With Groove Or Overhang For Alignment Patents (Class 257/283)
  • Patent number: 11824101
    Abstract: A semiconductor device includes a semiconductor substrate, an isolation feature over the semiconductor substrate, a fin protruding from the semiconductor substrate and through the isolation feature, a gate stack over and engaging the fin, and a gate spacer on sidewalls of the gate stack. A bottom portion of the sidewalls of the gate stack tilts inwardly towards the gate stack.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: November 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sai-Hooi Yeong, Chi-On Chui, Kai-Hsuan Lee, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11742418
    Abstract: A semiconductor device includes an enhancement mode high electron mobility transistor (HEMT) with an active region and an isolation region. The HEMT includes a substrate, a group III-V body layer, a group III-V barrier layer, a group III-V gate structure and a group III-V patterned structure. The group III-V body layer and the group III-V barrier layer are disposed on the substrate. The group III-V gate structure is disposed on the group III-V barrier layer within the active region. The group III-V patterned structure is disposed on the group III-V barrier layer within the isolation region. The composition of the group III-V patterned structure is the same as the composition of the group III-V gate structure.
    Type: Grant
    Filed: October 24, 2021
    Date of Patent: August 29, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ming Chang, Wen-Jung Liao
  • Patent number: 11631741
    Abstract: A semiconductor device includes a transistor, a semiconductor layer, an active region and a conductive layer. The active region is in the semiconductor layer. The conductive layer is configured to maintain a channel in the active region when the transistor is triggered to be conducted.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 18, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Yu-Syuan Lin, Jiun-Lei Yu, Ming-Cheng Lin, Chun Lin Tsai
  • Patent number: 11558020
    Abstract: A transmission circuit includes a power amplifier, a power amplifier forestage circuit and a signal strength adjusting circuit. The power amplifier is configured to amplify an input signal to output an output signal. The power amplifier forestage circuit is configured to output the input signal. The signal strength adjusting circuit includes a conversion circuit, a processing circuit and a storage unit. The conversion circuit is configured to convert the voltage of the output signal into an operation value. The processing circuit is configured to perform an operation according to a target index value stored by the storage unit and the operation value to obtain a differential value. The processing circuit is further configured to adjust the input signal outputted by the power amplifier forestage circuit according to the differential value, so that the power of the output signal is maintained at a target power value.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: January 17, 2023
    Assignee: REALTEK SEMICONDUCTOR CORPORATION
    Inventors: Beng-Meng Chen, Chien-Jung Huang, Yi-Hua Lu
  • Patent number: 11476358
    Abstract: According to one embodiment, a semiconductor device includes first to third electrodes, first and second semiconductor layers, and an insulating member. The third electrode in a first direction is between the first and second electrodes in the first direction. The first direction is from the first toward second electrode. The first semiconductor layer includes Alx1Ga1-x1N (0?x1<1), and first to sixth partial regions. A second direction from the first partial region toward the first electrode crosses the first direction. The second semiconductor layer includes Alx2Ga1-x2N (0<x2<1 and x1<x2), and first and second semiconductor regions. A direction from the fourth partial region toward the first semiconductor region is along the second direction. A direction toward the second semiconductor region from the fifth and sixth partial regions is along the second direction. The insulating member includes first to third insulating regions.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: October 18, 2022
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yosuke Kajiwara, Aya Shindome, Masahiko Kuraguchi
  • Patent number: 11302784
    Abstract: A method including providing a device including a gate structure and a source/drain feature adjacent to the gate structure. An insulating layer (e.g., CESL, ILD) is formed over the source/drain feature. A trench is etched in the insulating layer to expose a surface of the source/drain feature. A semiconductor material is then formed in the etched trench on the surface of the source/drain feature. The semiconductor material is converted to a silicide.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Xusheng Wu, Chang-Miao Liu, Ying-Keung Leung, Huiling Shang, Youbo Lin
  • Patent number: 10872772
    Abstract: A semiconductor arrangement includes a semiconductor layer having a source/drain region and a first epitaxial layer over the semiconductor layer. The semiconductor arrangement includes a second epitaxial layer over the first epitaxial layer, wherein the first epitaxial layer and the second epitaxial layer define a contact structure for the source/drain region.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: December 22, 2020
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Matthias Passlack, Martin Christopher Holland
  • Patent number: 10700013
    Abstract: Aspects of the present disclosure provide an integrated circuit (IC) wafer having a plurality of circuit dies each bounded by a set of scribe lines. The IC structure includes: a plurality of reference features each respectively positioned in a first layer of one of the plurality of circuit dies. The reference feature of each circuit die is equidistant from a respective set of scribe lines for the circuit die, and a plurality of identification features each positioned in a second layer of one of the plurality of circuit dies. The reference feature of each circuit die has a distinct offset vector indicative of a positional difference between the identification feature for the circuit die and the reference feature for the circuit die, relative to the identification feature of each other circuit die.
    Type: Grant
    Filed: January 10, 2018
    Date of Patent: June 30, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Wen Liu, Sebastian T. Ventrone, Adam C. Smith, Janice M. Adams, Nazmul Habib
  • Patent number: 10483372
    Abstract: Semiconductor device structures comprising a spacer feature having multiple spacer layers are provided. In one example, a semiconductor device includes an active area on a substrate, the active area comprising a source/drain region, a gate structure over the active area, the source/drain region being proximate the gate structure, a spacer feature having a first portion along a sidewall of the gate structure and having a second portion along the source/drain region, wherein the first portion of the spacer feature comprises a bulk spacer layer along the sidewall of the gate structure, wherein the second portion of the spacer feature comprises the bulk spacer layer and a treated seal spacer layer, the treated seal spacer layer being disposed along the source/drain region and between the bulk spacer layer and the source/drain region, and a contact etching stop layer on the spacer feature.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: November 19, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Patent number: 10008683
    Abstract: An organic device, including semiconducting polymers processed from a solution cast on one or more dielectric layers on a substrate; and electrical contacts to the semiconducting polymers, wherein the substrate and the one or more dielectric layers are flexible and the semiconducting polymers are aligned. The one or more dielectric layers can increase mobility of the semiconducting polymers and/or alignment of the semiconducting polymers with one or more of the nanogrooves in the dielectric layers.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: June 26, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Byoung Hoon Lee, Alan J. Heeger
  • Patent number: 9449833
    Abstract: A self-aligned process for locating a stem of a T-shaped gate relative to source and drain contacts of a FET or HEMT. The gate stem is located asymmetrically in some embodiments and in such embodiments the stem of the T-shaped gate is located relative to drain and source contacts of the device by forming a plurality of sidewall spacers, with more sidewall spacers being formed on the drain side of the stem than are formed on the source side of the stem. Additionally the gate stem preferably has a high aspect ratio to improve the performance of the resulting FET or HEMT. Drain and source contacts are preferably formed of an n+ semiconductor material.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: September 20, 2016
    Assignee: HRL Laboratories, LLC
    Inventors: Dean C. Regan, Keisuke Shinohara, Yan Tang, Miroslav Micovic
  • Patent number: 9420693
    Abstract: An embedded thin film capacitor and methods of its fabrication are disclosed. The embedded thin film capacitor includes two conductive plates separated by a dielectric layer. In embodiments, the capacitor is enclosed within a package substrate. A method of forming the embedded thin film capacitor includes forming a first insulating layer on a bottom plate and a first trace. A first opening is then formed in a first insulating layer to expose a first region of a bottom plate. An adhesive layer is then formed on the first insulating layer and on top of the exposed first region of the bottom plate. A second opening is formed through the insulating layer and the first insulating layer to expose a second region of the bottom plate. A top plate is formed within the first opening and a via is formed within the second opening.
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: August 16, 2016
    Assignee: Intel Corporation
    Inventors: Robert L. Sankman, Daniel N. Sobieski, Sri Ranga Sai Boyapati
  • Patent number: 9029923
    Abstract: A semiconductor device includes a fin-shaped silicon layer and a pillar-shaped silicon layer on the fin-shaped silicon layer, where a width of the pillar-shaped silicon layer is equal to a width of the fin-shaped silicon layer. Diffusion layers reside in upper portions of the pillar-shaped silicon layer and fin-shaped silicon layer and in a lower portion of the pillar-shaped silicon layer to form. A gate insulating film and a metal gate electrode are around the pillar-shaped silicon layer and a metal gate line extends in a direction perpendicular to the fin-shaped silicon layer and is connected to the metal gate electrode. A contact resides on the metal gate line and a nitride film is on an entire top surface of the metal gate electrode and the metal gate line, except for the bottom of the contact.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: May 12, 2015
    Assignee: Unisantis Electronics Singapore Pte. Ltd.
    Inventors: Fujio Masuoka, Hiroki Nakamura
  • Patent number: 8841697
    Abstract: A method of manufacturing a semiconductor device is disclosed. The method includes forming a first trench and a second trench in an n-type substrate surface, the first trenches being spaced apart from each other, the second trench surrounding the first trenches, the second trench being wider than the first trench. The method also includes forming a gate oxide film on the inner surfaces of the first and second trenches, and depositing an electrically conductive material to the thickness a half or more as large as the first trench width. The method further includes removing the electrically conductive material using the gate oxide film as a stopper layer, forming an insulator film thicker than the gate oxide film, and polishing the insulator film by CMP for exposing the n-type substrate and the electrically conductive material in the first trench.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: September 23, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Tomonori Mizushima
  • Patent number: 8796088
    Abstract: A semiconductor device and a method of fabricating the semiconductor device is provided. In the method, a semiconductor substrate defining a device region and an outer region at a periphery of the device region is provided, an align trench is formed in the outer region, a dummy trench is formed in the device region, an epi layer is formed over a top surface of the semiconductor substrate and within the dummy trench, a current path changing part is formed over the epi layer, and a gate electrode is formed over the current path changing part. When the epi layer is formed, a current path changing trench corresponding to the dummy trench is formed over the epi layer, and the current path changing part is formed within the current path changing trench.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: August 5, 2014
    Assignee: Dongbu HiTek Co., Ltd.
    Inventor: Chul Jin Yoon
  • Patent number: 8723234
    Abstract: A semiconductor device of an embodiment includes: a semiconductor substrate; a field-effect transistor formed on the semiconductor substrate; and a diode forming area which is adjacent to a forming area of the field-effect transistor, wherein the diode forming area is insulated from the forming area of the transistor on the semiconductor substrate, and includes a first diode electrode in which a gate electrode of the field-effect transistor is placed in Schottky barrier junction and/or ohmic contact with the semiconductor substrate through a bus wiring or a pad; and a second diode electrode in which a source electrode of the field-effect transistor is placed in ohmic contact and/or Schottky barrier junction with the semiconductor substrate through a bus interconnection or a pad to form a diode between the gate electrode and the source electrode.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: May 13, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshiharu Takada, Kentaro Ikeda
  • Patent number: 8680589
    Abstract: A method for forming a nanowire field effect transistor (FET) device includes forming a nanowire on a semiconductor substrate, forming a first gate structure on a first portion of the nanowire, forming a first protective spacer adjacent to sidewalls of the first gate structure and over portions of the nanowire extending from the first gate structure, removing exposed portions of the nanowire left unprotected by the first spacer, and epitaxially growing a doped semiconductor material on exposed cross sections of the nanowire to form a first source region and a first drain region.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Sarunya Bangsaruntip, Josephine B. Chang, Guy M. Cohen, Jeffrey W. Sleight
  • Patent number: 8610238
    Abstract: Structures and methods of forming crack stop trenches are disclosed. The method includes forming active regions disposed in cell regions of a substrate, the cell regions separated by dicing channels, and forming back end of line (BEOL) layers over the substrate, the BEOL layers being formed over the cell regions and the dicing channels. Crack stop trenches are then formed encircling the cell regions by etching a portion of the BEOL layers surrounding the cell regions. The wafer is diced along the dicing channels.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: December 17, 2013
    Assignee: Infineon Technologies AG
    Inventors: Erdem Kaltalioglu, Hermann Wendt
  • Patent number: 8546852
    Abstract: A semiconductor device includes: substrate region; a gate electrode, a source electrode, and a drain electrode which are placed on a first surface of the substrate regions; an active area between gate and source placed between the gate electrode and the source electrode; an active area between gate and drain placed between the gate electrode and the drain electrode; an active area placed on the substrate region of the underneath part of the gate electrode, the source electrode, and the drain electrode; and a non-active area placed adjoining the active area, the active area between gate and source, and the active area between gate and drain. Furthermore, width WA1 of the active area between gate and source is wider than width WA2 of the active area between gate and drain. Channel resistance of an active area between source and gate placed between a gate electrode and a source electrode is reduced, and high-frequency performance is provided.
    Type: Grant
    Filed: October 28, 2008
    Date of Patent: October 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kazutaka Takagi
  • Patent number: 8476125
    Abstract: Fabrication methods of a high frequency (sub-micron gate length) operation of AlInGaN/InGaN/GaN MOS-DHFET, and the HFET device resulting from the fabrication methods, are generally disclosed. The method of forming the HFET device generally includes a novel double-recess etching and a pulsed deposition of an ultra-thin, high-quality silicon dioxide layer as the active gate-insulator. The methods of the present invention can be utilized to form any suitable field effect transistor (FET), and are particular suited for forming high electron mobility transistors (HEMT).
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: July 2, 2013
    Assignee: University of South Carolina
    Inventors: M. Asif Khan, Vinod Adivarahan
  • Patent number: 8319310
    Abstract: A Schottky gate (27?, 27?) of a metal-semiconductor FET (20?, 20?) is formed on a semiconductor comprising substrate (21) by, etching a gate recess (36) so as to expose a slightly depressed surface (362) of the substrate (21), the etching step also producing surface undercut cavities (363) extending laterally under the etch mask (43) from the gate recess (36), then conformally coating the slightly depressed surface (362) with a first Schottky forming conductor (40?) and substantially also coating inner surfaces (366) of the surface undercut cavities (363), and forming a Schottky contact to the semiconductor comprising substrate (21), adapted when biased to control current flow in a channel (22) extending between source (23) and drain (24) of the FET (20?, 20?) under the gate recess (36).
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 27, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Jenn Hwa Huang
  • Patent number: 8188520
    Abstract: A method for fabricating a field effect transistor includes: forming an insulating film provided on a semiconductor layer, the insulating film having an opening via which a surface of the semiconductor layer is exposed and including silicon oxide; forming a Schottky electrode on the insulating film and in the opening, the Schottky electrode having an overhang portion and having a first contact layer that is provided in a region contacting the insulating film and contains oxygen, and a second contact layer that is provided on the first contact layer and contains a smaller content of oxygen than that of the first contact layer; and removing the insulating film by a solution including hydrofluoric acid.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: May 29, 2012
    Assignee: Eudyna Devices Inc.
    Inventors: Tadashi Watanabe, Hajime Matsuda
  • Patent number: 8159008
    Abstract: Trench-generated transistor structures, methods for fabricating transistors using a trench defined in a semiconductor-on-insulator (SOI) wafer, design structures for a trench-generated transistor, and other trench-generated device structures. The source and drain of the transistor are defined by doped regions in the semiconductor material of the handle substrate of the SOI wafer. The gate electrode may be defined from the semiconductor layer of the SOI wafer, which is separated from the handle wafer by an insulating layer. Alternatively, the gate electrode may be defined as a conventional gate stack on a shallow trench isolation region in the semiconductor layer or as a conventional gate stack in one of the BEOL interconnect levels.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: April 17, 2012
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Edward J. Nowak
  • Patent number: 8125027
    Abstract: A semiconductor device includes an n-type semiconductor substrate, an alternating conductivity type layer on semiconductor substrate, the alternating conductivity type layer including n-type drift regions and p-type partition regions arranged alternately, p-type channel regions on the alternating conductivity type layer, and trenches formed from the surfaces of the p-type channel regions down to respective n-type drift regions or both the n-type drift regions and the p-type partition regions. The bottom of each trench is near or over the pn-junction between the p-type partition region and the n-type drift region. The semiconductor device facilitates preventing the on-resistance from increasing, obtaining a higher breakdown voltage, and reducing the variations caused in the characteristics thereof.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: February 28, 2012
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 8101509
    Abstract: A method of fabricating a semiconductor integrated circuit includes forming a first dielectric layer on a semiconductor substrate, patterning the first dielectric layer to form a first patterned dielectric layer, forming a non-single crystal seed layer on the first patterned dielectric layer, removing a portion of the seed layer to form a patterned seed layer, forming a second dielectric layer on the first patterned dielectric layer and the patterned seed layer, removing portions of the second dielectric layer to form a second patterned dielectric layer, irradiating the patterned seed layer to single-crystallize the patterned seed layer, removing portions of the first patterned dielectric layer and the second patterned dielectric layer such that the single-crystallized seed layer protrudes in the vertical direction with respect to the first and/or the second patterned dielectric layer, and forming a gate electrode in contact with the single-crystal active pattern.
    Type: Grant
    Filed: February 10, 2011
    Date of Patent: January 24, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-hoon Son, Si-young Choi, Jong-wook Lee
  • Patent number: 8044433
    Abstract: A semiconductor device includes a substrate, a GaN-based semiconductor layer formed on the substrate, a gate electrode embedded in the GaN-based semiconductor layer, a source electrode and a drain electrode formed on both sides of the gate electrode, a first recess portion formed between the gate electrode and the source electrode, and a second recess portion formed between the gate electrode and the drain electrode. The first recess portion has a depth deeper than that of the second recess portion.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: October 25, 2011
    Assignee: Eudyna Devices Inc.
    Inventors: Takeshi Kawasaki, Ken Nakata, Seiji Yaegashi
  • Patent number: 8043927
    Abstract: In a method of manufacturing a complementary metal-oxide semiconductor (CMOS) image sensor (CIS), an epitaxial layer may be formed on a first substrate including a chip area and a scribe lane area. A first impurity layer may be formed adjacent to the first substrate by implanting first impurities into the epitaxial layer. A photodiode may be formed in the epitaxial layer on the chip area. A circuit element electrically connected to the photodiode may be formed on the epitaxial layer. A protective layer protecting the circuit element may be formed on the epitaxial layer. A second substrate may be attached onto the protective layer. The first substrate may be removed to expose the epitaxial layer. A color filter layer may be formed on the exposed epitaxial layer using the first impurity layer as an alignment key. A microlens may be formed over the color filter layer.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-Jun Park, Tae-Hun Lee, Seung-Hun Shin
  • Patent number: 8003412
    Abstract: A method, structure, system of aligning a substrate to a photomask. The method comprising: directing light through a clear region of the photomask in a photolithography tool, through a lens of the tool and onto a set of at least three diffraction mirror arrays on the substrate, each diffraction mirror array of the set of at least three diffraction minor arrays comprising a single row of mirrors, all mirrors in any particular diffraction mirror array spaced apart a same distance, mirrors in different diffraction mirror arrays spaced apart different distances; measuring an intensity of light diffracted from the set of at least three diffraction mirror arrays onto an array of photo detectors; and adjusting a temperature of the photomask or photomask and lens based on the measured intensity of light.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: August 23, 2011
    Assignee: International Business Machines Corporation
    Inventors: Axel A. Granados, Benjamin A. Fox, Nathaniel J. Gibbs, Andrew B. Maki, Trevor J. Timpane
  • Patent number: 7973344
    Abstract: Double gate JFET with reduced area consumption and fabrication method therefore. Double-gate semiconductor device including a substrate having a shallow trench isolator region comprising a first STI and a second STI, a channel region having a first and second channel edges, the channel region formed in the substrate and disposed between and in contact with the first STI and the second STI at the first and second channel edge. The first STI has a first cavity at the first channel edge, and the second STI has a second cavity at the second channel edge. The device further includes a gate electrode region comprising conductive material filling at least one of the first and second cavities. At least one of the first and second cavities is physically configured to provide electrical coupling of the gate electrode region to a back-gate P-N junction.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: July 5, 2011
    Assignee: SuVolta, Inc.
    Inventor: Srinivasan R. Banna
  • Patent number: 7943991
    Abstract: A semiconductor device is discloses that includes an n-type semiconductor substrate; an alternating conductivity type layer on semiconductor substrate, the alternating conductivity type layer including n-type drift regions and p-type partition regions arranged alternately; p-type channel regions on the alternating conductivity type layer; and trenches formed from the surfaces of the p-type channel regions down to respective n-type drift regions. The bottom of each trench is over the pn-junction between the p-type partition region and the n-type drift region. The semiconductor device facilitates preventing the on-resistance from increasing, obtaining a higher breakdown voltage, and reducing the variations caused in the characteristics thereof.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: May 17, 2011
    Assignee: Fuji Electric Systems Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 7928494
    Abstract: The semiconductor device of the present invention includes a semiconductor substrate, a plurality of floating gate electrodes formed in a memory cell forming region of the semiconductor substrate, a word line electrically connecting the floating gate electrodes and a conductor portion formed on the word line so as to reduce a resistance of the word line.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: April 19, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Eiji Sakagami, Makoto Nakashima
  • Patent number: 7928480
    Abstract: A semiconductor device has a semiconductor layer, and a first electrode (Schottky electrode or MIS electrode) and a second electrode (ohmic electrode) which are formed on the semiconductor layer apart from each other. The first electrode has a cross section in the shape of a polygon. A second electrode-side corner of the polygon has an interior angle of which an outward extension line of a bisector crosses the semiconductor layer or the second electrode. The interior angle of such a second electrode-side corner is larger than 90°.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: April 19, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masaharu Yamashita, John Kevin Twynam
  • Patent number: 7898025
    Abstract: A semiconductor device having a recess gate includes a semiconductor substrate having a recess, a conductive pattern for a gate electrode filled into the recess, and having an extension portion protruding higher than a surface of the semiconductor substrate, an epitaxial semiconductor layer having a top surface disposed over the semiconductor substrate, and a gate insulating layer disposed between the epitaxial semiconductor layer and the conductive pattern, and between the semiconductor substrate and the conductive pattern. Further, a method of fabricating the same is disclosed.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: March 1, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Young-Kyun Jung
  • Patent number: 7834380
    Abstract: A field effect transistor includes a first semiconductor layer made of a multilayer of a plurality of semiconductor films and a second semiconductor layer formed on the first semiconductor layer. A source electrode and a drain electrode are formed on the second semiconductor layer to be spaced from each other. An opening having an insulating film on its inner wall is formed in a portion of the second semiconductor layer sandwiched between the source electrode and the drain electrode so as to expose the first semiconductor layer therein. A gate electrode is formed in the opening to be in contact with the insulating film and the first semiconductor layer on the bottom of the opening.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: November 16, 2010
    Assignee: Panasonic Corporation
    Inventors: Tetsuzo Ueda, Hidetoshi Ishida, Tsuyoshi Tanaka
  • Patent number: 7785980
    Abstract: An object of the present inventions is to overcome a problem that the presence of a metal film, which is opaque to a visible light, between a lower layer alignment mark and a photoresist prevents the detection of the lower layer alignment mark, to make the pattern formation difficult. In the present inventions, an insulating film is placed beneath the alignment mark in structure; an alignment mark consisting of said multi-layered film comprising an alignment mark layer and the insulating film, which constitutes a stepped part with an increased difference in level, is first formed, inside a mark hole, in a manner of self-alignment; and then the metal film which is the very cause of the above problem is formed thereon. Since the metal film itself has a stepped shape corresponding to the alignment mark, alignment can be made with great accuracy.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: August 31, 2010
    Assignee: Elpida Memory, Inc.
    Inventor: Kazushi Suzuki
  • Patent number: 7772710
    Abstract: A zero-order overlay target comprises a first zero-order line array fabricated on a first layer of a semiconductor structure, the first zero-order line array having a first pitch, and a second zero-order line array fabricated on a second layer of the semiconductor structure, the second zero-order line array having a second pitch. The second pitch may be different from the first pitch, and a portion of the second zero-order line array may be positioned to become optically coupled to a portion of the first zero-order line array when subject to an overlay measurement. Further, the second pitch may be variable. For example, the variable pitch may comprise a first set of features having a pitch approximately equal to the first pitch, a second set of features having a pitch different from the first pitch, and a third set of features having a pitch approximately equal to the first pitch.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 10, 2010
    Assignees: Sematech, Inc., National Institute of Standards and Technology
    Inventors: Richard Silver, Pete Lipscomb, Bryan Barnes, Ravikirran Attota
  • Patent number: 7728385
    Abstract: A device structure is disclosed for preventing gate oxide damage of a trench MOSFET during wafer processing while adding an ESD protection module atop the trench MOSFET. The ESD protection module has a low temperature oxide (LTO) bottom layer whose patterning process was found to cause the gate oxide damage before. The present invention structure includes a semiconductor substrate having an active area and a termination area; numerous trench MOSFET cells disposed in the active area; numerous electrostatic discharge (ESD) diodes disposed above the semiconductor substrate in the termination area; and an insulation layer comprising Oxide/Nitride/Oxide (ONO) sandwiched between the ESD diodes and the semiconductor substrate. In one embodiment, the active area does not contain the ONO insulation layer.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: June 1, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Mengyu Pan, Zengyi He, Kaiyu Chen
  • Patent number: 7723768
    Abstract: Disclosed are an asymmetric recessed gate MOSFET, and a method for manufacturing the same. The asymmetric recessed gate MOSFET comprises: recess regions formed at a predetermined depth in a semiconductor; recessed gate electrodes formed at a predetermined height on a semiconductor substrate by gap-filling the recess regions, and misaligned with the recess region corresponding to one of the source/drain regions; spacers formed on sides of the recessed gate electrodes; and source/drain regions implanted with a dopant formed in the semiconductor substrate exposed between the spacers. The overlap between the gate electrodes and the source/drain regions can be reduced by having one of the source/drain regions misaligned with the recess regions in the recessed gate structure, and abnormal leakage current caused by consistency between an electron field max point A and a stress max pint B can be sharply reduced by changing the profile of the source/drain regions.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: May 25, 2010
    Assignee: Hynix Semiconductor Inc.
    Inventor: Moon Sik Suh
  • Patent number: 7510953
    Abstract: A semiconductor device including a schottky device and a trench type semiconductor switching device such as a MOSFET formed in a common die.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: March 31, 2009
    Assignee: International Rectifier Corporation
    Inventors: Donald He, Ritu Sodhi, Davide Chiola
  • Patent number: 7453107
    Abstract: A semiconductor device includes a substrate of semiconductor material. A source region, a drain region, and a conducting region of the semiconductor device are formed in the substrate and doped with a first type of impurities. The conducting region is operable to conduct current between the drain region and the source region when the semiconductor device is operating in an on state. A gate region is also formed in the substrate and doped with a second type of impurities. The gate region abuts a channel region of the conducting region. A stress layer is deposited on at least a portion of the conducting region. The stress layer applies a stress to the conducting region along a boundary of the conducting region that strains at least a portion of the conducting region.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: November 18, 2008
    Assignee: DSM Solutions, Inc.
    Inventor: Ashok K. Kapoor
  • Patent number: 7419882
    Abstract: A small-size (w<0.5 micrometers) alignment mark in combination with a “k1 process” is proposed, which is particularly suited for the fabrication of trench-capacitor DRAM devices which requires highly accurate AA-DT alignment. The “k1 process” is utilized to etch away polysilicon studded in the alignment mark trenches and refresh the trench profile prior to AA pattern transferring, thereby improving wafer alignment accuracy and precision.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: September 2, 2008
    Assignee: Nanya Technology Corp.
    Inventors: Yuan-Hsun Wu, An-Hsiung Liu, Chiang-Lin Shih, Pei-Ing Lee, Hui-Min Mao, Lin-Chin Su
  • Patent number: 7411226
    Abstract: An InP high electron mobility transistor (HEMT) structure in which a gate metal stack includes an additional thin layer of a refractory metal, such as molybdenum (Mo) or platinum (Pt) at a junction between the gate metal stack and a Schottky barrier layer in the HEMT structure. The refractory metal layer reduces or eliminates long-term degradation of the Schottky junction between the gate metal and the barrier layer, thereby dramatically improving long-term reliability of InP HEMTs, but without sacrifice in HEMT performance, whether used as a discrete device or in an integrated circuit.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: August 12, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: Yeong-Chang Choug, Ronald Grundbacher, Po-Hsin Liu, Denise L. Leung, Richard Lai
  • Patent number: 7391087
    Abstract: An MOS device comprising a gate dielectric formed on a first conductivity type region. A gate electrode formed on the gate dielectric. A pair of sidewall spacers are formed along laterally opposite sidewalls of the gate electrode. A pair of deposited silicon or silicon alloy source/drain regions are formed in the first conductivity region and on opposite sides of a gate electrode wherein the silicon or silicon alloy source/drain regions extend beneath the gate electrode and to define a channel region beneath the gate electrode in the first conductivity type region wherein the channel region directly beneath the gate electrode is larger than the channel region deeper into said first conductivity type region.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: June 24, 2008
    Assignee: Intel Corporation
    Inventors: Anand Murthy, Robert S. Chau, Patrick Morrow
  • Patent number: 7342261
    Abstract: A light emitting device includes a substrate having a patterned surface and formed with a plurality of spaced apart cavities, and an epitaxial layer formed on the patterned surface of the substrate, having a patterned surface that is in face-to-face contact with the patterned surface of the substrate, and formed with a plurality of protrusions that protrude from the patterned surface of the epitaxial layer and that are respectively received in the cavities. Each of the protrusions is polygonal in shape and defines a plurality of vertices. The vertices of each of the protrusions contact the cavity-defining wall of the respective one of the cavities so as to form a plurality of closed pores between each of the protrusions and the cavity-defining wall of the respective one of the cavities.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: March 11, 2008
    Inventors: Dong-Sing Wuu, Ray-Hua Horng, Woei-Kai Wang
  • Patent number: 7304335
    Abstract: A vertical-conduction and planar-structure MOS device having a double thickness gate oxide includes a semiconductor substrate including spaced apart active areas in the semiconductor substrate and defining a JFET area therebetween. The JFET area also forms a channel between the spaced apart active areas. A gate oxide is on the semiconductor substrate and includes a first portion having a first thickness on the active areas and at a periphery of the JFET area, and a second portion having a second thickness on a central area of the JFET area. The second thickness is greater than the first thickness. The JFET area also includes an enrichment region under the second portion of the gate oxide.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: December 4, 2007
    Assignee: STMicroelectronics S.r.l.
    Inventors: Angelo Magri', Ferruccio Frisina, Giuseppe Ferla, Marco Camalleri
  • Patent number: 7030506
    Abstract: A method and mask to improve measurement of alignment marks is disclosed. An exemplary embodiment of the invention includes a resist mask with a patterned alignment mark comprising an assemblage of features whose spacing is smaller than the wavelength of light used to measure the alignment. In a preferred embodiment, an alignment mark patterning process alters the appearance of the alignment mark and renders an enhanced contrast with the substrate background.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: April 18, 2006
    Assignee: Infineon Technologies, AG
    Inventors: Syed Shoaib Hasan Zaidi, Alois Gutmann, Gary Williams
  • Patent number: 7023099
    Abstract: A method of removing organic particles from a registration mark on a semiconductor wafer. The method comprises providing a semiconductor wafer comprising at least one registration mark at least partially filled with organic particles. The at least one registration mark has a trench width from approximately 1.0 ?m to approximately 3.0 ?m. The semiconductor wafer is exposed to a cleaning solution comprising tetramethylammonium hydroxide and at least one surfactant, such as an acetylenic diol surfactant. The semiconductor wafer is exposed to an ultrasonic or megasonic vibrational energy. A semiconductor wafer previously subjected to a chemical mechanical planarization treatment and having a reduced amount of organic particles in a registration mark is also disclosed.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: April 4, 2006
    Assignee: Micron Technology, INC
    Inventors: Michael T. Andreas, Paul A. Morgan
  • Patent number: 7005755
    Abstract: A semiconductor device formed on a SOI substrate includes isolation trenches formed in a first region and reaching an insulation layer buried in the SOI substrate, and alignment marks formed in a second region and consisting of grooves extending into a support substrate.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: February 28, 2006
    Assignee: Fujitsu Limited
    Inventors: Tetsuo Yoshimura, Shinji Kuzuya, Kazuo Sukegawa, Tetsuo Izawa
  • Patent number: 6979874
    Abstract: A plurality of p anode regions are formed at one surface of an n? substrate. A trench is formed in each p anode region. An ohmic junction region is formed between an anode metallic electrode and the p anode region. The p anode region has a minimum impurity concentration at a portion near the ohmic junction region which enables ohmic contact. A cathode metallic electrode is formed at the other surface of the n? substrate with an n+ cathode region interposed. Accordingly, a semiconductor device which has an improved withstand voltage and in which the reverse recovery current is reduced can be obtained.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: December 27, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Masana Harada
  • Patent number: 6933523
    Abstract: An alignment aid for semiconductor devices. The alignment aid includes an area having a high level of reflectivity and an adjacent area having a of low level of reflectivity. The area having a low level of reflectivity includes at least one layer of tiles located in an interconnect layer of a semiconductor device and located over active circuitry of the semiconductor device. In some examples, the spacings between the tiles in a scan direction of the alignment aid is less than the wavelength of a light (e.g. a laser light) used to scan the alignment aid. In other examples, the width of the tiles in a scan direction of the alignment aid is less than the wave length of a laser used to scan the alignment aid.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: August 23, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Stephen G. Sheck