With Bipolar Transistor Structure Patents (Class 257/526)
  • Patent number: 11296205
    Abstract: A bipolar transistor includes a collector. The collector is formed by: a first portion of the collector which extends under an insulating trench, and a second portion of the collector which crosses through the insulating trench. The first and second portions of the collector are in physical contact.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: April 5, 2022
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics SA
    Inventors: Alexis Gauthier, Pascal Chevalier
  • Patent number: 11239330
    Abstract: Embodiments include a first set of fins having an emitter of a bipolar junction transistor (BJT) disposed over the first set of fins, a second set of fins having a base of the BJT disposed over the second set of fins, and a third set of fins having a collector of the BJT disposed over the third set of fins. A first gate structure is disposed over the first set of fins adjacent to the emitter. A second gate structure is disposed over the second set of fins adjacent to the base. A third gate structure is disposed over the third set of fins adjacent to the collector. The first gate structure, second gate structure, and third gate structure are physically and electrically separated.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: February 1, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ming-Shuan Li, Zi-Ang Su, Ying-Keung Leung
  • Patent number: 11211331
    Abstract: A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure includes a substrate and a seed layer on the substrate. The substrate includes a base and a composite layer encapsulating the base. The semiconductor structure also includes an epitaxial layer on the seed layer. The semiconductor structure also includes a semiconductor device on the epitaxial layer, and an interlayer dielectric layer on the epitaxial layer. The interlayer dielectric layer covers the semiconductor device. The semiconductor structure further includes a via structure that penetrates at least the composite layer of the substrate and is in contact with the base.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: December 28, 2021
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Yung-Fong Lin, Li-Wen Chuang, Jui-Hung Yu, Cheng-Tao Chou, Chun-Hsu Chen, Yu-Chieh Chou
  • Patent number: 11211473
    Abstract: A method of forming a semiconductor device having first and second fin structures on a substrate includes forming a first epitaxial region of the first fin structure and forming a second epitaxial region of the second fin structure. The method further includes forming a buffer region on the first epitaxial region of the first fin structure and performing an etch process to etch back a portion of the second epitaxial region. The buffer region helps to prevents etch back of a top surface of the first epitaxial region during the etch process. Further, a capping region is formed on the buffer region and the etched second epitaxial region.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: December 28, 2021
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsueh-Chang Sung, Kun-Mu Li
  • Patent number: 11158630
    Abstract: A semiconductor device includes an IGBT as a switching element, and a diode. The IGBT includes: a p type channel doped layer formed in a surface layer part on a front side of a semiconductor substrate; a p+ type diffusion layer and an n+ type source layer individually selectively formed in a surface layer part of the p type channel doped layer; and an emitter electrode connected to the n+ type source layer and the p+ type diffusion layer. A part of the p type channel doped layer reaches a front-side surface of the semiconductor substrate and is connected to the emitter electrode. On the front-side surface of the semiconductor substrate, the p+ type diffusion layer is interposed between the p type channel doped layer and an n+ type source layer, and the p type channel doped layer and the n+ type source layer are not adjacent to each other.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: October 26, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Tetsuo Takahashi, Mitsuru Kaneda
  • Patent number: 11152496
    Abstract: Embodiments of the disclosure provide an integrated circuit (IC) structure, including: a semiconductor base on a first portion of a raised region of an insulative layer; a first inner emitter/collector (E/C) material on a second portion of the raised region of the insulative layer, wherein the inner E/C material is directly horizontally between the semiconductor base and a sidewall of the raised region; and a first outer E/C material on a first non-raised region of the insulative layer, wherein an upper portion of the first outer E/C material is adjacent the first inner E/C material.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: October 19, 2021
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Jagar Singh, Alexander L. Martin, Alexander M. Derrickson
  • Patent number: 11101266
    Abstract: A 3D device including: a first level including first single crystal transistors overlaid by a second level including second single crystal transistors; a third level including third single crystal transistors, the second level is overlaid by the third level; a fourth level including fourth single crystal transistors, the third level is overlaid by the fourth level; first bond regions including first oxide to oxide bonds, where the first bond regions are between the first level and the second level; second bond regions including second oxide to oxide bonds, where the second bond regions are between the second level and the third level; and third bond regions including third oxide to oxide bonds, where the third bond regions are between the third level and the fourth level, where the second level, third level, and fourth level each include one array of memory cells, and where the one array of memory cells is a DRAM type memory.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: August 24, 2021
    Assignee: Monolithic 3D Inc.
    Inventors: Zvi Or-Bach, Deepak C. Sekar, Brian Cronquist
  • Patent number: 10937898
    Abstract: A structure and method of forming a lateral bipolar junction transistor (LBJT) that includes: a first base layer, a second base layer over the first base layer, and an emitter region and collector region present on opposing sides of the first base layer, where the first base layer has a wider-band gap than the second base layer, and where the first base layer includes a III-V semiconductor material.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: March 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Pouya Hashemi, Bahman Hekmatshoartabari, Alexander Reznicek, Karthik Balakrishnan, Jeng-Bang Yau
  • Patent number: 10784257
    Abstract: This specification discloses methods for integrating a SiGe-based HBT (heterojunction bipolar transistor) and a Si-based BJT (bipolar junction transistor) together in a single manufacturing process that does not add a lot of process complexity, and an integrated circuit that can be fabricated utilizing such a streamlined manufacturing process. In some embodiments, such an integrated circuit can enjoy both the benefits of a higher RF (radio frequency) performance for the SiGe HBT and a lower leakage current for the Si-based BJT. In some embodiments, such an integrated circuit can be applied to an ESD (electrostatic discharge) clamp circuit, in order to achieve a lower, or no, yield-loss.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: September 22, 2020
    Assignee: NXP B.V.
    Inventors: Petrus Hubertus Cornelis Magnee, Pieter Simon van Dijk, Johannes Josephus Theodorus Marinus Donkers, Dolphin Abessolo Bidzo
  • Patent number: 10700055
    Abstract: Disclosed examples provide fabrications methods and integrated circuits with back ballasted NPN bipolar transistors which include an n-type emitter in a P doped region, a p-type base with a first side facing the emitter, and an n-type collector laterally spaced from a second side of the base, where the collector includes a first side facing the second side of the base, an opposite second side, a silicided first collector portion and a silicide blocked second collector portion covered with a non-conductive dielectric that extends laterally between the first collector portion and the second side of the collector to provide back side ballasting for lateral breakdown and low current conduction via a deep N doped region while the vertical NPN turns on at a high voltage.
    Type: Grant
    Filed: December 12, 2017
    Date of Patent: June 30, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Akram Ali Salman, Guruvayurappan Mathur, Ryo Tsukahara
  • Patent number: 10658463
    Abstract: A semiconductor device includes a substrate, an active fin protruding from the substrate, and an asymmetric diamond-shaped source/drain disposed on an upper surface of the active fin. The source/drain includes a first crystal growth portion and a second crystal growth portion sharing a plane with the first crystal growth portion and having a lower surface disposed at a lower level than a lower surface of the first crystal growth portion.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: May 19, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jongki Jung, Myungil Kang, Yoonhae Kim, Kwanheum Lee
  • Patent number: 10566431
    Abstract: A semiconductor device, its manufacturing method, and a radiation measurement method are presented, relating to semiconductor techniques. The semiconductor device includes: a substrate comprising a base area and a collector area adjacent to each other; a plurality of semiconductor fins on the substrate, wherein the plurality of semiconductor fins comprises at least a first semiconductor fin and a second semiconductor fin on the base area and separated from each other, the first semiconductor fin comprises an emission area adjacent to the base area, and the second semiconductor fin comprises a first region adjacent to the base area; a first gate structure on the second semiconductor fin; and a first source and a first drain at two opposite sides of the first gate structure and at least partially in the first region. Radiation in a semiconductor apparatus can be measured through this semiconductor device.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: February 18, 2020
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: Fei Zhou
  • Patent number: 9842834
    Abstract: A horizontal current bipolar transistor comprises a substrate of first conductivity type, defining a wafer plane parallel to said substrate; a collector drift region above said substrate, having a second, opposite conductivity type, forming a first metallurgical pn-junction with said substrate; a collector contact region having second conductivity type above said substrate and adjacent to said collector drift region; a base region comprising a sidewall at an acute angle to said wafer plane, having first conductivity type, and forming a second metallurgical pn-junction with said collector drift region; and a buried region having first conductivity type between said substrate and said collector drift region forming a third metallurgical pn-junction with the collector drift region. An intercept between an isometric projection of said base region on said wafer plane and an isometric projection of said buried region on said wafer plane is smaller than said isometric projection of said base region.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 12, 2017
    Inventors: Marko Koricic, Tomislav Suligoj
  • Patent number: 9590082
    Abstract: Device structures and fabrication methods for a heterojunction bipolar transistor. A first base layer is formed on a first device region of a substrate. A first emitter is formed that defines a first junction with the first base layer. A second base layer is formed on a second device region of a substrate. A second emitter is formed that defines a second junction with the second base layer. The first base layer and the second base layer differ in thickness, composition, concentration of an electrically-active dopant, or a combination thereof.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: March 7, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vibhor Jain, Qizhi Liu
  • Patent number: 9583616
    Abstract: A semiconductor structure includes a semiconductor substrate, a plurality of transistors and an electrically insulating layer provided between the substrate and the plurality of transistors, and a trench isolation structure including a portion between a first and a second island of the semiconductor structure and extending into the substrate to a first depth. The substrate includes a bottom region having a first type of doping and extending at least to a second depth greater than the first depth, and a deep well region having a second type of doping and extending to a third depth greater than the first depth and smaller than the second depth. Each of the first and second islands includes a first backgate region having the first type of doping and being continuous with the bottom region and a second backgate region having the second type of doping and being continuous with the deep well region.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 28, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventor: John Morgan
  • Patent number: 9472615
    Abstract: A fin-shaped field-effect transistor (finFET) device is provided. The finFET device includes a substrate material with a top surface and a bottom surface. The finFET device also includes a well region formed in the substrate material. The well region may include a first type of dopant. The finFET device also includes a fin structure disposed on the top surface of the substrate material. A portion of the fin structure may include the first type of dopant. The finFET device also includes an oxide material disposed on the top surface of the substrate material and adjacent to the portion of the fin structure. The finFET device also includes a first epitaxial material disposed over a portion of the fin structure. The first epitaxial material may include a second type of dopant.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: October 18, 2016
    Assignee: Broadcom Corporation
    Inventors: Qintao Zhang, Akira Ito
  • Patent number: 9093565
    Abstract: A fin diode structure and method of manufacturing the same is provided in present invention, which the structure includes a substrate, a doped well formed in the substrate, a plurality of fins of first conductivity type and a plurality of fins of second conductivity type protruding from the doped well, and a doped region of first conductivity type formed globally in the substrate between the fins of first conductivity type, the fins of second conductivity type, the shallow trench isolation and the doped well and connecting with the fins of first doped type and the fins of second doped type.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: July 28, 2015
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chang-Tzu Wang, Ping-Chen Chang, Tien-Hao Tang, Kuan-Cheng Su
  • Patent number: 9087706
    Abstract: One method disclosed herein includes performing at least one common process operation to form a plurality of first gate structures for each of a plurality of field effect transistors and a plurality of second gate structures above a region where a bipolar transistor will be formed and performing an ion implantation process and a heating process to form a continuous doped emitter region that extends under all of the second gate structures. A device disclosed herein includes a first plurality of field effect transistors with first gate structures, a bipolar transistor that has an emitter region and a plurality of second gate structures positioned above the emitter region, wherein the bipolar transistor comprises a continuous doped emitter region that extends laterally under all of the plurality of second gate structures.
    Type: Grant
    Filed: December 23, 2014
    Date of Patent: July 21, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Jerome Ciavatti, Roderick Miller, Marc Tarabbia
  • Patent number: 9041149
    Abstract: The invention relates to a semiconductor device (30) comprising a substrate (1), a semiconductor body (25) comprising a bipolar transistor that comprises a collector region (3), a base region (4), and an emitter region (15), wherein at least a portion of the collector region (3) is surrounded by a first isolation region (2, 8), the semiconductor body (25) further comprises an extrinsic base region (35) arranged in contacting manner to the base region (4). In this way, a fast semiconductor device with reduced impact of parasitic components is obtained.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: May 26, 2015
    Assignee: NXP, B.V.
    Inventors: Guillaume Boccardi, Mark C. J. C. M. Kramer, Johannes J. T. M. Donkers, Li Jen Choi, Stefaan Decoutere, Arturo Sibaja-Hernandez, Stefaan Van Huylenbroeck, Rafael Venegas
  • Publication number: 20150115399
    Abstract: Device structures, fabrication methods, and design structures for a bipolar junction transistor. A semiconductor material layer is formed on a substrate and a mask layer is formed on the semiconductor material layer. The mask layer is patterned to form a plurality of openings to the semiconductor material layer. After the mask layer is formed and patterned, the semiconductor material layer is etched at respective locations of the openings to define a first trench, a second trench separated from the first trench by a first section of the semiconductor material layer defining a terminal of the bipolar junction transistor, and a third trench separated from the first trench by a second section of the semiconductor material layer defining an isolation pedestal. A trench isolation region is formed at a location in the substrate that is determined at least in part using the isolation pedestal as a positional reference.
    Type: Application
    Filed: January 9, 2015
    Publication date: April 30, 2015
    Inventor: Qizhi Liu
  • Publication number: 20150097265
    Abstract: A device includes a semiconductor substrate, emitter and collector regions disposed in the semiconductor substrate, having a first conductivity type, and laterally spaced from one another, and a composite base region disposed in the semiconductor substrate, having a second conductivity type, and including a base contact region, a buried region through which a buried conduction path between the emitter and collector regions is formed during operation, and a base link region electrically connecting the base contact region and the buried region. The base link region has a dopant concentration level higher than the buried region and is disposed laterally between the emitter and collector regions.
    Type: Application
    Filed: October 7, 2013
    Publication date: April 9, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Publication number: 20150054123
    Abstract: Aspects of the invention provide a method of forming a bipolar junction transistor. The method includes: providing a semiconductor substrate including a uniform silicon nitride layer over an emitter pedestal, and a base layer below the emitter pedestal; applying a photomask at a first end and a second end of a base region; and performing a silicon nitride etch with the photomask to simultaneously form silicon nitride spacers adjacent to the emitter pedestal and exposing the base region of the bipolar junction transistor. The silicon nitride etch may be an end-pointed etch.
    Type: Application
    Filed: October 23, 2014
    Publication date: February 26, 2015
    Inventors: Margaret A. Faucher, Paula M. Fisher, Thomas H. Gabert, Joseph P. Hasselbach, Qizhi Liu, Glenn C. MacDougall
  • Publication number: 20150048478
    Abstract: Device structures and design structures for a bipolar junction transistor. A first isolation structure is formed in a substrate to define a boundary for a device region. A collector is formed in the device region, and a second isolation structure is formed in the device region. The second isolation structure defines a boundary for the collector. The second isolation structure is laterally positioned relative to the first isolation structure to define a section of the device region between the first and second isolation structures.
    Type: Application
    Filed: September 25, 2014
    Publication date: February 19, 2015
    Inventors: James S. Dunn, Qizhi Liu
  • Patent number: 8946038
    Abstract: A method of forming one or more diodes in a fin field-effect transistor (FinFET) device includes forming a hardmask layer having a fin pattern, said fin pattern including an isolated fin area, a fin array area, and a FinFET area. The method further includes etching a plurality of fins into a semiconductor substrate using the fin pattern, and depositing a dielectric material over the semiconductor substrate to fill spaces between the plurality of fins. The method further includes planarizing the semiconductor substrate to expose the hardmask layer. The method further includes implanting a p-type dopant into the fin array area and portions of the FinFET area, and implanting an n-type dopant into the isolated fin area, a portion of the of fin array area surrounding the p-well and portions of the FinFET area. The method further includes annealing the semiconductor substrate.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hsin Hu, Sun-Jay Chang, Jaw-Juinn Horng, Chung-Hui Chen
  • Publication number: 20150008558
    Abstract: Device structures and design structures for a bipolar junction transistor. An intrinsic base is formed on the substrate, a terminal is formed on the intrinsic base, and an extrinsic base is formed that is arranged in juxtaposition with the intrinsic base on the substrate. The intrinsic base and terminal are respectively comprised of first and second semiconductor materials.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: David L. Harame, Qizhi Liu
  • Publication number: 20150008559
    Abstract: Bipolar junction transistors and design structures for a bipolar junction transistor. The bipolar junction transistor may include a plurality of emitters that are arranged in distinct emitter fingers. A silicide layer is formed that covers an extrinsic base layer of the bipolar junction transistor and that fills the gaps between adjacent emitters. Non-conductive spacers on the emitter sidewalls electrically insulate the emitters from the silicide layer. The emitters extend through the extrinsic base layer and the silicide layer to contact the intrinsic base layer. The emitters may be formed using sacrificial emitter pedestals in a replacement-type process.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 8, 2015
    Inventors: Renata Camillo-Castillo, David L. Harame, Qizhi Liu, Ramana M. Malladi, John J. Pekarik
  • Patent number: 8927380
    Abstract: A circuit configuration and methods for controlling parameters of a bipolar junction transistor (BJT) fabricated on a substrate. A bias voltage is electrically coupled to the substrate and can be adjusted to alter the working parameters of a target BJT.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: January 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Tak H. Ning
  • Patent number: 8907445
    Abstract: A film formation substrate (200) is a film formation substrate having a plurality of vapor deposition regions (24R and 24G) (i) which are arranged along a predetermined direction and (ii) in which respective vapor-deposited films (23R and 23G) are provided. The vapor-deposited film (24R) has inclined side surfaces 23s which are inclined with respect to a direction normal to the film formation substrate (200). A width, in the predetermined direction, of the vapor-deposited film (23R) is larger than the sum of (i) a width, in the predetermined direction, of the vapor deposition region (24R) and (ii) a width, in the predetermined direction, of a region (29) between the vapor deposition region (24R) and the vapor deposition region (24G).
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 9, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tohru Sonoda, Shinichi Kawato, Satoshi Inoue, Satoshi Hashimoto
  • Patent number: 8907452
    Abstract: A device for detecting a laser attack in an integrated circuit chip formed in the upper P-type portion of a semiconductor substrate incorporating an NPN bipolar transistor having an N-type buried layer, including a detector of the variations of the current flowing between the base of said NPN bipolar transistor and the substrate.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: December 9, 2014
    Assignee: STMicroelectronics (Rousset) SAS
    Inventors: Fabrice Marinet, Jimmy Fort, Alexandre Sarafianos, Julien Mercier
  • Publication number: 20140327106
    Abstract: Device structures, fabrication methods, and design structures for a bipolar junction transistor. A semiconductor material layer is formed on a substrate and a mask layer is formed on the semiconductor material layer. The mask layer is patterned to form a plurality of openings to the semiconductor material layer. After the mask layer is formed and patterned, the semiconductor material layer is etched at respective locations of the openings to define a first trench, a second trench separated from the first trench by a first section of the semiconductor material layer defining a terminal of the bipolar junction transistor, and a third trench separated from the first trench by a second section of the semiconductor material layer defining an isolation pedestal. A trench isolation region is formed at a location in the substrate that is determined at least in part using the isolation pedestal as a positional reference.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 6, 2014
    Applicant: International Business Machines Corporation
    Inventor: Qizhi Liu
  • Publication number: 20140319648
    Abstract: An integrated circuit includes first and second electronic components, a buried UTBOX insulating layer, first and second ground planes plumb with the first and second electronic components, first and second wells, first and second biasing electrodes making contact with the first and second wells and with the first and second ground planes, a third electrode making contact with the first well, a first trench isolation separating the first and third electrodes and extending through the buried insulating layer as far as into the first well, and a second trench isolation that isolates the first electrode from the first component, and that does not extend as far as the interface between the first ground plane and the first well.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 30, 2014
    Inventors: Claire Fenouillet-Beranger, Pascal Fonteneau
  • Patent number: 8847348
    Abstract: An example embodiment is a complementary transistor inverter circuit. The circuit includes a semiconductor-on-insulator (SOI) substrate, a lateral PNP bipolar transistor fabricated on the SOI substrate, and a lateral NPN bipolar transistor fabricated on the SOI substrate. The lateral PNP bipolar transistor includes a PNP base, a PNP emitter, and a PNP collector. The lateral NPN bipolar transistor includes a NPN base, a NPN emitter, and a NPN collector. The PNP base, the PNP emitter, the PNP collector, the NPN base, the NPN emitter, and the NPN collector abut the buried insulator of the SOI substrate.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 30, 2014
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Robert H. Dennard, Wilfried E. Haensch, Tak H. Ning
  • Patent number: 8816400
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) having a deep pseudo buried layer is disclosed. The SiGe HBT includes isolation structures formed in trenches, first pseudo buried layers and second pseudo buried layers, and a collector region. The first pseudo buried layers are formed under the respective trenches and the second pseudo buried layers are formed under the first pseudo buried layers, with each first pseudo buried layer vertically contacting with a second pseudo buried layer. The second pseudo buried layers are laterally connected to each other, and the collector region is surrounded by the trenches, the first pseudo buried layers and the second pseudo buried layers. The cross section of each of the trenches has a regular trapezoidal shape, namely, each trench's width of its top is smaller than that of its bottom. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: August 26, 2014
    Assignee: Shanghai Hua Hong Nec Electronics Co., Ltd.
    Inventor: Wensheng Qian
  • Patent number: 8766403
    Abstract: Semiconductor devices having capacitor arrays and methods of forming the same. A semiconductor device is formed including a capacitor array. The capacitor array includes a plurality of operational capacitors formed along a diagonal of the capacitor array. The capacitor array also includes a plurality of dummy capacitors formed substantially symmetrically about the plurality of operational capacitors in the capacitor array. A first operational capacitor is formed at a first edge of the capacitor array. Each one of the plurality of operational capacitors is electrically coupled to a non-adjacent other one of the plurality of operational capacitors.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: July 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chi-Feng Huang, Chia-Chung Chen
  • Patent number: 8754484
    Abstract: A process of forming an integrated circuit containing a bipolar transistor and an MOS transistor, by forming a base layer of the bipolar transistor using a non-selective epitaxial process so that the base layer has a single crystalline region on a collector active area and a polycrystalline region on adjacent field oxide, and concurrently implanting the MOS gate layer and the polycrystalline region of the base layer, so that the base-collector junction extends into the substrate less than one-third of the depth of the field oxide, and vertically cumulative doping density of the polycrystalline region of the base layer is between 80 percent and 125 percent of a vertically cumulative doping density of the MOS gate. An integrated circuit containing a bipolar transistor and an MOS transistor formed by the described process.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: June 17, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Hiroshi Yasuda, Berthold Staufer
  • Publication number: 20140159195
    Abstract: A semiconductor substrate has at least two active regions, each having at least one active device that includes a gate electrode layer, and a shallow trench isolation (STI) region between the active regions. A decoupling capacitor comprises first and second dummy conductive patterns formed in the same gate electrode layer over the STI region. The first and second dummy conductive regions are unconnected to any of the at least one active device. The first dummy conductive pattern is connected to a source of a first potential. The second dummy conductive pattern is connected to a source of a second potential. A dielectric material is provided between the first and second dummy conductive patterns.
    Type: Application
    Filed: February 12, 2014
    Publication date: June 12, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chung-Hui CHEN
  • Patent number: 8742538
    Abstract: A silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) is disclosed, which includes: two isolation structures each being formed in a trench; a set of three or more pseudo buried layers formed under each trench with every adjacent two pseudo buried layers of the set being vertically contacted with each other; and a collector region. In this design, the lowermost pseudo buried layers of the two sets are laterally in contact with each other, and the collector region is surrounded by the two isolation structures and the two sets of pseudo buried layers. As the breakdown voltage of a SiGe HBT according to the present invention is determined by the distance between an uppermost pseudo buried layer and the edge of an active region, SiGe HBTs having different breakdown voltages can be achieved. A manufacturing method of the SiGe HBT is also disclosed.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: June 3, 2014
    Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.
    Inventor: Wensheng Qian
  • Publication number: 20140131711
    Abstract: A bipolar junction transistor built with a mesh structure of cells provided on a semiconductor body is disclosed. The mesh structure has at least one emitter cell with a first type of implant. At least one emitter cell has at least one side coupled to at least one cell with a first type of implant to serve as collector of the bipolar. The spaces between the emitter and collector cells are the intrinsic base of a bipolar device. At least one emitter cell has at least one vortex coupled to at least one cell with a second type of implant to serve as the extrinsic base of the bipolar. The emitter, collector, or base cells can be arbitrary polygons as long as the overall geometry construction can be very compact and expandable. The implant regions between cells can be separated with a space. A silicide block layer can cover the space and overlap into at least a portion of both implant regions.
    Type: Application
    Filed: March 15, 2013
    Publication date: May 15, 2014
    Inventor: Shine C. Chung
  • Publication number: 20140117493
    Abstract: Methods for fabricating a device structure, as well as device structures and design structures for a bipolar junction transistor. The device structure includes a collector region in a substrate, a plurality of isolation structures extending into the substrate and comprised of an electrical insulator, and an isolation region in the substrate. The isolation structures have a length and are arranged with a pitch transverse to the length such that each adjacent pair of the isolation structures is separated by a respective section of the substrate. The isolation region is laterally separated from at least one of the isolation structures by a first portion of the collector region. The isolation region laterally separates a second portion of the collector region from the first portion of the collector region. The device structure further includes an intrinsic base on the second portion of the collector region and an emitter on the intrinsic base.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 1, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Peng Cheng, Peter B. Gray, Vibhor Jain, Robert K. Leidy, Qizhi Liu
  • Patent number: 8710621
    Abstract: A semiconductor device according to the present invention includes a p-type semiconductor substrate, a first n-type collector diffusion layer formed in the p-type semiconductor substrate, a deep trench formed in the p-type semiconductor substrate so as to surround the first n-type collector diffusion layer, a p-type channel stopper layer formed beneath the deep trench, and an n-type diffusion layer formed between a sidewall of the deep trench and the first n-type collector diffusion layer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 29, 2014
    Assignee: Panasonic Corporation
    Inventors: Mitsuo Tanaka, Tsuneichiro Sano, Osamu Matsui
  • Patent number: 8692266
    Abstract: A circuit substrate structure including a substrate, a dielectric stack layer, a first plating layer and a second plating layer is provided. The substrate has a pad. The dielectric stack layer is disposed on the substrate and has an opening exposing the pad, wherein the dielectric stack layer includes a first dielectric layer, a second dielectric layer and a third dielectric layer located between the first dielectric layer and the second dielectric layer, and there is a gap between the portion of the first dielectric layer surrounding the opening and the portion of the second dielectric layer surrounding the opening. The first plating layer is disposed at the dielectric stack layer. The second plating layer is disposed at the pad, wherein the gap isolates the first plating layer from the second plating layer.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: April 8, 2014
    Assignee: Optromax Electronics Co., Ltd
    Inventor: Kuo-Tso Chen
  • Patent number: 8692306
    Abstract: A semiconductor substrate has at least two active regions, each having at least one active device that includes a gate electrode layer, and a shallow trench isolation (STI) region between the active regions. A decoupling capacitor comprises first and second dummy conductive patterns formed in the same gate electrode layer over the STI region. The first and second dummy conductive regions are unconnected to any of the at least one active device. The first dummy conductive pattern is connected to a source of a first potential. The second dummy conductive pattern is connected to a source of a second potential. A dielectric material is provided between the first and second dummy conductive patterns.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Chung-Hui Chen
  • Publication number: 20140008758
    Abstract: An example embodiment is a complementary transistor inverter circuit. The circuit includes a semiconductor-on-insulator (SOI) substrate, a lateral PNP bipolar transistor fabricated on the SOI substrate, and a lateral NPN bipolar transistor fabricated on the SOI substrate. The lateral PNP bipolar transistor includes a PNP base, a PNP emitter, and a PNP collector. The lateral NPN bipolar transistor includes a NPN base, a NPN emitter, and a NPN collector. The PNP base, the PNP emitter, the PNP collector, the NPN base, the NPN emitter, and the NPN collector abut the buried insulator of the SOI substrate.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 9, 2014
    Applicant: International Business Machines Corporation
    Inventors: Jin Cai, Robert H. Dennard, Wilfried E. Haensch, Tak H. Ning
  • Patent number: 8610241
    Abstract: Diodes and bipolar junction transistors (BJTs) are formed in IC devices that include fin field-effect transistors (FinFETs) by utilizing various process steps in the FinFET formation process. The diode or BJT includes an isolated fin area and fin array area having n-wells having different depths and a p-well in a portion of the fin array area that surrounds the n-well in the isolated fin area. The n-wells and p-well for the diodes and BJTs are implanted together with the FinFET n-wells and p-wells.
    Type: Grant
    Filed: June 12, 2012
    Date of Patent: December 17, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Hsin Hu, Sun-Jay Chang, Jaw-Juinn Horng, Chung-Hui Chen
  • Publication number: 20130328162
    Abstract: Diodes and bipolar junction transistors (BJTs) are formed in IC devices that include fin field-effect transistors (FinFETs) by utilizing various process steps in the FinFET formation process. The diode or BJT includes an isolated fin area and fin array area having n-wells having different depths and a p-well in a portion of the fin array area that surrounds the n-well in the isolated fin area. The n-wells and p-well for the diodes and BJTs are implanted together with the FinFET n-wells and p-wells.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 12, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Hsin HU, Sun-Jay CHANG, Jaw-Juinn HORNG, Chung-Hui CHEN
  • Patent number: 8587087
    Abstract: In order to improve characteristics of an IGBT, particularly, to reduce steady loss, turn-off time and turn-off loss, a thickness of a surface semiconductor layer is set to about 20 nm to 100 nm in an IGBT including: a base layer; a buried insulating film provided with an opening part; the surface semiconductor layer connected to the base layer below the opening part; a p type channel forming layer formed in the surface semiconductor layer; an n+ type source layer; a p+ type emitter layer; a gate electrode formed over the surface semiconductor layer via a gate insulating film; an n+ type buffer layer; and a p type collector layer.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: November 19, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Daisuke Arai, Yoshito Nakazawa, Norio Hosoya
  • Patent number: 8546908
    Abstract: A semiconductor amplifier is provided comprising, a substrate and one or more unit amplifying cells (UACs) formed on the substrate, wherein each UAC is laterally surrounded by a first lateral dielectric filled trench (DFT) isolation wall extending at least to the substrate and multiple UACs are surrounded by a second lateral DFT isolation wall of similar depth outside the first isolation walls, and further semiconductor regions lying between the first isolation walls when two or more unit cells are present, and/or lying between the first and second isolation walls, are electrically floating with respect to the substrate. This reduces the parasitic capacitance of the amplifying cells and improves the power added efficiency. Excessive leakage between buried layer contacts when using high resistivity substrates is avoided by providing a further semiconductor layer of intermediate doping between the substrate and the buried layer contacts.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: October 1, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dragan Zupac, Brian D. Griesbach, Theresa M. Keller, Joel M. Keys, Sandra J. Wipf, Evan F. Yu
  • Publication number: 20130234277
    Abstract: The invention relates to a semiconductor device having a vertical transistor bipolar structure of emitter, base, and collector formed in this order from a semiconductor substrate surface in a depth direction. The semiconductor device includes an electrode embedded from the semiconductor substrate surface into the inside and insulated by an oxide film. In the surface of the substrate, a first-conductivity-type first semiconductor region, a second-conductivity-type second semiconductor region, and a first-conductivity-type third semiconductor region are arranged, from the surface side, inside a semiconductor device region surrounded by the electrode and along the electrode with the oxide film interposed therebetween, the second semiconductor region located below the first semiconductor region, the third semiconductor region located below the second semiconductor region.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 12, 2013
    Applicants: Ricoh Company, LTD., National Institute of Advanced Industrial Science and Technology
    Inventors: Takaaki Negoro, Hirofumi Watanabe, Yutaka Hayashi, Toshitaka Ota, Yasushi Nagamune
  • Publication number: 20130234102
    Abstract: Some embodiments include methods of forming BJTs. A first type doped region is formed within semiconductor material. First and second trenches are formed within the semiconductor material to pattern an array of pedestals, and the trenches are filled with electrically insulative material. An upper portion of the first type doped region is counter-doped to form a first stack having a second type doped region over a first type doped region, and an upper portion of the first stack is then counter-doped to form a second stack having a second type doped region between a pair of first type doped regions. Some embodiments include a BJT array. A base implant region is between a pair of emitter/collector implant regions. Electrically insulative material is adjacent the base implant region, and contains at least about 7×1016 atoms/cm3 of base implant region dopant.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Federica Ottogalli, Luca Laurin
  • Patent number: 8531001
    Abstract: An example embodiment is a complementary transistor inverter circuit. The circuit includes a semiconductor-on-insulator (SOI) substrate, a lateral PNP bipolar transistor fabricated on the SOI substrate, and a lateral NPN bipolar transistor fabricated on the SOI substrate. The lateral PNP bipolar transistor includes a PNP base, a PNP emitter, and a PNP collector. The lateral NPN bipolar transistor includes a NPN base, a NPN emitter, and a NPN collector. The PNP base, the PNP emitter, the PNP collector, the NPN base, the NPN emitter, and the NPN collector abut the buried insulator of the SOI substrate.
    Type: Grant
    Filed: June 12, 2011
    Date of Patent: September 10, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Robert H. Dennard, Wilfried E. Haensch, Tak H. Ning