to isolate the charge trap layer.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: April 23, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Cha-Deok Dong
  • Patent number: 8427417
    Abstract: A driver circuit where malfunctions in the circuit can be suppressed even when a thin film transistor is changed into an enhancement transistor or a depletion transistor is provided. In a pulse output circuit, a circuit for raising potentials of source terminals of first and second transistors from low power supply potentials is provided between the source terminals of the first and second transistors and a wiring for supplying a low power supply potential. Further, a switch for setting the potentials of the source terminals of the first and second transistors to low power supply potentials is provided. The switch is controlled by a judgment circuit for judging whether the first and second transistors are enhancement transistors or depletion transistors.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: April 23, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Jun Koyama
  • Patent number: 8427568
    Abstract: Disclosed herein is a solid-state image pickup device, including a pixel, the pixel including: a light receiving section; a charge transfer path; a transfer electrode; a readout gate section; and a readout electrode.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: April 23, 2013
    Assignee: Sony Corporation
    Inventor: Takeshi Takeda
  • Patent number: 8383448
    Abstract: A method of fabricating an MOS device is provided. First, gates and source/drain regions of transistors are formed on a substrate. A photodiode doped region and a floating node doped region are formed in the substrate. Thereafter, a spacer stacked layer including a bottom layer, an inter-layer and a top layer is formed to cover each gate of the transistors. Afterwards, a first mask layer having an opening exposing at least the photodiode doped region is formed on the substrate, and then the top layer exposed by the opening is removed. Next, the first mask layer is removed, and then a second mask layer is formed on a region correspondingly exposed by the opening. A portion of the top layer and the inter-layer exposed by the second mask layer is removed to form spacers on sidewalls of the gates.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: February 26, 2013
    Assignee: United Microelectronics Corp.
    Inventor: Ching-Hung Kao
  • Patent number: 8378361
    Abstract: A light-emitter includes a first electrode and a layered body over the first electrode. The layered body includes a charge injection layer and a light-emitting layer. A bank defines a position of the light-emitting layer of the layered body, and a second electrode is over the layered body. The charge injection layer is formed by oxidation of an upper portion of a metal. The first electrode includes a metal layer that is a lower portion of the metal. An inner portion of the charge injection layer is depressed to define a recess. A portion of the bank is on an outer portion of the charge injection layer.
    Type: Grant
    Filed: April 18, 2011
    Date of Patent: February 19, 2013
    Assignee: Panasonic Corporation
    Inventors: Takayuki Takeuchi, Seiji Nishiyama