With Specified Physical Layout (e.g., Ring Gate, Source/drain Regions Shared Between Plural Fets, Plural Sections Connected In Parallel To Form Power Mosfet) Patents (Class 257/401)
  • Patent number: 11688644
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate having adjacent first and second fins protruding from the substrate. A first gate structure and a second gate structure are across the first and second fins, respectively. An insulating structure is formed between the first gate structure and the second gate structure and includes a first insulating layer separating the first fin from the second fin, a capping structure formed in the first insulating layer, and a second insulating layer covered by the first insulating layer and the capping structure.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: June 27, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chu-An Lee, Chen-Hao Wu, Peng-Chung Jangjian, Chun-Wen Hsiao, Teng-Chun Tsai, Huang-Lin Chao
  • Patent number: 11676866
    Abstract: A method for forming a semiconductor arrangement comprises forming a first fin in a semiconductor layer. A first gate dielectric layer includes a first high-k material is formed over the first fin. A first sacrificial gate electrode is formed over the first fin. A dielectric layer is formed adjacent the first sacrificial gate electrode and over the first fin. The first sacrificial gate electrode is removed to define a first gate cavity in the dielectric layer. A second gate dielectric layer including a second dielectric material different than the first high-k material is formed over the first gate dielectric layer in the first gate cavity. A first gate electrode is formed in the first gate cavity over the second gate dielectric layer.
    Type: Grant
    Filed: May 31, 2021
    Date of Patent: June 13, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Lung-Kun Chu, Mao-Lin Huang, Chung-Wei Hsu
  • Patent number: 11677027
    Abstract: A semiconductor device including a source/drain region having a V-shaped bottom surface and extending below gate spacers adjacent a gate stack and a method of forming the same are disclosed. In an embodiment, a method includes forming a gate stack over a fin; forming a gate spacer on a sidewall of the gate stack; etching the fin with a first anisotropic etch process to form a first recess adjacent the gate spacer; etching the fin with a second etch process using etchants different from the first etch process to remove an etching residue from the first recess; etching surfaces of the first recess with a third anisotropic etch process using etchants different from the first etch process to form a second recess extending below the gate spacer and having a V-shaped bottom surface; and epitaxially forming a source/drain region in the second recess.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: June 13, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chien-Wei Lee, Hsueh-Chang Sung, Yen-Ru Lee, Jyun-Chih Lin, Tzu-Hsiang Hsu, Feng-Cheng Yang
  • Patent number: 11670701
    Abstract: A semiconductor device including a substrate including first and second regions, a first transistor on the first region and including a first semiconductor pattern protruding from the first region; a first gate structure covering an upper surface and sidewall of the first semiconductor pattern; first source/drain layers on the first semiconductor pattern at opposite sides of the first gate structure, upper surfaces of the first source/drain layers being closer to the substrate than an uppermost surface of the first gate structure; and a second transistor on the second region and including a second semiconductor pattern protruding from the second region; a second gate structure covering a sidewall of the second semiconductor pattern; and a second source/drain layer under the second semiconductor pattern; and a third source/drain layer on the second semiconductor pattern, wherein the upper surface of the first region is lower than the upper surface of the second region.
    Type: Grant
    Filed: September 14, 2020
    Date of Patent: June 6, 2023
    Inventors: Seungchan Yun, Donghwan Han
  • Patent number: 11664366
    Abstract: A layout of a semiconductor device and a method of forming a semiconductor device, the semiconductor device include a first fin and a second fin disposed on a substrate, a gate and a spacer. The first fin and the second fin both include two opposite edges, and the gate completely covers the two opposite edges of the first fin and only covers one sidewall of the two opposite edges of the second fin. The spacer is disposed at two sides of the gate, and the spacer covers another sidewall of the two opposite edges of the second fin.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: May 30, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Yu-Cheng Tung
  • Patent number: 11658236
    Abstract: A III-nitride semiconductor based heterojunction power device including: a first heterojunction transistor formed on a substrate, and a second heterojunction transistor formed on the substrate. One of the first heterojunction transistor and the second heterojunction transistor is an enhancement mode field effect transistor and the other one of the first heterojunction transistor and the second heterojunction transistor is a depletion mode field effect transistor. The enhancement mode transistor acts as a main power switch, and the depletion mode transistor acts as a start-up component.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: May 23, 2023
    Assignee: CAMBRIDGE GAN DEVICES LIMITED
    Inventors: Florin Udrea, Loizos Efthymiou, Giorgia Longobardi, Martin Arnold
  • Patent number: 11646318
    Abstract: In vertically stacked device structures, a buried interconnect and bottom contacts can be formed, thereby allowing connections to be made to device terminals from both below and above the stacked device structures. Techniques herein include a structure that enables electrical access to each independent device terminal of multiple devices, stacked on top of each other, without interfering with other devices and the local connections that are needed.
    Type: Grant
    Filed: May 21, 2021
    Date of Patent: May 9, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Daniel Chanemougame, Lars Liebmann, Jeffrey Smith
  • Patent number: 11646377
    Abstract: In accordance with some embodiments, a source/drain contact is formed by exposing a source/drain region through a first dielectric layer and a second dielectric layer. The second dielectric layer is recessed under the first dielectric layer, and a silicide region is formed on the source/drain region, wherein the silicide region has an expanded width.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: May 9, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Wei-Ting Chien, Su-Hao Liu, Liang-Yin Chen, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11640941
    Abstract: Embodiments of the present disclosure provide semiconductor device structures. In one embodiment, the semiconductor device structure includes a gate dielectric layer, a gate electrode layer in contact with the gate dielectric layer, a first self-aligned contact (SAC) layer disposed over the gate electrode layer, an isolation layer disposed between the gate electrode layer and the first SAC layer, and a first sidewall spacer in contact with the gate dielectric layer, the isolation layer, and the first SAC layer.
    Type: Grant
    Filed: February 25, 2021
    Date of Patent: May 2, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Sheng-Tsung Wang, Lin-Yu Huang, Cheng-Chi Chuang, Chih-Hao Wang
  • Patent number: 11637108
    Abstract: A method of forming a memory circuit includes generating a layout design of the memory circuit, and manufacturing the memory circuit based on the layout design. The memory circuit is a four transistor memory cell that includes at least the first pass gate transistor and the first pull up transistor. The generating of the layout design includes generating a first active region layout pattern corresponding to fabricating a first active region of a first pull up transistor, generating a second active region layout pattern corresponding to fabricating a second active region of a first pass gate transistor, and generating a first metal contact layout pattern corresponding to fabricating a first metal contact is electrically coupled to a source of the first pull up transistor. The first metal contact layout pattern extends in a second direction, overlaps a cell boundary of the memory circuit and the first active region layout pattern.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: April 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Hidehiro Fujiwara, Chih-Yu Lin, Hsien-Yu Pan, Yasutoshi Okuno, Yen-Huei Chen, Hung-Jen Liao
  • Patent number: 11637103
    Abstract: A semiconductor device includes a PMOS region and a NMOS region on a substrate, a first fin-shaped structure on the PMOS region, a first single diffusion break (SDB) structure in the first fin-shaped structure, a first gate structure on the first SDB structure, and a second gate structure on the first fin-shaped structure. Preferably, the first gate structure and the second gate structure are of different materials and the first gate structure disposed directly on top of the first SDB structure is a polysilicon gate while the second gate structure disposed on the first fin-shaped structure is a metal gate in the PMOS region.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: April 25, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yen-Wei Tung, Jen-Yu Wang, Cheng-Tung Huang, Yan-Jou Chen
  • Patent number: 11637066
    Abstract: An integrated circuit includes a strip structure having a front side and a back side. A gate structure is on the front side of the strip structure. The integrated circuit includes a plurality of channel layers above the front side of the strip structure, wherein each of the plurality of channel layers is enclosed within the gate structure. An isolation structure surrounds the strip structure. The integrated circuit includes a backside via in the isolation structure. An epitaxy structure is on the front side of the strip structure. The integrated circuit includes a contact over the epitaxy structure. The contact has a first portion on a first side of the epitaxy structure. The first portion of the contact extends into the isolation structure and contacts the backside via. The integrated circuit includes a backside power rail on the back side of the strip structure and contacting the backside via.
    Type: Grant
    Filed: January 5, 2021
    Date of Patent: April 25, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Wei Peng, Wei-Cheng Lin, Cheng-Chi Chuang, Jiann-Tyng Tzeng
  • Patent number: 11637189
    Abstract: The present disclosure relates to the technical field of semiconductors, and provides a semiconductor structure and a forming method thereof. The forming method includes: providing a base and a plurality of stack structures that are located on the base, arranged at intervals, and extend along a first direction, wherein the stack structures each include a plurality of semiconductor layers arranged at intervals in a direction perpendicular to a surface of the base, and a top surface and a bottom surface opposite to each other of each of the semiconductor layers are each provided with a first sacrificial layer, a surface of the first sacrificial layer that is away from the semiconductor layer is provided with a second sacrificial layer, a same etching process has different etching rates for the first sacrificial layer and the second sacrificial layer, an isolation layer is provided between adjacent ones of the stack structures.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: April 25, 2023
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Guangsu Shao, Deyuan Xiao
  • Patent number: 11626326
    Abstract: A semiconductor device includes a first source/drain structure coupled to an end of a first conduction channel that extends along a first direction. The semiconductor device includes a second source/drain structure coupled to an end of a second conduction channel that extends along the first direction. The semiconductor device includes a first interconnect structure extending through an interlayer dielectric and electrically coupled to the first source/drain structure. The semiconductor device includes a second interconnect structure extending through the interlayer dielectric and electrically coupled to the second source/drain structure. The semiconductor device includes a first isolation structure disposed between the first and second source/drain structures and extending into the interlayer dielectric.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: April 11, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Yu-Lien Huang, Ching-Feng Fu, Huan-Just Lin, Che-Ming Hsu
  • Patent number: 11610983
    Abstract: A semiconductor device includes a substrate, a dielectric isolation structure disposed on the substrate, a semiconductor fin disposed on the substrate and extending through the dielectric isolation structure, first and second dielectric fins disposed on the dielectric isolation structure and sandwiching the semiconductor fin, a dielectric block disposed on the substrate and interfacing with the first and second dielectric fins, and an epitaxial feature over the semiconductor fin. The epitaxial feature has a bottom portion laterally between the first and second dielectric fins.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11610888
    Abstract: A semiconductor device includes a semiconductive substrate, a semiconductive fin, an isolation structure, a source/drain epitaxial structure, a first cap layer, and a second cap layer. The semiconductive fin protrudes from the semiconductive substrate. The isolation structure is over the semiconductive substrate and laterally surrounds the semiconductive fin. The source/drain epitaxial structure is over the semiconductive fin. The source/drain epitaxial structure has a rounded corner extending laterally and a top above the rounded corner. The first cap layer extends from the rounded corner of the source/drain epitaxial structure to the top of the source/drain epitaxial structure. The second cap layer covers the rounded corner and a bottom of the source/drain epitaxial structure. The first and second cap layers are made of different materials.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: March 21, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sung-Li Wang, Pang-Yen Tsai, Yasutoshi Okuno
  • Patent number: 11610886
    Abstract: A multi-fin FINFET device may include a substrate and a plurality of semiconductor fins extending upwardly from the substrate and being spaced apart along the substrate. Each semiconductor fin may have opposing first and second ends and a medial portion therebetween, and outermost fins of the plurality of semiconductor fins may comprise an epitaxial growth barrier on outside surfaces thereof. The FINFET may further include at least one gate overlying the medial portions of the semiconductor fins, a plurality of raised epitaxial semiconductor source regions between the semiconductor fins adjacent the first ends thereof, and a plurality of raised epitaxial semiconductor drain regions between the semiconductor fins adjacent the second ends thereof.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: March 21, 2023
    Assignee: Bell Semiconductor, LLC
    Inventors: Qing Liu, Prasanna Khare, Nicolas Loubet
  • Patent number: 11605635
    Abstract: In an embodiment, a method includes forming a plurality of fins adjacent to a substrate, the plurality of fins comprising a first fin, a second fin, and a third fin; forming a first insulation material adjacent to the plurality of fins; reducing a thickness of the first insulation material; after reducing the thickness of the first insulation material, forming a second insulation material adjacent to the first insulation material and the plurality of fins; and recessing the first insulation material and the second insulation material to form a first shallow trench isolation (STI) region.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: March 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Szu-Ying Chen, Sen-Hong Syue, Li-Ting Wang, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11594634
    Abstract: A FinFET device structure and method for forming the same are provided. The FinFET device structure includes a stop layer formed over a substrate and a fin structure formed over the stop layer. The FinFET device structure includes a gate structure formed over the fin structure and a source/drain (S/D) structure adjacent to the gate structure. A bottom surface of the S/D structure is located at a position that is higher than or level with a bottom surface of the stop layer.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Cheng Chang, Chih-Han Lin
  • Patent number: 11594608
    Abstract: A gate-all-around nanowire device and a method for forming the gate-all-around nanowire device. A first fin and a dielectric layer on the first fin are formed on a substrate. The first fin includes the at least one first epitaxial layer and the at least one second epitaxial layer that are alternately stacked. The dielectric layer exposes a channel region of the first fin. A doping concentration at a lateral surface of the channel region and a doping concentration at a central region of the channel region are different from each other in the at least one second epitaxial layer. After the at least one first epitaxial layer is removed from the channel region, the at least one second epitaxial layer in the channel region serves as at least one nanowire. A gate surrounding the at least one nanowire is formed.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: February 28, 2023
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huaxiang Yin, Jiaxin Yao, Qingzhu Zhang, Zhaohao Zhang, Tianchun Ye
  • Patent number: 11581193
    Abstract: A semiconductor device includes: an isolation insulating layer; fin structures protruding from the isolation insulating layer; gate structures, each having a metal gate and a cap insulating layer disposed over the metal gate; a first source/drain epitaxial layer and a second source/drain epitaxial layer disposed between two adjacent gate structures; and a first conductive contact disposed on the first source/drain epitaxial layer, and a second conductive contact disposed on the second source/drain epitaxial layer; a separation isolation region disposed between the first and second conductive contact; and an insulating layer disposed between the separation isolation region and the isolation insulating layer. The separation isolation region is made of a different material than the insulating layer.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11581412
    Abstract: Contact over active gate (COAG) structures with conductive gate taps are described. In an example, an integrated circuit structure includes a plurality of gate structures above a substrate, each of the gate structures including a gate insulating layer thereon. Each of the plurality of gate structures includes a conductive tap structure protruding through the corresponding gate insulating layer. A plurality of conductive trench contact structures is alternating with the plurality of gate structures, each of the conductive trench contact structures including a trench insulating layer thereon. An interlayer dielectric material is above the trench insulating layers and the gate insulating layers. An opening is in the interlayer dielectric material and exposes the conductive tap structure of one of the plurality of gate structures. A conductive structure is in the opening and is in direct contact with the conductive tap structure of one of the plurality of gate structures.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: February 14, 2023
    Assignee: Intel Corporation
    Inventor: Elliot Tan
  • Patent number: 11581415
    Abstract: A semiconductor structure includes a first stack of semiconductor layers disposed over a semiconductor substrate, where the first stack of semiconductor layers includes a first SiGe layer and a plurality of Si layers disposed over the first SiGe layer and the Si layers are substantially free of Ge, and a second stack of semiconductor layers disposed adjacent to the first stack of semiconductor layers, where the second stack of semiconductor layers includes the first SiGe layer and a plurality of second SiGe layers disposed over the first SiGe layer, and where the first SiGe layer and the second SiGe layers have different compositions. The semiconductor structure further includes a first metal gate stack interleaved with the first stack of semiconductor layers to form a first device and a second metal gate stack interleaved with the second stack of semiconductor layers to form a second device different from the first device.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Guan-Lin Chen, Kuo-Cheng Chiang, Shi Ning Ju, Chih-Hao Wang, Kuan-Lun Cheng
  • Patent number: 11581227
    Abstract: An IC structure includes a semiconductor fin, first and second gate structures, and an isolation structure. The semiconductor fin extends from a substrate. The first gate structure extends above a top surface of the semiconductor fin by a first gate height. The second gate structure is over the semiconductor fin. The isolation structure is between the first and second gate structures, and has a lower dielectric portion embedded in the semiconductor fin and an upper dielectric portion extending above the top surface of the semiconductor fin by a height that is the same as the first gate height. When viewed in a cross section taken along a longitudinal direction of the semiconductor fin, the upper dielectric portion of the isolation structure has a rectangular profile with a width greater than a bottom width of the lower dielectric portion of the isolation structure.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: February 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuei-Ming Chang, Rei-Jay Hsieh, Cheng-Han Wu, Chie-Iuan Lin
  • Patent number: 11575047
    Abstract: Semiconductor device and the manufacturing method thereof are disclosed. An exemplary method of manufacture comprises receiving a substrate including a semiconductor material stack formed thereon, wherein the semiconductor material stack includes a first semiconductor layer of a first semiconductor material and second semiconductor layer of a second semiconductor material that is different than the first semiconductor material. Patterning the semiconductor material stack to form a trench. The patterning includes performing a first etch process with a first etchant for a first duration and then performing a second etch process with a second etchant for a second duration, where the second etchant is different from the first etchant and the second duration is greater than the first duration. The first etch process and the second etch process are repeated a number of times. Then epitaxially growing a third semiconductor layer of the first semiconductor material on a sidewall of the trench.
    Type: Grant
    Filed: May 12, 2021
    Date of Patent: February 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Feng-Ching Chu, Wei-Yang Lee, Chia-Pin Lin
  • Patent number: 11574110
    Abstract: A method of fabricating an integrated circuit structure includes placing a first set of conductive structure layout patterns on a first layout level, placing a second set of conductive structure layout patterns on a second layout level, placing a first set of via layout patterns between the second set of conductive structure layout patterns and the first set of conductive structure layout patterns, and manufacturing the integrated circuit structure based on at least one of the layout patterns of the integrated circuit. At least one of the layout patterns is stored on a non-transitory computer-readable medium, and at least one of the placing operations is performed by a hardware processor. The first set of conductive structure layout patterns extends in a first direction. The second set of conductive structure layout patterns extends in the second direction, and overlap the first set of conductive structure layout patterns.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: February 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jung-Chan Yang, Ting-Wei Chiang, Jerry Chang-Jui Kao, Hui-Zhong Zhuang, Lee-Chung Lu, Li-Chun Tien, Meng-Hung Shen, Shang-Chih Hsieh, Chi-Yu Lu
  • Patent number: 11569389
    Abstract: A semiconductor device includes a fin-type pattern on a substrate, the fin-type pattern extending in a first direction and protruding from the substrate in a third direction, a first wire pattern on the fin-type pattern, the first wire pattern being spaced apart from the fin-type pattern in the third direction, and a gate electrode extending in a second direction, which is perpendicular to the first and third directions, and surrounding the first wire pattern, the gate electrode including a first portion that overlaps with the fin-type pattern in the second direction and a second portion corresponding to a remainder of the gate electrode except for the first portion.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: January 31, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Moon Seung Yang, Eun Hye Choi, Seung Mo Kang, Yong Seung Kim, Jung Taek Kim, Min-Hee Choi
  • Patent number: 11569237
    Abstract: A semiconductor device includes a substrate including NMOS and PMOS regions; first and second active patterns on the NMOS region; third and fourth active patterns on the PMOS region, the third active pattern being spaced apart from the first active pattern; a first dummy gate structure on the first and third active patterns; a second dummy gate structure on the second and fourth active patterns; a normal gate structure on the third active pattern; a first source/drain pattern on the third active pattern and between the normal gate structure and the first dummy gate structure; and a first element separation structure between the first and second dummy gate structures and separating the third and fourth active patterns, wherein the first dummy gate structure includes a first dummy insulation gate intersecting the third active pattern.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: January 31, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ju Youn Kim, Sang Jung Kang, Ji Su Kang, Yun Sang Shin
  • Patent number: 11563109
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a fin structure formed over a substrate, and a gate structure formed over the fin structure. The gate structure includes a first layer, and a fill layer over the first layer. The gate structure includes a protection layer formed over the fill layer of the gate structure, and the protection layer is separated from the first layer by the fill layer.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: January 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Mao-Lin Huang, Lung-Kun Chu, Chung-Wei Hsu, Jia-Ni Yu, Chun-Fu Lu, Kuo-Cheng Chiang, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 11557653
    Abstract: A semiconductor device includes an active pattern on a substrate, the active pattern extending in a first direction parallel to an upper surface of the substrate, a gate structure on the active pattern, the gate structure extending in a second direction parallel to the upper surface of the substrate and crossing the first direction, channels spaced apart from each other in a third direction perpendicular to the upper surface of the substrate, each of the channels extending through the gate structure, a source/drain layer on a portion of the active pattern adjacent the gate structure, the source/drain layer contacting the channels, and a sacrificial pattern on an upper surface of each of opposite edges of the portion of the active pattern in the second direction, the sacrificial pattern contacting a lower portion of a sidewall of the source/drain layer and including silicon-germanium.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: January 17, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Soojin Jeong, Sunwook Kim, Junbeom Park, Seungmin Song
  • Patent number: 11552078
    Abstract: A method for making an integrated device that includes a plurality of planar MOSFETs, includes forming a plurality of doped body regions in an upper portion of a silicon carbide substrate composition and a plurality of doped source regions. A first contact region is formed in a first source region and a second contact region is formed in a second source region. The first and second contact regions are separated by a JFET region that is longer in one planar dimension than the other. The first and second contact regions are separated by the longer planar dimension. The JFET region is bounded on at least one side corresponding to the longer planar dimension by a source region and a body region in conductive contact with at least one contact region.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 10, 2023
    Assignee: Alpha and Omega Semiconductor (Cayman) Ltd.
    Inventor: Vipindas Pala
  • Patent number: 11538915
    Abstract: A semiconductor device includes a substrate and a first transistor disposed on the substrate. The first transistor includes a first semiconductor channel structure and two first source/drain structures. The first semiconductor channel structure includes first horizontal portions and a first vertical portion. The first horizontal portions are stacked in a vertical direction and separated from one another. Each of the first horizontal portions is elongated in a horizontal direction. The first vertical portion is elongated in the vertical direction and connected with the first horizontal portions. A material composition of the first vertical portion is identical to a material composition of each of the first horizontal portions. The two first source/drain structures are disposed at two opposite sides of each of the first horizontal portions in the horizontal direction respectively. The two first source/drain structures are connected with the first horizontal portions.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: December 27, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventor: Po-Yu Yang
  • Patent number: 11532731
    Abstract: Semiconductor devices and methods of forming semiconductor devices are described herein. A method includes forming a first fin and a second fin in a substrate. A low concentration source/drain region is epitaxially grown over the first fin and over the second fin. The material of the low concentration region has less than 50% by volume of germanium. A high concentration contact landing region is formed over the low concentration regions. The material of the high concentration contact landing region has at least 50% by volume germanium. The high concentration contact landing region has a thickness of at least 1 nm over a top surface of the low concentration source/drain region.
    Type: Grant
    Filed: February 4, 2021
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Wei-Siang Yang, Ming-Hua Yu
  • Patent number: 11532504
    Abstract: A method includes forming a first and a second contact opening to reveal a first and a second source/drain region, respectively, forming a mask layer having a first and a second portion in the first and the second contact openings, respectively, forming a first and a second sacrificial ILD in the first and the second contact openings, respectively, removing the first sacrificial ILD from the first contact opening, filling a filler in the first contact opening, and etching the second sacrificial ILD. The filler protects the first portion of the mask layer from being etched. An ILD is formed in the second contact opening and on the second portion of the mask layer. The filler and the first portion of the mask layer are removed using a wet etch to reveal the first contact opening. A contact plug is formed in the first contact opening.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: December 20, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shao-Ming Koh, Chen-Ming Lee, Fu-Kai Yang
  • Patent number: 11532628
    Abstract: Improved methods for forming gate isolation structures between portions of gate electrodes and semiconductor devices formed by the same are disclosed. In an embodiment, a method includes forming a channel structure over a substrate; forming a first isolation structure extending in a direction parallel to the channel structure; forming a dummy gate structure over the channel structure and the first isolation structure; depositing a hard mask layer over the dummy gate structure; etching the hard mask layer to form a first opening through the hard mask layer over the first isolation structure; conformally depositing a first dielectric layer over the hard mask layer, in the first opening, and over the dummy gate structure; etching the first dielectric layer to extend the first opening and expose the dummy gate structure; and etching the dummy gate structure to extend the first opening and expose the first isolation structure.
    Type: Grant
    Filed: May 20, 2021
    Date of Patent: December 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Li-Fong Lin, Chung-Ting Ko, Wan Chen Hsieh, Tai-Chun Huang
  • Patent number: 11527448
    Abstract: A method for fabricating semiconductor device includes the steps of first providing a substrate having a fin-shaped structure thereon, forming a single diffusion break (SDB) structure in the substrate to divide the fin-shaped structure into a first portion and a second portion, and then forming more than one gate structures such as a first gate structure and a second gate structure on the SDB structure. Preferably, each of the first gate structure and the second gate structure overlaps the fin-shaped structure and the SDB structure.
    Type: Grant
    Filed: December 27, 2020
    Date of Patent: December 13, 2022
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Fu-Jung Chuang, Po-Jen Chuang, Yu-Ren Wang, Chi-Mao Hsu, Chia-Ming Kuo, Guan-Wei Huang, Chun-Hsien Lin
  • Patent number: 11521973
    Abstract: Disclosed is a 3D architecture of ternary content-addressable memory (TCAM), comprising a first transistor layer, a second transistor layer, a third transistor layer and a fourth transistor layer. The first transistor layer and the second transistor layer are disposed on a first plane. The third transistor layer and the fourth transistor layer are respectively stacked on the first transistor layer and the second transistor layer in a second direction perpendicular to the first plane. Two of the first transistor layer, the second transistor layer, the third transistor layer and the fourth transistor layer are a first transistor and a second transistor of a first memory cell of the TCAM. The other two of the first transistor layer, the second transistor layer, the third transistor layer and the fourth transistor layer are a first transistor and a second transistor of a second memory cell of the TCAM.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: December 6, 2022
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventor: Liang-Yu Chen
  • Patent number: 11522048
    Abstract: Gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, and methods of fabricating gate-all-around integrated circuit structures having source or drain structures with epitaxial nubs, are described. For example, an integrated circuit structure includes a first vertical arrangement of horizontal nanowires and a second vertical arrangement of horizontal nanowires. A first pair of epitaxial source or drain structures includes vertically discrete portions aligned with the first vertical arrangement of horizontal nanowires. A second pair of epitaxial source or drain structures includes vertically discrete portions aligned with the second vertical arrangement of horizontal nanowires. A conductive contact structure is laterally between and in contact with the one of the first pair of epitaxial source or drain structures and the one of the second pair of epitaxial source or drain structures.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 6, 2022
    Assignee: Intel Corporation
    Inventors: Cory Bomberger, Anand Murthy, Mark T. Bohr, Tahir Ghani, Biswajeet Guha
  • Patent number: 11515431
    Abstract: A semiconductor structure and a method for fabricating the same. The semiconductor structure includes at least a first channel region and a second channel region. The first channel region and the second channel region each include metal gate structures surrounding a different nanosheet channel layer. The metal gate structures of the first and second channel regions are respectively separated from each other by an unfilled gap. The method includes forming a gap fill layer between and in contact with gate structures surrounding nanosheet channel layers in multiple channel regions. Then, after the gap fill layer has been formed for each nanosheet stack, a masking layer is formed over the gate structures and the gap fill layer in at least a first channel region. The gate structures and the gap fill layer in at least a second channel region remain exposed.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: November 29, 2022
    Assignee: International Business Machines Corporation
    Inventors: Indira Seshadri, Ekmini Anuja De Silva, Jing Guo, Ruqiang Bao, Muthumanickam Sankarapandian, Nelson Felix
  • Patent number: 11508582
    Abstract: A method of forming a semiconductor device includes etching a gate stack to form a trench extending into the gate stack, forming a dielectric layer on a sidewall of the gate stack, with the sidewall exposed to the trench, and etching the dielectric layer to remove a first portion of the dielectric layer at a bottom of the trench. A second portion of the dielectric layer on the sidewall of the gate stack remains after the dielectric layer is etched. After the first portion of the dielectric layer is removed, the second portion of the dielectric layer is removed to reveal the sidewall of the gate stack. The trench is filled with a dielectric region, which contacts the sidewall of the gate stack.
    Type: Grant
    Filed: July 13, 2020
    Date of Patent: November 22, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shu-Uei Jang, Ya-Yi Tsai, Ryan Chia-Jen Chen, An Chyi Wei, Shu-Yuan Ku
  • Patent number: 11502199
    Abstract: The present disclosure describes a semiconductor device includes a first fin structure, an isolation structure in contact with a top surface of the first fin structure, a substrate layer in contact with the isolation structure, an epitaxial layer in contact with the isolation structure and the substrate layer, and a second fin structure above the first fin structure and in contact with the epitaxial layer.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: November 15, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co, Ltd.
    Inventors: Chansyun David Yang, Keh-Jeng Chang, Chan-Lon Yang
  • Patent number: 11495619
    Abstract: An integrated circuit device includes a device layer having devices spaced in accordance with a predetermined device pitch, a first metal interconnection layer disposed above the device layer and coupled to the device layer, and a second metal interconnection layer disposed above the first metal interconnection layer and coupled to the first metal interconnection layer through a first via layer. The second metal interconnection layer has metal lines spaced in accordance with a predetermined metal line pitch, and a ratio of the predetermined metal line pitch to predetermined device pitch is less than 1.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: November 8, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Fong-yuan Chang, Chun-Chen Chen, Po-Hsiang Huang, Lee-Chung Lu, Chung-Te Lin, Jerry Chang Jui Kao, Sheng-Hsiung Chen, Chin-Chou Liu
  • Patent number: 11494542
    Abstract: A semiconductor device includes: an active area in a transistor layer; contact-source/drain (CSD) conductors in the transistor layer; gate conductors in the transistor layer, and interleaved with the CSD conductors; VG structures in the transistor layer, and over the active area; and a first gate-signal-carrying (GSC) conductor in an M_1st layer that is over the transistor layer, and that is over the active area; and wherein long axes correspondingly of the active area and the first GSC conductor extend substantially in a first direction; and long axes correspondingly of the CSD conductors and the gate conductors extend substantially in a second direction, the second direction being substantially perpendicular to the first direction.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: November 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chung-Hui Chen, Tzu Ching Chang, Wan-Te Chen
  • Patent number: 11480606
    Abstract: A method for estimating at least one electrical property of a semiconductor device is provided. The method includes forming the semiconductor device and at least one testing unit on a substrate, irradiating the testing unit with at least one electron beam, estimating electrons from the testing unit induced by the electron beam, and estimating the electrical property of the semiconductor device according to intensity of the estimated electrons from the testing unit.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chen-Han Wang, Chun-Hsiung Lin
  • Patent number: 11476304
    Abstract: A phase change memory device with reduced programming disturbance and its operation are described. The phase change memory includes an array with word lines and bit lines and voltage controlling elements coupled to bit lines adjacent to an addressed bit line to maintain the voltage of the adjacent bit lines within an allowed range.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: October 18, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Antonino Rigano
  • Patent number: 11469221
    Abstract: An integrated circuit includes a first transistor, a second transistor, a first power line, and a second power line. The first transistor has a first active region and a first gate structure, in which the first active region has a source region and a drain region on opposite sides of the first gate structure. The second transistor is below the first transistor, and has a second active region and a second gate structure, in which the second active region has a source region and a drain region on opposite sides of the second gate structure. The first power line is above the first transistor, in which the first power line is electrically connected to the source region of first active region. The second power line is below the second transistor, in which the second power line is electrically connected to the source region of second active region.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: October 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Xin-Yong Wang, Li-Chun Tien, Chih-Liang Chen
  • Patent number: 11469143
    Abstract: A semiconductor device includes a semiconductor substrate, a source/drain region, a source/drain contact, a conductive via and a first polymer layer. The source/drain region is in the semiconductor substrate. The source/drain contact is over the source/drain region. The source/drain via is over the source/drain contact. The first polymer layer extends along a first sidewall of the conductive via and is separated from a second sidewall of the conductive via substantially perpendicular to the first sidewall of the conductive via.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: October 11, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Chin Chang, Li-Te Lin, Pinyen Lin
  • Patent number: 11469305
    Abstract: The present disclosure describes a semiconductor structure and a method for forming the same. The semiconductor structure can include a substrate, a gate structure over the substrate, and a source/drain (S/D) region adjacent to the gate structure. The S/D region can include first and second side surfaces separated from each other. The S/D region can further include top and bottom surfaces between the first and second side surfaces. A first separation between the top and bottom surfaces can be greater than a second separation between the first and second side surfaces.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 11, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shahaji B. More, Cheng-Han Lee
  • Patent number: 11450572
    Abstract: In an embodiment, a device includes: a semiconductor substrate; a first fin extending from the semiconductor substrate; a second fin extending from the semiconductor substrate; an epitaxial source/drain region including: a main layer in the first fin and the second fin, the main layer including a first semiconductor material, the main layer having a upper faceted surface and a lower faceted surface, the upper faceted surface and the lower faceted surface each being raised from respective surfaces of the first fin and the second fin; and a semiconductor contact etch stop layer (CESL) contacting the upper faceted surface and the lower faceted surface of the main layer, the semiconductor CESL including a second semiconductor material, the second semiconductor material being different from the first semiconductor material.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Han Chen, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11450739
    Abstract: A semiconductor structure has a substrate including silicon and a layer of relaxed buffer material on the substrate with a thickness no greater than 300 nm. The buffer material comprises silicon and germanium with a germanium concentration from 20 to 45 atomic percent. A source and a drain are on top of the buffer material. A body extends between the source and drain, where the body is monocrystalline semiconductor material comprising silicon and germanium with a germanium concentration of at least 30 atomic percent. A gate structure is wrapped around the body.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 20, 2022
    Assignee: Intel Corporation
    Inventors: Glenn Glass, Anand Murthy, Cory Bomberger, Tahir Ghani, Jack Kavalieros, Siddharth Chouksey, Seung Hoon Sung, Biswajeet Guha, Ashish Agrawal