Guard Ring Patents (Class 257/484)
-
Publication number: 20140145213Abstract: The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the drift layer. The metal for the Schottky layer and the semiconductor material for the drift layer are selected to provide a low barrier height Schottky junction between the drift layer and the Schottky layer.Type: ApplicationFiled: January 31, 2014Publication date: May 29, 2014Applicant: Cree, Inc.Inventors: Jason Patrick Henning, Qingchun Zhang, Sei-Hyung Ryu, Anant Kumar Agarwal, John Williams Palmour, Scott Allen
-
Patent number: 8736013Abstract: In one general aspect, an apparatus includes a metal or metal silicide contact layer disposed on an n-well region of a semiconductor substrate to form a primary Schottky diode. The apparatus includes a p-well guard ring region of the semiconductor substrate abutting the primary Schottky diode. The metal silicide contact layer has a perimeter portion extending over the p-well guard ring region of the semiconductor substrate and the p-well guard ring region has a doping level establishing a work function difference relative to the perimeter portion of the metal silicide contact layer to form a guard ring Schottky diode. The guard ring Schottky diode is in series with a p-n junction interface of the p-well region and the n-well region and the guard ring Schottky diode has a polarity opposite to that of the primary Schottky diode.Type: GrantFiled: April 19, 2012Date of Patent: May 27, 2014Assignee: Fairchild Semiconductor CorporationInventors: Chris Nassar, Dan Hahn, Sunglyong Kim, Jongjib Kim
-
Patent number: 8716826Abstract: In a semiconductor device having a pn-junction diode structure that includes anode diffusion region including edge area, anode electrode on anode diffusion region, and insulator film on edge area of anode diffusion region, the area of anode electrode above anode diffusion region with insulator film interposed between anode electrode and anode diffusion region is narrower than the area of insulator film on edge area of anode diffusion region.Type: GrantFiled: April 16, 2012Date of Patent: May 6, 2014Assignee: Fuji Electric Co., Ltd.Inventors: Ryouichi Kawano, Tomoyuki Yamazaki, Michio Nemoto, Mituhiro Kakefu
-
Patent number: 8710595Abstract: A seal ring structure is formed through a multilayer structure of a plurality of dielectric films in a peripheral part of a chip region to surround the chip region. A dual damascene interconnect in which an interconnect and a plug connected to the interconnect are integrated is formed in at least one of the dielectric films in the chip region. Part of the seal ring structure formed in the dielectric film in which the dual damascene interconnect is formed is continuous. A protection film formed on the multilayer structure has an opening on the seal ring. A cap layer connected to the seal ring is formed in the opening.Type: GrantFiled: July 12, 2013Date of Patent: April 29, 2014Assignee: Panasonic CorporationInventors: Makoto Tsutsue, Masaki Utsumi
-
Patent number: 8697568Abstract: Disclosed is a method of fabricating a semiconductor chip. The method includes forming a silicon layer; forming a first layer formed on the silicon layer and including a first seal ring surrounding a first chip area and a second seal ring surrounding a second chip area; and forming a second layer formed on the first layer and including a metal interconnection connecting one of the first and second chip areas and an external terminal.Type: GrantFiled: October 9, 2012Date of Patent: April 15, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Young Min Kang, Hyungwoo Kim, Ki-chul Park, SangMan Lee
-
Publication number: 20140077328Abstract: A trench Schottky rectifier device includes a substrate having a first conductivity type, a plurality of trenches formed in the substrate, and an insulating layer formed on sidewalls of the trenches. The trenches are filled with conductive structure. There is an electrode overlying the conductive structure and the substrate, and thus a Schottky contact forms between the electrode and the substrate. A plurality of embedded doped regions having a second conductivity type are formed in the substrate and located under the trenches. Each doped region and the substrate form a PN junction to pinch off current flowing toward the Schottky contact so as to suppress current leakage.Type: ApplicationFiled: November 15, 2013Publication date: March 20, 2014Applicant: PFC DEVICE CORP.Inventors: Kou-Liang CHAO, Mei-Ling CHEN, Tse-Chuan SU, Hung-Hsin KUO
-
Patent number: 8653534Abstract: An electronic device includes a silicon carbide drift region having a first conductivity type, a Schottky contact on the drift region, and a plurality of junction barrier Schottky (JBS) regions at a surface of the drift region adjacent the Schottky contact. The JBS regions have a second conductivity type opposite the first conductivity type and have a first spacing between adjacent ones of the JBS regions. The device further includes a plurality of surge protection subregions having the second conductivity type. Each of the surge protection subregions has a second spacing between adjacent ones of the surge protection subregions that is less than the first spacing.Type: GrantFiled: July 11, 2012Date of Patent: February 18, 2014Assignee: Cree, Inc.Inventors: Qingchun Zhang, Sei-Hyung Ryu
-
Patent number: 8643104Abstract: A lateral diffusion metal-oxide-semiconductor (LDMOS) transistor structure comprises a barrier layer, a semiconductor layer, a source, a first drain and a guard ring. The barrier layer with a first polarity is disposed in a substrate. The semiconductor layer with a second polarity is disposed on the barrier layer. The source has a first polarity region and a second polarity region both formed in the semiconductor layer. The first drain is disposed in the semiconductor layer and has a drift region with the second polarity. The guard ring with the first polarity extends downward from a surface of the semiconductor layer in a manner of getting in touch with the barrier layer and to surround the source and the drain, and is electrically connected to the source.Type: GrantFiled: August 14, 2012Date of Patent: February 4, 2014Assignee: United Microelectronics Corp.Inventors: Wei-Shan Liao, An-Hung Lin, Hong-Ze Lin, Bo-Jui Huang
-
Patent number: 8637952Abstract: According to one embodiment, a semiconductor device includes a semiconductor substrate, a first conductivity type region, a device isolation insulating film, a second conductivity type region, and a low concentration region. The first conductivity type region is formed in part of the semiconductor substrate. The device isolation insulating film is formed in an upper surface of the semiconductor substrate and includes an opening formed in part of an immediately overlying region of the first conductivity type region. The second conductivity type region is formed in the opening and is in contact with the first conductivity type region. The low concentration region is formed along a side surface of the opening, has second conductivity type, has an effective impurity concentration lower than an effective impurity concentration of the second conductivity type region, and separates an interface of the first conductivity type region and the second conductivity type region from the device isolation insulating film.Type: GrantFiled: March 10, 2011Date of Patent: January 28, 2014Assignee: Kabushiki Kaisha ToshibaInventor: Kazuaki Yamaura
-
Patent number: 8633541Abstract: An integrated circuit contains a voltage protection structure having a diode isolated DENMOS transistor with a guard element proximate to the diode and the DENMOS transistor. The guard element includes an active area coupled to ground. The diode anode is connected to an I/O pad. The diode cathode is connected to the DENMOS drain. The DENMOS source is grounded. A process of forming the integrated circuit is also disclosed.Type: GrantFiled: December 28, 2011Date of Patent: January 21, 2014Assignee: Texas Instruments IncorporatedInventors: Farzan Farbiz, Akram A. Salman
-
Patent number: 8633571Abstract: A semiconductor device includes a semiconductor substrate including an element region, an inner sealing and an outer sealing which are formed on the element region and have a first opening part and a second opening part, respectively, a multilayer interconnection structure which is formed on the substrate and stacks multiple inter-layer insulation films each including a wiring layer, a moisture resistant film formed between a first inter-layer insulation film and a second inter-layer insulation film which are included in the multilayer interconnection structure, a first portion which extended from a first side of the moisture resistant film and passes the first opening part, a second portion which extended from a second side of the moisture resistant film and passes through the second opening part, and a wiring pattern including a via plug which penetrates the moisture resistant film and connects the first portion and the second portion.Type: GrantFiled: May 29, 2012Date of Patent: January 21, 2014Assignee: Fujitsu Semiconductor LimitedInventors: Akihiko Okutsu, Hitoshi Saito, Yoshiaki Okano
-
Patent number: 8633543Abstract: An electro-static discharge protection circuit includes: a PNPN junction, a P-type side of the PNPN junction being coupled to a terminal, an N-type side of the PNPN junction being coupled to ground; and a P-type metal oxide semiconductor transistor, a source and a gate of the P-type metal oxide semiconductor transistor being coupled to an N-type side of a PN junction whose P-type side coupled to the ground, and a drain of the P-type metal oxide semiconductor transistor being coupled to the terminal.Type: GrantFiled: March 2, 2011Date of Patent: January 21, 2014Assignee: Fujitsu Semiconductor LimitedInventors: Kazutoshi Ohta, Kenji Hashimoto
-
Patent number: 8624348Abstract: A microelectronic element is disclosed that includes a semiconductor chip and a continuous monolithic metallic edge-reinforcement ring that covers each of the plurality of edge surfaces of the semiconductor chip and extending onto the front surface. The semiconductor chip may have front and rear opposed surfaces and a plurality of contacts at the front surface and edge surfaces extending between the front and rear surfaces. The semiconductor chip may also embody at least an active device or a passive device.Type: GrantFiled: November 11, 2011Date of Patent: January 7, 2014Assignee: Invensas CorporationInventor: Ilyas Mohammed
-
Patent number: 8618618Abstract: A seal ring structure is formed through a multilayer structure of a plurality of dielectric films in a peripheral part of a chip region to surround the chip region. A dual damascene interconnect in which an interconnect and a plug connected to the interconnect are integrated is formed in at least one of the dielectric films in the chip region. Part of the seal ring structure formed in the dielectric film in which the dual damascene interconnect is formed is continuous. A protection film formed on the multilayer structure has an opening on the seal ring. A cap layer connected to the seal ring is formed in the opening.Type: GrantFiled: July 17, 2012Date of Patent: December 31, 2013Assignee: Panasonic CorporationInventors: Makoto Tsutsue, Masaki Utsumi
-
Patent number: 8618626Abstract: A trench Schottky rectifier device includes a substrate having a first conductivity type, a plurality of trenches formed in the substrate, and an insulating layer formed on sidewalls of the trenches. The trenches are filled with conductive structure. There is an electrode overlying the conductive structure and the substrate, and thus a Schottky contact forms between the electrode and the substrate. A plurality of embedded doped regions having a second conductivity type are formed in the substrate and located under the trenches. Each doped region and the substrate form a PN junction to pinch off current flowing toward the Schottky contact so as to suppress current leakage.Type: GrantFiled: October 12, 2010Date of Patent: December 31, 2013Assignee: PFC Device CorporationInventors: Kou-Liang Chao, Mei-Ling Chen, Tse-Chuan Su, Hung-Hsin Kuo
-
Patent number: 8604583Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.Type: GrantFiled: April 3, 2012Date of Patent: December 10, 2013Assignee: Renesas Electronics CorporationInventors: Kunihiko Kato, Hideki Yasuoka, Masatoshi Taya, Masami Koketsu
-
Patent number: 8592298Abstract: A method for fabricating edge termination structures in gallium nitride (GaN) materials includes providing a n-type GaN substrate having a first surface and a second surface, forming an n-type GaN epitaxial layer coupled to the first surface of the n-type GaN substrate, and forming a growth mask coupled to the n-type GaN epitaxial layer. The method further includes patterning the growth mask to expose at least a portion of the n-type GaN epitaxial layer, and forming at least one p-type GaN epitaxial structure coupled to the at least a portion of the n-type GaN epitaxial layer. The at least one p-type GaN epitaxial structure comprises at least one portion of an edge termination structure. The method additionally includes forming a first metal structure electrically coupled to the second surface of the n-type GaN substrate.Type: GrantFiled: December 22, 2011Date of Patent: November 26, 2013Assignee: Avogy, Inc.Inventors: Linda Romano, David P. Bour, Andrew Edwards, Hui Nie, Isik C. Kizilyalli, Richard J. Brown, Thomas R. Prunty
-
Publication number: 20130307111Abstract: A TMBS diode is disclosed. In an active portion and voltage withstanding structure portion of the diode, an end portion trench surrounds active portion trenches. An active end portion which is an outer circumferential side end portion of an anode electrode is in contact with conductive polysilicon inside the end portion trench. A guard trench is separated from the end portion trench and surrounds it. A field plate provided on an outer circumferential portion of the anode electrode is separated from the anode electrode, and contacts both part of a surface of n-type drift layer in a mesa region between the end portion trench and the guard trench and the conductive polysilicon formed inside the guard trench. The semiconductor device has high withstand voltage without injection of minority carriers, and relaxed electric field intensity of the trench formed in an end portion of an active portion.Type: ApplicationFiled: July 29, 2013Publication date: November 21, 2013Applicant: Fuji Electric Co., Ltd.Inventors: Tomonori MIZUSHIMA, Michio NEMOTO
-
Publication number: 20130277791Abstract: In one general aspect, an apparatus includes a metal or metal silicide contact layer disposed on an n-well region of a semiconductor substrate to form a primary Schottky diode. The apparatus includes a p-well guard ring region of the semiconductor substrate abutting the primary Schottky diode. The metal silicide contact layer has a perimeter portion extending over the p-well guard ring region of the semiconductor substrate and the p-well guard ring region has a doping level establishing a work function difference relative to the perimeter portion of the metal silicide contact layer to form a guard ring Schottky diode. The guard ring Schottky diode is in series with a p-n junction interface of the p-well region and the n-well region and the guard ring Schottky diode has a polarity opposite to that of the primary Schottky diode.Type: ApplicationFiled: April 19, 2012Publication date: October 24, 2013Inventors: Chris Nassar, Dan Hahn, Sunglyong Kim, Jongjib Kim
-
Patent number: 8552469Abstract: There is a problem that a reverse off-leak current becomes too large in a Schottky barrier diode. A semiconductor device of the present invention includes P-type first and second anode diffusion layers formed in an N-type epitaxial layer, N-type cathode diffusion layers formed in the epitaxial layer, a P-type third anode diffusion layer formed in the epitaxial layer so as to surround the first and second anode diffusion layers and to extend toward the cathode diffusion layers, and a Schottky barrier metal layer formed on the first and second anode diffusion layers.Type: GrantFiled: September 27, 2007Date of Patent: October 8, 2013Assignees: SANYO Semiconductor Co., Ltd., Semiconductor Components Industries, LLCInventors: Shuichi Kikuchi, Shigeaki Okawa, Kiyofumi Nakaya, Shuji Tanaka
-
Patent number: 8525288Abstract: In the diffusion region (3) of the second conductivity mode, a more highly doped region of the same conductivity mode (5) is introduced in such a manner that the region of the first conductivity mode (2) which is covered by the metal silicide (9) and of the second conductivity mode (3) are connected in a conductive manner. The region (3) of the second conductivity mode is diffused in such a manner that it reaches the more highly doped region (1) of the first doping type (1), with an outward diffusion of the doping from the more highly doped substrate layer (1) into the more weakly doped layer (2) of the same conductivity mode in the direction of the semiconductor surface taking place at the same time.Type: GrantFiled: April 19, 2010Date of Patent: September 3, 2013Assignee: Eris Technology CorporationInventors: Michael Reschke, Hans-Jurgen Hillemann, Klaus Gunther
-
Publication number: 20130221477Abstract: A semiconductor device that can achieve a high-speed operation at a time of switching, and the like. The semiconductor device includes: a p-type buried layer buried within an n?-type semiconductor layer; and a p-type surface layer formed in a central portion of each of cells. In a contact cell, the p-type buried layer is in contact with the p-type surface layer. The semiconductor device further includes: a p+-type contact layer formed on the p-type surface layer of the contact cell; and an anode electrode provided on the n?-type semiconductor layer. The anode electrode forms a Schottky junction with the n?-type semiconductor layer and forms an ohmic junction with the p+-type contact layer.Type: ApplicationFiled: December 22, 2011Publication date: August 29, 2013Applicant: Mitsubishi Electric CorporationInventors: Hiroshi Watanabe, Naoki Yutani, Yoshiyuki Nakaki, Kenichi Ohtsuka
-
Patent number: 8513764Abstract: A Schottky diode including a semiconductor region, a first terminal comprising a metal or a metal silicide or being metallic, and a second terminal comprising at least a portion of the semiconductor region. The diode further includes an at least partly conductive material or a material capable of holding a charge in close proximity to, or in contact with, or surrounding one of the first and second terminals, a field insulator located at least partly in the semiconductor region, a dielectric region located over the semiconductor region between the field insulator and the one of the first and second terminals for isolating the conductive or charge-holding material from the semiconductor region, and wherein the dielectric region comprises insulating regions of different thicknesses.Type: GrantFiled: February 18, 2011Date of Patent: August 20, 2013Assignee: X-Fab Semiconductor Foundries AGInventors: Paul R. Stribley, Suba Chithambaram Subramaniam
-
Patent number: 8508002Abstract: A seal ring structure is formed through a multilayer structure of a plurality of dielectric films in a peripheral part of a chip region to surround the chip region. A dual damascene interconnect in which an interconnect and a plug connected to the interconnect are integrated is formed in at least one of the dielectric films in the chip region. Part of the seal ring structure formed in the dielectric film in which the dual damascene interconnect is formed is continuous. A protection film formed on the multilayer structure has an opening on the seal ring. A cap layer connected to the seal ring is formed in the opening.Type: GrantFiled: July 17, 2012Date of Patent: August 13, 2013Assignee: Panasonic CorporationInventors: Makoto Tsutsue, Masaki Utsumi
-
Patent number: 8487396Abstract: A Schottky photodiode may include a monocrystalline semiconductor substrate having a front surface, a rear surface, and a first dopant concentration and configured to define a cathode of the Schottky photodiode, a doped epitaxial layer over the front surface of the monocrystalline semiconductor substrate having a second dopant concentration less than the first dopant concentration, and parallel spaced apart trenches in the doped epitaxial layer and having of a depth less than a depth of the doped epitaxial layer.Type: GrantFiled: August 11, 2011Date of Patent: July 16, 2013Assignee: STMicroelectronics S.r.l.Inventor: Massimo Cataldo Mazzillo
-
Patent number: 8450828Abstract: A semiconductor device includes a semiconductor substrate of a first conductivity type, including a first main surface and a second main surface opposite to each other. A power semiconductor element includes a first electrode in a first region at the first main surface of the semiconductor substrate, and a second electrode at the second main surface. A current flows between the first electrode and the second electrode. The semiconductor device also includes a guard ring of a second conductivity type, in a second region at the first main surface, at a more outer circumference than the first region. A semi-insulating insulation film covers the second region. A dielectric film in the second region covers the semi-insulating insulation film. A flow block portion in a third region at the first main surface, at a more outer circumference than the second region, prevents a flow out of the dielectric film.Type: GrantFiled: December 19, 2008Date of Patent: May 28, 2013Assignee: Mitsubishi Electric CorporationInventor: Eisuke Suekawa
-
Publication number: 20130119505Abstract: Schottky barrier diodes, methods for fabricating Schottky barrier diodes, and design structures for a Schottky barrier diode. A guard ring for a Schottky barrier diode is formed with a selective epitaxial growth process. The guard ring for the Schottky barrier diode and an extrinsic base of a vertical bipolar junction diode on a different device region than the Schottky barrier diode may be concurrently formed using the same selective epitaxial growth process.Type: ApplicationFiled: November 11, 2011Publication date: May 16, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: David L. Harame, Qizhi Liu, Robert M. Rassel
-
Patent number: 8432012Abstract: A semiconductor device includes a semiconductor layer having a first conductivity type and having a surface in which an active region of the semiconductor device is defined, and a plurality of spaced apart doped regions within the active region. The plurality of doped regions have a second conductivity type that is opposite the first conductivity type and define a plurality of exposed portions of the semiconductor layer within the active region. The plurality of doped regions include a plurality of rows extending in a longitudinal direction. Each of the rows includes a plurality of longitudinally extending segments, and the longitudinally extending segments in a first row at least partially overlap the longitudinally extending segments in an adjacent row in a lateral direction that is perpendicular to the longitudinal direction.Type: GrantFiled: March 18, 2011Date of Patent: April 30, 2013Assignee: Cree, Inc.Inventors: Qingchun Zhang, Jason Henning
-
Patent number: 8410561Abstract: An electronic device, including a substrate, a functional structure constituting a functional element formed on the substrate, and a cover structure forming a cavity portion in which the functional structure is disposed, is disclosed. In the electronic device, the cover structure includes a laminated structure of an interlayer insulating film and a wiring layer, the laminated structure being formed on the substrate in such a way that it surrounds the cavity portion, and the cover structure has an upside cover portion covering the cavity portion from above, the upside cover portion being formed with part of the wiring layer that is disposed above the functional structure.Type: GrantFiled: December 21, 2010Date of Patent: April 2, 2013Assignee: Seiko Epson CorporationInventors: Akira Sato, Toru Watanabe, Shogo Inaba, Takeshi Mori
-
Patent number: 8405184Abstract: A trench Schottky diode and its manufacturing method are provided. The trench Schottky diode includes a semiconductor substrate having therein a plurality of trenches, a gate oxide layer, a polysilicon structure, a guard ring and an electrode. At first, the trenches are formed in the semiconductor substrate by an etching step. Then, the gate oxide layer and the polysilicon structure are formed in the trenches and protrude above a surface of the semiconductor substrate. The guard ring is formed to cover a portion of the resultant structure. At last, the electrode is formed above the guard ring and the other portion not covered by the guard ring. The protruding gate oxide layer and the protruding polysilicon structure can avoid cracks occurring in the trench structure.Type: GrantFiled: June 28, 2010Date of Patent: March 26, 2013Assignee: PFC Device CorporationInventors: Kou-Liang Chao, Hung-Hsin Kuo, Tse-Chuan Su, Mei-Ling Chen
-
Publication number: 20130062723Abstract: The present disclosure generally relates to a Schottky diode that has a substrate, a drift layer provided over the substrate, and a Schottky layer provided over an active region of the drift layer. The metal for the Schottky layer and the semiconductor material for the drift layer are selected to provide a low barrier height Schottky junction between the drift layer and the Schottky layer.Type: ApplicationFiled: September 11, 2011Publication date: March 14, 2013Applicant: CREE, INC.Inventors: Jason Patrick Henning, Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal, John Williams Palmour, Scott Allen
-
Patent number: 8368167Abstract: The embodiments of the present invention disclose a semiconductor device and a method for forming the semiconductor device. Wherein the semiconductor comprises: a first semiconductor layer, having a first conductivity type on a semiconductor substrate, a guard ring region, formed in the surface of the first semiconductor layer, having a second conductivity type; a Schottky diode metal contact, coupled to the first semiconductor layer, wherein the guard ring region is at periphery of the Schottky diode interface, and wherein the Schottky diode metal contact has no direct electrical connection with the guard ring region; and an electrical resistance module, coupled between the Schottky diode metal contact and the guard ring. Due to the ballasting effect from the electrical resistance module, the minority injection or the parasitic transistor action are alleviated. Thus, forward current capability is extended without introducing significant minority injection.Type: GrantFiled: September 30, 2011Date of Patent: February 5, 2013Assignee: Chengdu Monolithic Power Systems, Inc.Inventor: Joseph Urienza
-
Patent number: 8362585Abstract: A semiconductor junction barrier Schottky (JBS-SKY) diode with enforced upper contact structure (EUCS) is disclosed. Referencing an X-Y-Z coordinate, the JBS-SKY diode has semiconductor substrate (SCST) parallel to X-Y plane. Active device zone (ACDZ) atop SCST and having a JBS-SKY diode with Z-direction current flow. Peripheral guarding zone (PRGZ) atop SCST and surrounding the ACDZ. The ACDZ has active lower semiconductor structure (ALSS) and enforced active upper contact structure (EUCS) atop ALSS. The EUC has top contact metal (TPCM) extending downwards and in electrical conduction with bottom of EUCS; and embedded bottom supporting structure (EBSS) inside TPCM and made of a hard material, the EBSS extending downwards till bottom of the EUCS. Upon encountering bonding force onto TPCM during packaging of the JBS-SKY diode, the EBSS enforces the EUCS against an otherwise potential micro cracking of the TPCM degrading the leakage current of the JBS-SKY diode.Type: GrantFiled: July 15, 2011Date of Patent: January 29, 2013Assignee: Alpha & Omega Semiconductor, Inc.Inventors: Anup Bhalla, Ji Pan, Daniel Ng
-
Patent number: 8362586Abstract: According to one embodiment, a semiconductor device provided with a structure, which prevents withstand voltage deterioration and may be manufactured at a low cost, is provided.Type: GrantFiled: September 7, 2010Date of Patent: January 29, 2013Assignee: Kabushiki Kaisha ToshibaInventor: Tetsuo Hatakeyama
-
Patent number: 8338906Abstract: An integrated circuit structure has a metal silicide layer formed on an n-type well region, a p-type guard ring formed on the n-type well region and encircling the metal silicide layer. The outer portion of the metal silicide layer extends to overlap the inner edge of the guard ring, and a Schottky barrier is formed at the junction of the internal portion of the metal silicide layer and the well region. A conductive contact is in contact with the internal portion and the outer portion of the metal silicide layer.Type: GrantFiled: December 8, 2008Date of Patent: December 25, 2012Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ping-Chun Yeh, Der-Chyang Yeh, Ruey-Hsin Liu, Mingo Liu
-
Patent number: 8330244Abstract: A semiconductor device according to some embodiments includes a semiconductor layer having a first conductivity type and a surface in which an active region of the semiconductor device is defined. A plurality of spaced apart first doped regions are arranged within the active region. The plurality of first doped regions have a second conductivity type that is opposite the first conductivity type, have a first dopant concentration, and define a plurality of exposed portions of the semiconductor layer within the active region. The plurality of first doped regions are arranged as islands in the semiconductor layer. A second doped region in the semiconductor layer has the second conductivity type and has a second dopant concentration that is greater than the first dopant concentration.Type: GrantFiled: June 26, 2009Date of Patent: December 11, 2012Assignee: Cree, Inc.Inventors: Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal
-
Patent number: 8324705Abstract: An integrated circuit structure includes a semiconductor substrate; a first well region of a first conductivity type over the semiconductor substrate; a second well region of a second conductivity type opposite the first conductivity type encircling the first well region; and a metal-containing layer over and adjoining the first well region and extending over at least an inner portion of the second well region. The metal-containing layer and the first well region form a Schottky barrier. The integrated circuit structure further includes an isolation region encircling the metal-containing layer; and a third well region of the second conductivity type encircling at least a central portion of the first well region. The third well region has a higher impurity concentration than the second well region, and includes a top surface adjoining the metal-containing layer, and a bottom surface higher than bottom surfaces of the first and the second well regions.Type: GrantFiled: May 27, 2008Date of Patent: December 4, 2012Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chien-Shao Tang, Dah-Chuen Ho, Yu-Chang Jong, Zhe-Yi Wang, Yuh-Hwa Chang, Yogendra Yadav
-
Patent number: 8299558Abstract: A Schottky barrier diode comprises a doped guard ring having a doping of a second conductivity type in a semiconductor-on-insulator (SOI) substrate. The Schottky barrier diode further comprises a first-conductivity-type-doped semiconductor region having a doping of a first conductivity type, which is the opposite of the second conductivity type, on one side of a dummy gate electrode and a Schottky barrier structure surrounded by the doped guard ring on the other side. A Schottky barrier region may be laterally surrounded by the dummy gate electrode and the doped guard ring. The doped guard ring includes an unmetallized portion of a gate-side second-conductivity-type-doped semiconductor region having a doping of a second conductivity type. A Schottky barrier region may be laterally surrounded by a doped guard ring including a gate-side doped semiconductor region and a STI-side doped semiconductor region. Design structures for the inventive Schottky barrier diode are also provided.Type: GrantFiled: August 3, 2011Date of Patent: October 30, 2012Assignee: International Business Machines CorporationInventors: Alan B. Botula, Alvin J. Joseph, Alan F. Norris, Robert M. Rassel, Yun Shi
-
Publication number: 20120256192Abstract: An electronic device includes a drift region, a Schottky contact on a surface of the drift region, and an edge termination structure in the drift region adjacent the Schottky contact. The edge termination structure includes a recessed region that is recessed from the surface of the drift region by a distance d that may be about 0.5 microns.Type: ApplicationFiled: April 5, 2011Publication date: October 11, 2012Inventors: Qingchun Zhang, Jason Henning
-
Patent number: 8274080Abstract: A semiconductor wafer includes semiconductor chip areas on a semiconductor substrate, the semiconductor chip areas having thereon semiconductor circuit patterns and inner guard ring patterns surrounding the semiconductor circuit patterns; and scribe lanes on the semiconductor substrate between the semiconductor chip areas, the scribe lanes having thereon outer guard ring patterns surrounding the inner guard ring patterns and a process monitoring pattern between the outer guard ring patterns, the outer guard ring patterns and the process monitoring pattern being merged with each other.Type: GrantFiled: October 15, 2009Date of Patent: September 25, 2012Assignee: Samsung Electronics Co., Ltd.Inventor: Dong-Hyun Han
-
Publication number: 20120211859Abstract: A Schottky diode including a semiconductor region, a first terminal comprising a metal or a metal silicide or being metallic, and a second terminal comprising at least a portion of the semiconductor region. The diode further includes an at least partly conductive material or a material capable of holding a charge in close proximity to, or in contact with, or surrounding one of the first and second terminals, a field insulator located at least partly in the semiconductor region, a dielectric region located over the semiconductor region between the field insulator and the one of the first and second terminals for isolating the conductive or charge-holding material from the semiconductor region, and wherein the dielectric region comprises insulating regions of different thicknesses.Type: ApplicationFiled: February 18, 2011Publication date: August 23, 2012Inventors: Paul R. Stribley, Suba Chithambaram Subramaniam
-
Publication number: 20120212164Abstract: There is disclosed a semiconductor device capable of improving reliability, a rotating electrical machine using the semiconductor device or a vehicle using the semiconductor device. The semiconductor device includes Schottky barrier junctions and pn junctions. The pn junctions are provided in rectification areas and guard ring parts. Breakdown voltage at pn junctions in the rectification area is lower than breakdown voltage at the Schottky barrier junctions and the pn junctions in the guard ring parts.Type: ApplicationFiled: February 8, 2012Publication date: August 23, 2012Inventors: Takeshi TERAKAWA, Satoshi MATSUYOSHI, Kazutoyo NARITA, Mutsuhiro MORI
-
Patent number: 8247876Abstract: A seal ring structure is formed through a multilayer structure of a plurality of dielectric films in a peripheral part of a chip region to surround the chip region. A dual damascene interconnect in which an interconnect and a plug connected to the interconnect are integrated is formed in at least one of the dielectric films in the chip region. Part of the seal ring structure formed in the dielectric film in which the dual damascene interconnect is formed is continuous. A protection film formed on the multilayer structure has an opening on the seal ring. A cap layer connected to the seal ring is formed in the opening.Type: GrantFiled: June 28, 2011Date of Patent: August 21, 2012Assignee: Panasonic CorporationInventors: Makoto Tsutsue, Masaki Utsumi
-
Patent number: 8237239Abstract: A Schottky diode device is provided, including a p-type semiconductor structure. An n drift region is disposed over the p-type semiconductor structure, wherein the n drift region comprises first and second n-type doping regions having different n-type doping concentrations, and the second n-type doping region is formed with a dopant concentration greater than that in the first n-type doping region. A plurality of isolation structures is disposed in the second n-type doping region of the n drift region, defining an anode region and a cathode region. A third n-type doping region is disposed in the second n-type doping region exposed by the cathode region. An anode electrode is disposed over the first n-type doping region in the anode region. A cathode electrode is disposed over the third n-type doping region in the cathode region.Type: GrantFiled: October 28, 2009Date of Patent: August 7, 2012Assignee: Vanguard International Semiconductor CorporationInventors: Huang-Lang Pai, Hung-Shern Tsai
-
Patent number: 8232558Abstract: An electronic device includes a silicon carbide drift region having a first conductivity type, a Schottky contact on the drift region, and a plurality of junction barrier Schottky (JBS) regions at a surface of the drift region adjacent the Schottky contact. The JBS regions have a second conductivity type opposite the first conductivity type and have a first spacing between adjacent ones of the JBS regions. The device further includes a plurality of surge protection subregions having the second conductivity type. Each of the surge protection subregions has a second spacing between adjacent ones of the surge protection subregions that is less than the first spacing.Type: GrantFiled: May 21, 2008Date of Patent: July 31, 2012Assignee: Cree, Inc.Inventors: Qingchun Zhang, Sei-Hyung Ryu
-
Patent number: 8227892Abstract: An integrated receiver with channel selection and image rejection substantially implemented on a single CMOS integrated circuit is described. A receiver front end provides programmable attenuation and a programmable gain low noise amplifier. Frequency conversion circuitry advantageously uses LC filters integrated onto the substrate in conjunction with image reject mixers to provide sufficient image frequency rejection. Filter tuning and inductor Q compensation over temperature are performed on chip. The filters utilize multi track spiral inductors with shields to increase circuit Q. The filters are tuned using local oscillators to tune a substitute filter, and frequency scaling during filter component values to those of the filter being tuned. In conjunction with filtering, frequency planning provides additional image rejection. The advantageous choice of local oscillator signal generation methods on chip is by PLL out of band local oscillation and by direct synthesis for in band local oscillator.Type: GrantFiled: March 25, 2010Date of Patent: July 24, 2012Assignee: Broadcom CorporationInventor: James Y. C. Chang
-
Publication number: 20120175724Abstract: A Schottky diode with a small footprint and a high-current carrying ability is fabricated by forming an opening that extends into an n-type semiconductor material. The opening is then lined with a metallic material such as platinum. The metallic material is then heated to form a salicide region where the metallic material touches the n-type semiconductor material.Type: ApplicationFiled: January 6, 2011Publication date: July 12, 2012Inventors: Sheldon D. Haynie, Ann Gabrys
-
Patent number: 8198651Abstract: A semiconductor device for protecting against an electro static discharge is disclosed. In one embodiment, the semiconductor device includes a first low doped region disposed in a substrate, a first heavily doped region disposed within the first low doped region, the first heavily doped region comprising a first conductivity type, and the first low doped region comprising a second conductivity type, the first and the second conductivity types being opposite, the first heavily doped region being coupled to a node to be protected. The semiconductor device further includes a second heavily doped region coupled to a first power supply potential node, the second heavily doped region being separated from the first heavily doped region by a portion of the first low doped region, and a second low doped region disposed adjacent the first low doped region, the second low doped region comprising the first conductivity type.Type: GrantFiled: October 13, 2008Date of Patent: June 12, 2012Assignee: Infineon Technologies AGInventors: Gernot Langguth, Wolfgang Soldner, Cornelius Christian Russ
-
Patent number: 8193602Abstract: A Schottky diode optimizes the on state resistance, the reverse leakage current, and the reverse breakdown voltage of the Schottky diode by forming an insulated control gate over a region that lies between the metal-silicon junction of the Schottky diode and the n+ cathode contact of the Schottky diode.Type: GrantFiled: April 20, 2010Date of Patent: June 5, 2012Assignee: Texas Instruments IncorporatedInventors: Zia Alan Shafi, Jeffrey A. Babcock
-
Patent number: 8188526Abstract: It is an object of the present invention to surely protect a predetermined semiconductor element or a predetermined semiconductor element group in an analog block from a noise generated from a digital block. A semiconductor device according to the present invention includes a semiconductor substrate, a digital block to be a region in which a digital circuit is formed and an analog block to be a region in which an analog circuit is formed, arranged by separating an upper surface of the semiconductor substrate and a substrate potential fixing region provided on the semiconductor substrate so as to surround in a planar view the predetermined semiconductor element group in the analog block, and a pad connected to the substrate potential fixing region and receiving a predetermined potential from an external part.Type: GrantFiled: December 2, 2010Date of Patent: May 29, 2012Assignee: Renesas Electronics CorporationInventors: Takashi Okuda, Toshio Kumamoto