Voltage Variable Capacitor (i. E., Capacitance Varies With Applied Voltage) Patents (Class 257/312)
-
Patent number: 11159145Abstract: In a first approach, a reconfigurable radio frequency (RF) filtering module includes a phase-change material (PCM) RF switch bank and an RF filter bank. Each RF filter in the RF filter bank is capable to be engaged and disengaged by a PCM RF switch in the PCM RF switch bank. In a second approach, a tunable RF filter includes PCM RF switches and a capacitor and/or an inductor. Each of the capacitor and/or inductor is capable to be engaged and disengaged by at least one PCM RF switch of the PCM RF switches. In a third approach, an adjustable passive component includes multiple segments and a PCM RF switch. A selectable segment in the multiple segments is capable to be engaged and disengaged by the PCM RF switch. In all approaches, each PCM RF switch includes a PCM and a heating element transverse to the PCM.Type: GrantFiled: May 21, 2019Date of Patent: October 26, 2021Assignee: Newport Fab, LLCInventors: Nabil El-Hinnawy, Chris Masse, Gregory P. Slovin, David J. Howard
-
Patent number: 11139813Abstract: An RF switch includes serially coupled RF cells coupled between a first switch node and a second switch node, wherein each of the serially coupled RF cells include at least one transistor; and a varactor circuit coupled to at least one node of a transistor in an RF cell, and coupled between the RF cell and an adjacent RF cell, wherein the varactor circuit is configured for equalizing a voltage of the RF cell and a voltage of the adjacent RF cell during an off mode of the RF switch.Type: GrantFiled: September 22, 2020Date of Patent: October 5, 2021Assignee: INFINEON TECHNOLOGIES AGInventors: Andrea Cattaneo, Valentyn Solomko
-
Patent number: 10985697Abstract: Provided is a circuit device including: an oscillation circuit oscillating a vibrator, in which the oscillation circuit includes a variable capacitance circuit having a first variable capacitance element and a second variable capacitance element constituted by a first transistor and a second transistor, and a reference voltage supply circuit. The first reference voltage is supplied to a first gate of the first transistor and a capacitance control voltage is supplied to a first impurity region of the first transistor, the second reference voltage is supplied to a second gate of the second transistor and the capacitance control voltage is supplied to a second impurity region of the second transistor, and the capacitance control voltage is supplied to a first common impurity region of the first transistor and the second transistor.Type: GrantFiled: March 19, 2020Date of Patent: April 20, 2021Assignee: Seiko Epson CorporationInventor: Yosuke Itasaka
-
Patent number: 10840387Abstract: Certain aspects of the present disclosure provide semiconductor variable capacitors. One example semiconductor variable capacitor generally includes a semiconductor region, a first insulator region disposed below the semiconductor region, a first non-insulative region disposed below the first insulator region, a second non-insulative region disposed adjacent to the semiconductor region, and a third non-insulative region disposed adjacent to the semiconductor region, wherein the semiconductor region is disposed between the second non-insulative region and the third non-insulative region. In certain aspects, the semiconductor variable capacitor may include a second insulator region disposed above the semiconductor region and a second semiconductor region disposed above the second insulator region.Type: GrantFiled: April 5, 2018Date of Patent: November 17, 2020Assignee: QUALCOMM IncorporatedInventors: Fabio Alessio Marino, Sinan Goktepeli, Narasimhulu Kanike, Qingqing Liang, Paolo Menegoli, Francesco Carobolante, Aristotele Hadjichristos
-
Patent number: 10804845Abstract: For communication across a capacitively coupled channel, an example circuit includes a first plate substantially parallel to a substrate, forming a first capacitance intermediate the first plate and the substrate. A second plate is substantially parallel to the substrate and the first plate, the first plate intermediate the substrate and the second plate. A third plate is substantially parallel to the substrate, forming a second capacitance intermediate the third plate and the substrate. A fourth plate is substantially parallel to the substrate and the third plate, the third plate intermediate the substrate and the fourth plate. An inductor is connected to the first plate and the third plate, the inductor to, in combination with the first capacitance and the second capacitance, form an LC amplifier.Type: GrantFiled: October 14, 2019Date of Patent: October 13, 2020Assignee: TEXAS INSTRUMENTS INCORPORATEDInventors: Subhashish Mukherjee, Kumar Anurag Shrivastava, Sreeram Subramanyam Nasum
-
Patent number: 10734987Abstract: A radio frequency, RF, switch device includes a plurality of switch units, wherein the switch units are coupled in series between a first series terminal and a second series terminal to establish a switchable RF path; and a plurality of ballasting capacitor units, wherein each ballasting capacitor unit is coupled in parallel to a respective switch unit, to provide a selectable capacitance in parallel to a signal path of the respective switch unit, wherein each ballasting capacitor unit includes at least one ballasting capacitor switch element to switch the capacitance of the ballasting capacitor unit between a first capacitance value and a second capacitance value, wherein the second capacitance value is larger than the first capacitance value.Type: GrantFiled: July 9, 2019Date of Patent: August 4, 2020Assignee: INFINEON TECHNOLOGIES AGInventors: Valentyn Solomko, Carsten Ahrens, Winfried Bakalski, Andrea Cattaneo, Bernd Schleicher
-
Patent number: 10644124Abstract: A gate stack structure for a MOS varactor includes a substrate including a channel region, a high-k dielectric layer on the channel region of the substrate, a P-type work function adjustment layer on the high-k dielectric layer, an N-type work function adjustment layer on the P-type work function adjustment layer, and a metal gate on the N-type work function adjustment layer. The P-type work function adjustment layer includes a first portion and a second portion laterally adjacent to each other, the first portion having a thickness greater than a thickness of the second portion. The gate stack structure in the MOS varactor can increase the tuning range of the MOS varactor.Type: GrantFiled: December 10, 2018Date of Patent: May 5, 2020Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATIONInventor: Yong Li
-
Patent number: 10586878Abstract: Embodiments are provided herein for low loss coupling capacitor structures. The embodiments include a n-type varactor (NVAR) configuration and p-type varactor (PVAR) configuration. The structure in the NVAR configuration comprises a p-doped semiconductor substrate (Psub), a deep n-doped semiconductor well (DNW) in the Psub, and a p-doped semiconductor well (P well) in the DNW. The circuit structure further comprises a source terminal of a p-doped semiconductor material within P well, and a drain terminal of the p-doped semiconductor material within the P well. Additionally, the circuit structure comprises an insulated gate on the surface of the P well, a metal pattern comprising a plurality of layers of metal lines, and a plurality of vias through the metal lines. The vias are contacts connecting the metal lines to the gate, the source terminal, and the drain terminal.Type: GrantFiled: December 4, 2017Date of Patent: March 10, 2020Assignee: Futurewei Technologies, Inc.Inventors: Brian Creed, Lawrence Connell, Kent Jaeger, Matthew Richard Miller
-
Patent number: 10469121Abstract: A non-linear shunt circuit is coupled in a shunt-type configuration (e.g., parallel to an RF switch shunt branch) between a main signal line and ground in an RF circuit, and includes a harmonic cancellation element (HCE) (e.g., back-to-back diodes or diode-connected FETs) configured to cancel third harmonics generated on the main signal line by operation of an RF switch. The RF switch includes a series branch made up of multiple FETs coupled in series in the main signal line between a transmitter/receiver circuit and an antenna. The HCE is coupled to the main signal line either by way of a mid-point node or an input/output terminal of the RF switch's series branch. The non-linear shunt circuit also includes optional protection circuits that provide frequency-independent impedance through the HCE. Various techniques (e.g., active biasing) are optionally utilized to increase effectiveness to a wider range of the switch input power levels.Type: GrantFiled: September 20, 2017Date of Patent: November 5, 2019Assignee: Newport Fab, LLCInventors: Paul D. Hurwitz, Roda Kanawati
-
Patent number: 10424641Abstract: Certain aspects of the present disclosure provide a semiconductor device. One example semiconductor device generally includes a first semiconductor region; a first non-insulative region disposed adjacent to a first lateral side of the first semiconductor region; a second non-insulative region disposed adjacent to a second lateral side of the first semiconductor region, the second lateral side being opposite to the first lateral side; a second semiconductor region disposed adjacent to a third lateral side of the first semiconductor region, the second semiconductor region and the first semiconductor region having at least one of different doping types or different doping concentrations; an insulative layer adjacent to a top side of the first semiconductor region; and a third non-insulative region, the insulative layer being disposed between the third non-insulative region and the first semiconductor region.Type: GrantFiled: April 20, 2018Date of Patent: September 24, 2019Assignee: QUALCOMM IncorporatedInventors: Qingqing Liang, Francesco Carobolante, Fabio Alessio Marino, Narasimhulu Kanike, Paolo Menegoli, Aristotele Hadjichristos
-
Patent number: 10403680Abstract: A switch device according to an embodiment of the technology includes a first electrode, a second electrode that is disposed to face the first electrode, and a switch layer that is provided between the first electrode and the second electrode. The switch layer contains a chalcogen element. The switch layer includes a first region and a second region which have different composition ratios of one or more of chalcogen elements or different types of the one or more of chalcogen elements. The first region is provided close to the first electrode. The second region is provided closer to the second electrode than the first region.Type: GrantFiled: March 16, 2016Date of Patent: September 3, 2019Assignee: Sony Semiconductor Solutions CorporationInventors: Kazuhiro Ohba, Hiroaki Sei, Seiji Nonoguchi, Takeyuki Sone, Minoru Ikarashi
-
Patent number: 10333525Abstract: An apparatus includes a temperature sensor, a digitally-controlled capacitor and a processor. The temperature sensor is coupled to a crystal oscillator and configured to generate an input signal depending on a temperature of the crystal oscillator. The digitally-controlled capacitor is connected to the crystal oscillator and configured to receive a control signal and, based on the control signal, to control a frequency of an output signal generated by the crystal oscillator. The processor is configured to receive the input signal from the temperature sensor, to convert the input signal into the control signal based on parameters that characterize the crystal oscillator and the digitally-controlled capacitor, and to apply the control signal to the digitally-controlled capacitor.Type: GrantFiled: December 6, 2016Date of Patent: June 25, 2019Assignee: MARVELL INTERNATIONAL LTD.Inventors: Gabriele Gandolfi, Giacomo Bernardi, Marco Bongiorni, Michele Chiabrera, Vittorio Colonna, Alberto Demarziani, Stefano Marchese, Alessio Pelle, Francesco Rezzi, Alessandro Savo
-
Patent number: 10211537Abstract: An apparatus (180) comprising: a first conductive layer (30) defining a first slot (46) having an open end and a closed end, the first slot (46) being configured to receive an inductive coupler (64) therein; and a capacitive member configured to tune the first conductive layer (30) to resonate in an operational frequency band.Type: GrantFiled: February 22, 2013Date of Patent: February 19, 2019Assignee: NOKIA TECHNOLOGIES OYInventor: Ilkka Tahtinen
-
Patent number: 10186593Abstract: A gate stack structure for a MOS varactor includes a substrate including a channel region, a high-k dielectric layer on the channel region of the substrate, a P-type work function adjustment layer on the high-k dielectric layer, an N-type work function adjustment layer on the P-type work function adjustment layer, and a metal gate on the N-type work function adjustment layer. The P-type work function adjustment layer includes a first portion and a second portion laterally adjacent to each other, the first portion having a thickness greater than a thickness of the second portion. The gate stack structure in the MOS varactor can increase the tuning range of the MOS varactor.Type: GrantFiled: April 18, 2017Date of Patent: January 22, 2019Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATIONInventor: Yong Li
-
Patent number: 10177225Abstract: The electronic component includes a semiconductor substrate, a first doped region, a second doped region, a gate structure, a dielectric layer and a conductive portion. The semiconductor substrate has an upper surface. first doped region embedded in the semiconductor substrate. The second doped region is embedded in the semiconductor substrate. The gate structure is formed on the upper surface. The dielectric layer is formed above the upper surface and located between the first doped region and the second doped region. The conductive portion is formed on the dielectric layer.Type: GrantFiled: July 11, 2016Date of Patent: January 8, 2019Assignee: MEDIATEK INC.Inventors: Yan-Liang Ji, Cheng-Hua Lin, Puo-Yu Chiang
-
Patent number: 10084057Abstract: The present disclosure provides in one aspect a semiconductor device including a substrate structure comprising an active semiconductor material formed over a base substrate and a buried insulating material formed between the active semiconductor material and the base substrate, a ferroelectric gate structure disposed over the active semiconductor material in an active region of the substrate structure, the ferroelectric gate structure comprising a gate electrode and a ferroelectric material layer, and a contact region formed in the base substrate under the ferroelectric gate structure.Type: GrantFiled: August 16, 2016Date of Patent: September 25, 2018Assignee: GLOBALFOUNDRIES Inc.Inventors: Sven Beyer, Martin Trentzsch, Stefan Flachowsky, Axel Henke
-
Patent number: 9985145Abstract: Certain aspects of the present disclosure provide a semiconductor capacitor. The semiconductor capacitor generally includes a first non-insulative region disposed above an insulative layer, an insulative region, and a second non-insulative region disposed adjacent to the insulative region, wherein the insulative layer is disposed above the second non-insulative region and the insulative region. In some cases, at least a portion of the insulative region is disposed above one or more portions of the second non-insulative region.Type: GrantFiled: April 21, 2017Date of Patent: May 29, 2018Assignee: QUALCOMM IncorporatedInventors: Qingqing Liang, Francesco Carobolante, Fabio Alessio Marino, Narasimhulu Kanike
-
Patent number: 9929718Abstract: In wireless communications, many radio frequency bands are used. For each frequency band, there are two frequencies one for transmit and the other for receive. As the band widths are small and separation between adjacent bands is also small, many band pass filters with different band pass frequencies are required for each communication unit such as mobile handset. The present invention provides frequency tunable film bulk acoustic resonators (FBAR) with different structures. Thin film biasing resistors are integrated into the FBAR structure for DC biasing and RF isolation. A plurality of the present tunable FBARs are connected to form microwave filters with tunable bandpass frequencies and oscillators with selectable resonating frequencies by varying DC biasing voltages to the resonators.Type: GrantFiled: September 6, 2016Date of Patent: March 27, 2018Inventors: Cindy X. Qiu, Ishiang Shih, Chunong Qiu, Andy Shih, Julia Qiu, Yi-Chi Shih
-
Patent number: 9819327Abstract: Techniques and configurations are disclosed for bulk acoustic wave resonator (BAWR) tuner circuits and their use in integrated circuit (IC) packages and mobile communication devices for radio frequency (RF) communication. In some embodiments, a mobile communication device may include an antenna; a transmitter circuit having an output port, a tuner circuit having one or more BAWRs, an antenna port coupled to the antenna, a transmitter port coupled to the output port of the transmitter circuit, and a control port; and a control circuit, coupled to the control port, configured to adjust an impedance of the tuner circuit, via adjustment of a BAWR or another component of the tuner circuit, based at least in part on an impedance of the antenna. Other embodiments may be described and/or claimed.Type: GrantFiled: June 26, 2013Date of Patent: November 14, 2017Assignee: INTEL IP CORPORATIONInventors: Saravana Maruthamuthu, Thorsten Meyer, Pablo Herrero, Andreas Wolter, Georg Seidemann, Mikael Knudsen, Pauli Jaervinen
-
Patent number: 9799279Abstract: Introduced here are methods and systems to create a relief on an electronic display. In one embodiment, the relief is created by micro-electromechanical systems (MEMS) placed above a cover layer of the electronic display. Each MEMS when activated can protrude or depress, thus creating the relief on the electronic display. In another embodiment, the relief is created by a plurality of resistors placed beneath the cover layer. The cover layer is made out of an elastically deformable material that, when heated, expands, thus creating a protrusion on the electronic display. Each resistor when activated heats a section of the cover layer, causing the cover layer to protrude.Type: GrantFiled: October 3, 2016Date of Patent: October 24, 2017Assignee: ESSENTIAL PRODUCTS, INC.Inventors: David John Evans, V, Andrew E. Rubin, Xinrui Jiang, Xiaoyu Miao, Joseph Anthony Tate, Matthew Hershenson, Jason Sean Gagne-Keats, Michael Kolb
-
Patent number: 9595620Abstract: A MOS varactor includes a first N-type junction region and a second N-type junction region spaced apart from each other by a channel region, a gate insulation layer disposed on the channel region, a gate electrode disposed on the gate insulation layer, and an N-type well region including the channel region and surrounding the first and second N-type junction regions. The N-type well region exhibits a maximum impurity concentration in the channel region.Type: GrantFiled: February 1, 2016Date of Patent: March 14, 2017Assignee: SK Hynix Inc.Inventors: Soon Yeol Park, Sang Hyun Lee
-
Patent number: 9508750Abstract: A gate wiring, a source electrode, a source-electrode connecting wiring, a pixel electrode, a gate-terminal extraction electrode, and a source-terminal extraction electrode are formed in the same layer on a planarization insulating film. The gate wiring is connected to a gate electrode through a gate-electrode-portion contact hole. The source electrode is connected to a semiconductor film through a source-electrode-portion contact hole. The source-electrode connecting wiring is connected to the semiconductor film and a source wiring through the source-electrode-portion contact hole and a source-wiring-portion contact hole, respectively. The pixel electrode is connected to the semiconductor film through a drain (pixel)-electrode-portion contact hole.Type: GrantFiled: November 25, 2014Date of Patent: November 29, 2016Assignee: Mitsubishi Electric CorporationInventors: Kyosuke Hiwatashi, Kazunori Inoue, Kouji Oda, Nobuaki Ishiga, Kensuke Nagayama, Naoki Tsumura
-
Patent number: 9449916Abstract: A radio-frequency integrated circuit (RFIC) includes a substrate, an N-type deep well region disposed in an upper region of the substrate and having a top surface coplanar with a top surface of the substrate, an inductor disposed over the N-type deep well region; and an insulation layer disposed between the inductor and the N-type deep well region, wherein the inductor is electrically insulated from the N-type deep well region by the insulation layer.Type: GrantFiled: April 20, 2015Date of Patent: September 20, 2016Assignee: SK Hynix Inc.Inventor: Jung Hun Choi
-
Patent number: 9419215Abstract: Cross-point memory cells, non-volatile memory arrays, methods of reading a memory cell, methods of programming a memory cell, and methods of writing to and reading from a memory cell are described. In one embodiment, a cross-point memory cell includes a word line extending in a first direction, a bit line extending in a second direction different from the first direction, the bit line and the word line crossing without physically contacting each other, and a capacitor formed between the word line and the bit line where such cross. The capacitor comprises a dielectric material configured to prevent DC current from flowing from the word line to the bit line and from the bit line to the word line.Type: GrantFiled: December 1, 2014Date of Patent: August 16, 2016Assignee: Micron Technology, Inc.Inventor: Roy E. Meade
-
Patent number: 9331265Abstract: A linear hot-electron injection technique is provided for a non-volatile memory arrangement. The non-volatile memory is comprised of: a floating gate transistor; a capacitor with a first terminal electrically coupled to the gate node of the floating gate transistor; a current reference circuit electrically coupled to the source node of the floating gate transistor; and a feedback circuit electrically coupled between the source node of the floating gate transistor and a second terminal of the capacitor. The feedback circuit operates to adjust a voltage at the gate node of the floating gate transistor in accordance with a source-to-drain voltage across the floating gate transistor.Type: GrantFiled: January 28, 2013Date of Patent: May 3, 2016Assignee: Board of Trustees of Michigan State UniversityInventor: Shantanu Chakrabartty
-
Patent number: 9318485Abstract: In various embodiments, a capacitor arrangement is provided, which may include a substrate; a plurality of first doped regions and a plurality of second doped regions, wherein the first doped regions are doped with dopants of a first conductivity type and the second doped regions are doped with dopants of a second conductivity type being opposite to the first conductivity type, and wherein the plurality of first doped regions and the plurality of second doped regions are alternatingly arranged next to each other in the substrate; a dielectric layer disposed over the plurality of first doped regions and the plurality of second doped regions; an electrode disposed over the dielectric layer; a first terminal electrically coupled to each doped region of the plurality of first doped regions and the plurality of second doped regions; and a second terminal electrically coupled to the electrode.Type: GrantFiled: August 10, 2012Date of Patent: April 19, 2016Assignee: INFINEON TECHNOLOGIES AGInventor: Dietrich Bonart
-
Patent number: 9075105Abstract: Methods and apparatus are disclosed for wirelessly communicating among integrated circuits and/or functional modules within the integrated circuits. A semiconductor device fabrication operation uses a predetermined sequence of photographic and/or chemical processing steps to form one or more functional modules onto a semiconductor substrate. The functional modules are coupled to an integrated waveguide that is formed onto the semiconductor substrate and/or attached thereto to form an integrated circuit. The functional modules communicate with each other as well as to other integrated circuits using a multiple access transmission scheme via the integrated waveguide. One or more integrated circuits may be coupled to an integrated circuit carrier to form Multichip Module. The Multichip Module may be coupled to a semiconductor package to form a packaged integrated circuit.Type: GrantFiled: September 29, 2011Date of Patent: July 7, 2015Assignee: Broadcom CorporationInventors: Jesus Alfonso Castaneda, Arya Reza Behzad, Ahmadreza Rofougaran, Sam Ziqun Zhao, Michael Boers
-
Patent number: 9073749Abstract: A method of fabricating a pressure sensor includes performing a chemical vapor deposition (CVD) process to deposit a first sacrificial layer having a first thickness onto a substrate. A portion of the first sacrificial layer is then removed down to the substrate to form a central region of bare silicon. One of a thermal oxidation process and an atomic layer deposition process is then performed to form a second sacrificial layer on the substrate having a second thickness in the central region that is less than the first thickness. A cap layer is then deposited over the first and second sacrificial layers.Type: GrantFiled: December 5, 2012Date of Patent: July 7, 2015Assignee: Robert Bosch GmbHInventors: Andrew B. Graham, Gary Yama, Gary O'Brien
-
Patent number: 9070791Abstract: Disclosed are embodiments of a design structure transistor that operates as a capacitor and an associated method of tuning capacitance within such a capacitor. The embodiments of the capacitor comprise a field effect transistor with front and back gates above and below a semiconductor layer, respectively. The capacitance value exhibited by the capacitor can be selectively varied between two different values by changing the voltage condition in a source/drain region of the transistor, e.g., using a switch or resistor between the source/drain region and a voltage supply. Alternatively, the capacitance value exhibited by the capacitor can be selectively varied between multiple different values by changing voltage conditions in one or more of multiple channel regions that are flanked by multiple source/drain regions within the transistor. The capacitor will exhibit different capacitance values depending upon the conductivity in each of the channel regions.Type: GrantFiled: October 25, 2007Date of Patent: June 30, 2015Assignee: International Business Machines CorporationInventors: Corey K. Barrows, Joseph A. Iadanza, Edward J. Nowak, Douglas W. Stout, Mark S. Styduhar
-
Patent number: 8957468Abstract: A variable capacitor with high controllability and stable operation is provided. A liquid crystal display device with low power consumption and excellent display quality is provided. A variable capacitor is formed using two overlapping electrodes of different areas and a substantially intrinsic semiconductor layer formed in contact with one of the electrodes. According to the voltage applied to the electrodes, the semiconductor layer can be considered as a dielectric or a conductor, thereby allowing varying the capacitance of the variable capacitor. The variable capacitor is applied to pixels of a liquid crystal display device configured to switch between a low capacitance and a high capacitance of the variable capacitor in accordance with a moving image display mode and a still image display mode, respectively, whereby a liquid crystal display device with low power consumption and excellent display quality can be realized.Type: GrantFiled: October 31, 2011Date of Patent: February 17, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventor: Hideki Uochi
-
Patent number: 8952439Abstract: A nonvolatile semiconductor storage device includes a semiconductor substrate on which an element isolation groove is formed, memory cells each including a gate electrode having a charge storage layer, an interelectrode insulating film, and a control electrode, that is formed on the semiconductor substrate via a tunnel insulating film, and an insulating film disposed in the element isolation groove. The interelectrode insulating film is formed to have a first portion above the insulating film that is separated from one of the insulating film and the control electrode by an air gap and a second portion above the charge storage layer that is separated from the charge storage layer by a cavity.Type: GrantFiled: September 7, 2012Date of Patent: February 10, 2015Assignee: Kabushiki Kaisha ToshibaInventor: Ryota Suzuki
-
Patent number: 8946805Abstract: A single poly EEPROM cell in which the read transistor is integrated in either the control gate well or the erase gate well. The lateral separation of the control gate well from erase gate well may be reduced to the width of depletion regions encountered during program and erase operations. A method of forming a single poly EEPROM cell where the read transistor is integrated in either the control gate well or the erase gate well.Type: GrantFiled: August 6, 2009Date of Patent: February 3, 2015Assignee: Texas Instruments IncorporatedInventors: Jozef C. Mitros, Keith Jarreau, Pinghai Hao
-
Patent number: 8941412Abstract: A circuit comprises a control line and a two terminal semiconductor device having a first terminal is coupled to a signal line, and a second terminal coupled to the control line. The semiconductor device has a capacitance when a voltage on the first terminal is above a threshold and has a smaller capacitance when a voltage on the first terminal is below the threshold. A signal is placed on the signal line and a voltage on the control line is modified. When the signal falls below the threshold, the semiconductor device acts as a very small capacitor and the output will be a small value. When the signal is above the threshold, the semiconductor device acts as a large capacitor and the output will be influenced by the signal and the modified voltage on the control line and the signal is amplified.Type: GrantFiled: September 6, 2012Date of Patent: January 27, 2015Assignee: International Business Machines CorporationInventors: Wing K. Luk, Robert H. Dennard
-
Patent number: 8890223Abstract: An integrated circuit includes isolation capacitors which include a silicon dioxide dielectric layer and a polymer dielectric layer over the layer of silicon dioxide. The silicon dioxide dielectric layer and the polymer dielectric layer extend across the integrated circuit. Top plates of the isolation capacitors have bond pads for wire bonds or bump bonds. Bottom plates of the isolation capacitors are connected to components of the integrated circuit. Other bond pads are connected to components in the integrated circuit through vias through the silicon dioxide dielectric layer and the polymer dielectric layer.Type: GrantFiled: August 6, 2013Date of Patent: November 18, 2014Assignee: Texas Instruments IncorporatedInventors: Thomas Dyer Bonifield, Byron Williams, Shrinivasan Jaganathan
-
Patent number: 8829582Abstract: A semiconductor device includes MOS transistors, capacitor elements, a voltage generating circuit, a contact plug, and a memory cell. The MOS transistor and the capacitor element are formed on a first one of the element regions and a second one of the element regions, respectively. In the voltage generating circuit, current paths of the MOS transistors are series-connected and the capacitor elements are connected to the source or drain of the MOS transistors. The contact plug is formed on the source or the drain to connect the MOS transistors or one of the MOS transistors and one of the capacitor elements. A distance between the gate and the contact plug both for a first one of the MOS transistors located in the final stage in the series connection is larger than that for a second one of the MOS transistors located in the initial stage in the series connection.Type: GrantFiled: September 23, 2011Date of Patent: September 9, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Mitsuhiro Noguchi, Kenji Gomikawa
-
Publication number: 20140239364Abstract: Apparatus and methods for a MOS varactor structure are disclosed. An apparatus is provided, comprising an active area defined in a portion of a semiconductor substrate; a doped well region in the active area extending into the semiconductor substrate; at least two gate structures disposed in parallel over the doped well region; source and drain regions disposed in the well region formed on opposing sides of the gate structures; a gate connector formed in a first metal layer overlying the at least two gate structures and electrically coupling the at least two gate structures; source and drain connectors formed in a second metal layer and electrically coupled to the source and drain regions; and interlevel dielectric material separating the source and drain connectors in the second metal layer from the gate connector formed in the first metal layer. Methods for forming the structure are disclosed.Type: ApplicationFiled: April 28, 2014Publication date: August 28, 2014Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.Inventors: Chi-Feng Huang, Chia-Chung Chen
-
Publication number: 20140232451Abstract: Methods and apparatus for implementing variable, e.g., tunable, 3 terminal capacitance devices are described. In various embodiments vertical control pillars spaced apart from one another extend in a well having an opposite polarity than the polarity of the control pillars. The control pillars are arranged in a line that extends parallel to but between a deep trench gate and a well pickup. By varying the voltage applied to the control pillars the size of the depletion zone around the pillars can be varied resulting in a change in capacitance between the trench gate and pickup terminal connected to the well pickup. The generally vertical nature of the control pillars facilities control over a wide range of voltages while allowing for manufacturing using common semiconductor manufacturing steps making the device easy to implement on a chip with other semiconductor devices.Type: ApplicationFiled: February 19, 2013Publication date: August 21, 2014Applicant: QUALCOMM INCORPORATEDInventor: Ranadeep Dutta
-
Patent number: 8785998Abstract: A semiconductor memory device includes a first pair of pillars extending from a substrate to form vertical channel regions, the first pair of pillars having a first pillar and a second pillar adjacent to each other, the first pillar and the second pillar arranged in a first direction, a first bit line disposed on a bottom surface of a first trench formed between the first pair of pillars, the first bit line extending in a second direction that is substantially perpendicular to the first direction, a first contact gate disposed on a first surface of the first pillar with a first gate insulating layer therebetween, a second contact gate disposed on a first surface of the second pillar with a second gate insulating layer therebetween, the first surface of the first pillar and the first surface of the second pillar face opposite directions, and a first word line disposed on the first contact gate and a second word line disposed on the second contact gate, the word lines extending in the first direction.Type: GrantFiled: December 21, 2012Date of Patent: July 22, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Hyung-woo Chung, Yong-chul Oh, Yoo-sang Hwang, Gyo-young Jin, Hyeong-sun Hong, Dae-ik Kim
-
Patent number: 8786002Abstract: In terms of achieving a reduction in the cost of an antenna switch, there is provided a technology capable of minimizing harmonic distortion generated in the antenna switch even when the antenna switch is particularly formed of field effect transistors formed over a silicon substrate. Between the source region and the drain region of each of a plurality of MISFETs coupled in series, a distortion compensating capacitance circuit is coupled which has a voltage dependency such that, in either of the cases where a positive voltage is applied to the drain region based on the potential of the source region and where a negative voltage is applied to the drain region based on the potential of the source region, the capacitance decreases to a value smaller than that in a state where the potential of the source region and the potential of the drain region are at the same level.Type: GrantFiled: June 2, 2011Date of Patent: July 22, 2014Assignee: Renesas Electronics CorporationInventors: Masao Kondo, Masatoshi Morikawa, Satoshi Goto
-
Patent number: 8766403Abstract: Semiconductor devices having capacitor arrays and methods of forming the same. A semiconductor device is formed including a capacitor array. The capacitor array includes a plurality of operational capacitors formed along a diagonal of the capacitor array. The capacitor array also includes a plurality of dummy capacitors formed substantially symmetrically about the plurality of operational capacitors in the capacitor array. A first operational capacitor is formed at a first edge of the capacitor array. Each one of the plurality of operational capacitors is electrically coupled to a non-adjacent other one of the plurality of operational capacitors.Type: GrantFiled: February 6, 2012Date of Patent: July 1, 2014Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Chi-Feng Huang, Chia-Chung Chen
-
Patent number: 8742485Abstract: In one exemplary embodiment of the invention, a method includes: providing an inversion mode varactor having a substrate, a backgate layer overlying the substrate, an insulating layer overlying the backgate layer, a semiconductor layer overlying the insulating layer and at least one metal-oxide semiconductor field effect transistor (MOSFET) device disposed upon the semiconductor layer, where the semiconductor layer includes a source region and a drain region, where the at least one MOSFET device includes a gate stack defining a channel between the source region and the drain region, where the gate stack has a gate dielectric layer overlying the semiconductor layer and a conductive layer overlying the gate dielectric layer; and applying a bias voltage to the backgate layer to form an inversion region in the semiconductor layer at an interface between the semiconductor layer and the insulating layer.Type: GrantFiled: October 23, 2013Date of Patent: June 3, 2014Assignee: International Business Machines CorporationInventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni
-
Patent number: 8722547Abstract: Wafers having a high K dielectric layer and an oxide or nitride containing layer are etched in an inductively coupled plasma processing chamber by applying a source power to generate an inductively coupled plasma, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 100° C. and 350° C., and etching the wafer with a selectivity of high K dielectric to oxide or nitride greater than 10:1. Wafers having an oxide layer and a nitride layer are etched in a reactive ion etch processing chamber by applying a bias power to the wafer, introducing into the chamber a gas including BCl3, setting the temperature of the wafer to be between 20° C. and 200° C., and etching the wafer with an oxide to nitride selectivity greater than 10:1.Type: GrantFiled: April 17, 2007Date of Patent: May 13, 2014Assignee: Applied Materials, Inc.Inventors: Radhika Mani, Nicolas Gani, Wei Liu, Meihua Shen, Shashank C. Deshmukh
-
Patent number: 8664691Abstract: A silicon photomultiplier maintains the photon detection efficiency high while increasing a dynamic range, by reducing the degradation of an effective fill factor that follows the increase of cell number density intended for a dynamic range enhancement.Type: GrantFiled: December 19, 2011Date of Patent: March 4, 2014Assignee: Electronics and Telecommunications Research InstituteInventor: Joon Sung Lee
-
Patent number: 8614472Abstract: An integrated circuit metal oxide metal (MOM) variable capacitor includes a first plate; one or more pairs of second plates positioned on both sides of the first plate; one or more pairs of control plates positioned on both sides of the first plate and positioned between the pairs of second plates; and a switch coupled to each control plate and a fixed potential.Type: GrantFiled: August 19, 2011Date of Patent: December 24, 2013Assignee: Integrated Device Technology, Inc.Inventors: Syed S. Islam, Mansour Keramat
-
Patent number: 8592979Abstract: A conductive pattern structure includes a first insulating interlayer on a substrate, metal wiring on the first insulating interlayer, a second insulating interlayer on the metal wiring, and first and second metal contacts extending through the second insulating interlayer. The first metal contacts contact the metal wiring in a cell region and the second metal contact contacts the metal wiring in a peripheral region. A third insulating interlayer is disposed on the second insulating interlayer. Conductive segments extend through the third insulating interlayer in the cell region and contact the first metal contacts. Another conductive segment extends through the third insulating interlayer in the peripheral region and contacts the second metal contact. The structure facilitates the forming of uniformly thick wiring in the cell region using an electroplating process.Type: GrantFiled: April 5, 2012Date of Patent: November 26, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Hei-Seung Kim, Gil-Heyun Choi, Ji-Soon Park, Jong-Myeong Lee
-
Patent number: 8575533Abstract: The present invention discloses a high dynamic range imager circuit and a method for reading high dynamic range image with an adaptive conversion gain. The high dynamic range image circuit includes a variable capacitor. The capacitance of the variable capacitor is adjusted according to sensed light intensity or by internal feedback control, to adaptively adjust the conversion gain of the high dynamic range image circuit as it reads a signal which relates to a pixel image sensed by an image sensor device. In each cycle, the signal can be read twice or more with different dynamic ranges, to enhance the accuracy of the signal.Type: GrantFiled: November 9, 2011Date of Patent: November 5, 2013Assignee: Pixart Imaging Incorporation, R.O.C.Inventors: Wen-Cheng Yen, Ching-Wei Chen, Chao-Chi Lee
-
Patent number: 8574984Abstract: A method of manufacturing a semiconductor integrated circuit device includes defining a first area by forming a separating area on a substrate, and forming a tunnel film in the first area, a floating gate on the tunnel film, a first electrode in the separating area, a first film on the floating gate, a second film on the first electrode, a control gate on the first film, a second electrode on the second film, and source and drain areas in the first area. The method includes forming a first interlayer film to cover the control gate and the second electrode, forming, in the first interlayer film, a conductive via plug reaching the second electrode, and forming, on the first interlayer film, a second wiring electrically coupled to the second electrode via the conductive via plug, and a first wiring that is capacitively-coupled to the second wiring and to the second electrode.Type: GrantFiled: June 29, 2012Date of Patent: November 5, 2013Assignee: Fujitsu Semiconductor LimitedInventor: Toru Anezaki
-
Patent number: 8569815Abstract: A method of manufacturing a semiconductor integrated circuit device includes defining a first area by forming a separating area on a substrate, and forming a tunnel film in the first area, a floating gate on the tunnel film, a first electrode in the separating area, a first film on the floating gate, a second film on the first electrode, a control gate on the first film, a second electrode on the second film, and source and drain areas in the first area. The method includes forming a first interlayer film to cover the control gate and the second electrode, forming, in the first interlayer film, a conductive via plug reaching the second electrode, and forming, on the first interlayer film, a second wiring electrically coupled to the second electrode via the conductive via plug, and a first wiring that is capacitively-coupled to the second wiring and to the second electrode.Type: GrantFiled: March 30, 2011Date of Patent: October 29, 2013Assignee: Fujitsu Semiconductor LimitedInventor: Toru Anezaki
-
Patent number: 8564040Abstract: In one exemplary embodiment of the invention, a method includes: providing an inversion mode varactor having a substrate, a backgate layer overlying the substrate, an insulating layer overlying the backgate layer, a semiconductor layer overlying the insulating layer and at least one metal-oxide semiconductor field effect transistor (MOSFET) device disposed upon the semiconductor layer, where the semiconductor layer includes a source region and a drain region, where the at least one MOSFET device includes a gate stack defining a channel between the source region and the drain region, where the gate stack has a gate dielectric layer overlying the semiconductor layer and a conductive layer overlying the gate dielectric layer; and applying a bias voltage to the backgate layer to form an inversion region in the semiconductor layer at an interface between the semiconductor layer and the insulating layer.Type: GrantFiled: August 9, 2012Date of Patent: October 22, 2013Assignee: International Business Machines CorporationInventors: Bruce B. Doris, Kangguo Cheng, Ali Khakifirooz, Pranita Kulkarni
-
Patent number: 8558209Abstract: Some embodiments include a memory cell having a data storage region between a pair of conductive structures. The data storage region is configured to support a transitory structure which alters resistance through the memory cell. The data storage region includes two or more portions, with one of the portions supporting a higher resistance segment of the transitory structure than another of the portions. Some embodiments include a method of forming a memory cell. First oxide and second oxide regions are formed between a pair of conductive structures. The oxide regions are configured to support a transitory structure which alters resistance through the memory cell. The oxide regions are different from one another so that one of the oxide regions supports a higher resistance segment of the transitory structure than the other.Type: GrantFiled: May 4, 2012Date of Patent: October 15, 2013Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, Sumeet C. Pandey