Including Lateral Bipolar Transistor Structure Patents (Class 257/556)
  • Patent number: 11037927
    Abstract: An electronic circuit includes a noise source and an analog circuit and a logic circuit that may be adversely affected by noise. At least a portion of the analog circuit and the logic circuit is formed on a buried impurity layer whose conductivity is different from that of a substrate, and at least a portion of the periphery of that portion is surrounded by an impurity layer that is different from the substrate. Thus, propagation of the noise from the noise source is prevented.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: June 15, 2021
    Assignee: SEIKO EPSON CORPORATION
    Inventors: Isamu Moriya, Atsushi Yamada
  • Patent number: 10497699
    Abstract: The present application discloses new approaches to providing “passive-off” protection for a B-TRAN-like device. Even if the control circuitry is inactive, AC coupling uses transient voltage on the external terminals to prevent forward biasing an emitter junction. Preferably the same switches which implement diode-mode and pre-turnoff operation are used as part of the passive-off circuit operation.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: December 3, 2019
    Assignee: Ideal Power, Inc.
    Inventor: William C. Alexander
  • Patent number: 8853043
    Abstract: A heterojunction bipolar transistor (HBT), an integrated circuit (IC) chip including at least one HBT and a method of forming the IC. The HBT includes an extrinsic base with one or more buried interstitial barrier layer. The extrinsic base may be heavily doped with boron and each buried interstitial barrier layer is doped with a dopant containing carbon, e.g., carbon or SiGe:C. The surface of the extrinsic base may be silicided.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: October 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Wade J. Hodge, Alvin J. Joseph, Rajendran Krishnasamy, Qizhi Liu, Bradley A. Orner
  • Patent number: 8796100
    Abstract: The present invention discloses a method of manufacturing an N-type LDMOS device. The method comprises forming a gate above the semiconductor substrate; forming a body, comprising forming a Pwell apart from the gate and forming a Pbase partly in the Pwell, wherein the Pbase is wider and shallower than the Pwell; and forming an N-type source and a drain contact region. Wherein the body curvature of the LDMOS device is controlled by adjusting the layout width of the Pwell.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 5, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Jeesung Jung
  • Patent number: 8624355
    Abstract: A semiconductor device includes an n-type first guard ring layer provided between an emitter layer and a collector layer on a surface side of a base layer, and having a higher n-type impurity concentration than the base layer, and an n-type second guard ring layer provided between the first guard ring layer and a buried layer, connected to the first guard ring layer and the buried layer, and having a higher n-type impurity concentration than the base layer. The first guard ring layer has an n-type impurity concentration profile decreasing toward the second guard ring layer side, and the second guard ring layer has an impurity concentration profile decreasing toward the first guard ring layer side.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: January 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koji Shirai
  • Patent number: 8581339
    Abstract: A bipolar junction transistor and a manufacturing method for the same are provided. The bipolar junction transistor includes a well region, an emitter electrode, a base electrode, a collector electrode, and a conductive layer. The emitter electrode, the base electrode and the collector electrode are separated from each other by the well region. The conductive layer is on the well region between the base electrode and the collector electrode.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: November 12, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chin-Wei Chang, Ching-Lin Chan, Chin-Shien Lu, Ming-Tung Lee, Shuo-Lun Tu
  • Patent number: 8304858
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: November 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 8278736
    Abstract: An electrostatic discharge protection device coupled between a first power line and a second power line is provided. A first N-type doped region is formed in a P-type well. A first P-type doped region is formed in the first N-type doped region. A second P-type doped region includes a first portion and a second portion. The first portion of the second P-type doped region is formed in the first N-type doped region. The second portion of the second P-type doped region is formed outside of the first N-type doped region. A second N-type doped region is formed in the first portion of the second P-type doped region. The first P-type doped region, the first N-type doped region, the second P-type doped region and the second N-type doped region constitute an insulated gate bipolar transistor (IGBT).
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: October 2, 2012
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Yeh-Ning Jou, Chia-Wei Hung, Shu-Ling Chang, Hwa-Chyi Chiou, Yeh-Jen Huang
  • Patent number: 8053858
    Abstract: A lateral Insulated Gate Bipolar Transistor (LIGBT) includes a semiconductor substrate and an anode region in the semiconductor substrate. A cathode region of a first conductivity type in the substrate is laterally spaced from the anode region, and a cathode region of a second conductivity type in the substrate is located proximate to and on a side of the cathode region of the first conductivity type opposite from the anode region. A drift region in the semiconductor substrate extends between the anode region and the cathode region of the first conductivity type. An insulated gate is operatively coupled to the cathode region of the first conductivity type and is located on a side of the cathode region of the first conductivity type opposite from the anode region. An insulating spacer overlies the cathode region of the second conductivity type.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: November 8, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Cai
  • Patent number: 8049307
    Abstract: Insulated gate bipolar transistor (IGBT) electrostatic discharge (ESD) protection devices are presented. An IGBT-ESD device includes a semiconductor substrate and patterned insulation regions disposed on the semiconductor substrate defining a first active region and a second active region. A high-V N-well is formed in the first active region of the semiconductor substrate. A P-body doped region is formed in the second active region of the semiconductor substrate, wherein the high-V N-well and the P-body doped region are separated with a predetermined distance exposing the semiconductor substrate. A P+ doped drain region is disposed in the high-V N-well. A P+ diffused region and an N+ doped source region are disposed in the P-body doped region. A gate structure is disposed on the semiconductor substrate with one end adjacent to the N+ doped source region and the other end extending over the insulation region.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: November 1, 2011
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Yeh-Ning Jou, Shang-Hui Tu, Jui-Chun Chang, Chen-Wei Wu
  • Patent number: 8026569
    Abstract: In one embodiment of the present invention, a semiconductor device has a photodiode over a P-type substrate, an NPN transistor formed over the P-type substrate, an N+-type buried region provided right under the NPN transistor as being buried in the P-type substrate, and a P+-type buried region formed in the N+-type buried region.
    Type: Grant
    Filed: August 18, 2008
    Date of Patent: September 27, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Toshiaki Miura
  • Patent number: 7944022
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: May 17, 2011
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 7859082
    Abstract: Emitter and collector regions of the bipolar transistor are formed by doped regions of the same type of conductivity, which are separated by doped semiconductor material of an opposite type of conductivity, the separate doped regions being arranged at a surface of a semiconductor body and being in electric contact with electrically conductive material that is introduced into trenches at the surface of the semiconductor body.
    Type: Grant
    Filed: May 23, 2007
    Date of Patent: December 28, 2010
    Assignee: Infineon Technologies AG
    Inventor: Matthias Stecher
  • Patent number: 7719086
    Abstract: In a semiconductor device of the present invention, a first base region 16 is extended to a part under a gate electrode 7 while having a vertical concentration profile of an impurity that increases from the surface of a semiconductor layer 3 and becomes maximum under an emitter region 5, and the length in the lateral direction from a point where the impurity concentration becomes maximum located under an end of the gate electrode 7 to the boundary with a second base region 15 is not smaller than the length in the vertical direction from the point where the impurity concentration becomes maximum to the boundary with the second base region 15.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: May 18, 2010
    Assignee: Panasonic Corporation
    Inventors: Teruhisa Ikuta, Yoshinobu Sato
  • Patent number: 7531888
    Abstract: A lateral Insulated Gate Bipolar Transistor (LIGBT) includes a semiconductor substrate and an anode region in the semiconductor substrate. A cathode region of a first conductivity type in the substrate is laterally spaced from the anode region, and a cathode region of a second conductivity type in the substrate is located proximate to and on a side of the cathode region of the first conductivity type opposite from the anode region. A drift region in the semiconductor substrate extends between the anode region and the cathode region of the first conductivity type. An insulated gate is operatively coupled to the cathode region of the first conductivity type and is located on a side of the cathode region of the first conductivity type opposite from the anode region. An insulating spacer overlies the cathode region of the second conductivity type.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: May 12, 2009
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Cai
  • Patent number: 7342293
    Abstract: The present invention relates to bipolar junction transistors (BJTS). The collector region of each BJT is located in a semiconductor substrate surface and adjacent to a first shallow trench isolation (STI) region. A second STI region is provided, which extends between the first STI region and the collection region and undercuts a portion of the active base region with an undercut angle of not more than about 90°. For example, the second STI region may a substantially triangular cross-section with an undercut angle of less than about 90°, or a substantially rectangular cross-section with an undercut angle of about 90°. Such a second STI region can be fabricated using a porous surface section formed in an upper surface of the collector region.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Thomas A. Wallner, Thomas N. Adam, Stephen W. Bedell, Joel P. De Souza
  • Patent number: 7301220
    Abstract: A bipolar high voltage/power semiconductor device has a low voltage terminal and a high voltage terminal. The device has a drift region of a first conductivity type and having first and second ends. In one example, a region of the second conductivity type is provided at the second end of the drift region connected directly to the high voltage terminal. In another example, a buffer region of the first conductivity type is provided at the second end of the drift region and a region of a second conductivity type is provided on the other side of the buffer region and connected to the high voltage terminal. Plural electrically floating island regions are provided within the drift region at or towards the second end of the drift region, the plural electrically floating island regions being of the first conductivity type and being more highly doped than the drift region.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: November 27, 2007
    Assignee: Cambridge Semiconductor Limited
    Inventor: Florin Udrea
  • Patent number: 7276744
    Abstract: This invention is intended to provide an HBT capable of achieving, if the HBT is a collector-up HBT, the constriction of the emitter layer disposed directly under an external base layer, and reduction in base-emitter junction capacity, or if the HBT is an emitter-up HBT, reduction in base-collector junction capacity. For the collector-up HBT, window structures around the sidewalls of a collector are used to etch either the emitter layer disposed directly under the external base layer, or an emitter contact layer For the emitter-up HBT, window structures around the sidewalls of an emitter are used to etch either the collector layer disposed directly under the external base layer, or a collector contact layer. In both HBTs, the external base layer is supported by a columnar structure to ensure mechanical strength.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: October 2, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Kenichi Tanaka, Tomonori Tanoue, Hidetoshi Matsumoto, Hiroshi Ohta, Kazuhiro Mochizuki, Hiroyuki Uchiyama
  • Patent number: 7265434
    Abstract: A family of semiconductor devices is formed in a substrate that contains no epitaxial layer. In one embodiment the family includes a 5V CMOS pair, a 12V CMOS pair, a 5V NPN, a 5V PNP, several forms of a lateral trench MOSFET, and a 30V lateral N-channel DMOS. Each of the devices is extremely compact, both laterally and vertically, and can be fully isolated from all other devices in the substrate.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 4, 2007
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Michael E. Cornell, Wai Tien Chan
  • Patent number: 7217975
    Abstract: A lateral semiconductor device includes: a semiconductor substrate formed on a base region therein; a plurality of emitter regions with a triangle arrangement in an upper part of the base layer and collector regions surrounding the emitter regions, respectively, apart from the emitter regions with a predetermined space through the base layer; the base layer formed in a concentric circular pattern on the upper part; the emitter regions and collector regions provided with contacts respectively; and emitter and collector wiring layers connected to the contacts.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: May 15, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toshiharu Minamoto
  • Patent number: 7173320
    Abstract: A lateral bipolar transistor includes an emitter region, a base region, a collector region, and a gate disposed over the base region. A bias line is connected to the gate for applying a bias voltage thereto during operation of the transistor. The polarity of the bias voltage is such as to create an accumulation layer in the base under the gate. The accumulation layer provides a low-resistance path for the transistor base current, thus reducing the base resistance of the transistor.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: February 6, 2007
    Assignee: Altera Corporation
    Inventor: Irfan Rahim
  • Patent number: 7075156
    Abstract: Electrostatic discharge (ESD) devices for protection of integrated circuits are described. ESD devices may be configured to provide uniform breakdown of finger regions extending through a first region of a substrate having a first conductivity type and into a second region of the substrate more lightly doped with impurities of the first conductivity type. Such an EDS device may include a collector region having a middle region highly doped with impurities of the first conductivity type. The middle region may be proximate to a layer that is lightly doped with impurities of the first conductivity type and a layer that is doped with impurities of the second conductivity type. The collector region may decrease the breakdown voltage of the EDS device. The lightly doped region may be eliminated in the collector region and an interlayer insulating layer is formed in contact with the top side regions and the middle region.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: July 11, 2006
    Assignee: Marvell International Ltd.
    Inventors: Choy Li, Xin-Yi Zhang
  • Patent number: 7067899
    Abstract: A semiconductor integrated circuit device according to the invention includes an N-type embedded diffusion region between a substrate and a first epitaxial layer in island regions serving as small signal section. The substrate and the first epitaxial layer are thus partitioned by the N-type embedded diffusion region having supply potential in the island regions serving as small signal section. This structure prevents the inflow of free carriers (electrons) generated from a power NPN transistor due to the back electromotive force of the motor into the small signal section, thus preventing the malfunction of the small signal section.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: June 27, 2006
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Ryo Kanda, Shigeaki Okawa, Kazuhiro Yoshitake
  • Patent number: 7067898
    Abstract: A semiconductor structure having a self-aligned base contact and an emitter, where the base contact is electrically isolated from the emitter by a dielectric layer. The separation between the base contact and the emitter is determined by the thickness of the dielectric layer and the width of the emitter is determined by the minimum resolution provided by the fabrication techniques and tools used to define features within the dielectric layer.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: June 27, 2006
    Assignee: HRL Laboratories, LLC
    Inventors: Stephen Thomas, III, Yakov Royter
  • Patent number: 7026690
    Abstract: The invention includes BIFETRAM devices. Such devices comprise a bipolar transistor in combination with a field effect transistor (FET) in a three-dimensional stacked configuration. The memory devices can be incorporated within semiconductor-on-insulator (SOI) constructions. The base region of the bipolar device can be physically and electrically connected to one of the source/drain regions of the FET to act as a storage node for the memory cell. The semiconductor material of the SOI constructions can comprise Si/Ge, and the active region of the FET can extend into the Si/Ge. The SOI constructions can be formed over any of a number of substrates, including, for example, semiconductive materials, glass, aluminum oxide, silicon dioxide, metals and/or plastics.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: April 11, 2006
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 6936910
    Abstract: A method and a BICMOS structure are provided. The BiCMOS structure includes an SOI substrate having a bottom Si-containing layer, a buried insulating layer located atop the bottom Si-containing layer, a top Si-containing layer atop the buried insulating layer and a sub-collector which is located in an upper surface of the bottom Si-containing layer. The sub-collector is in contact with a bottom surface of the buried insulating layer.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: August 30, 2005
    Assignee: International Business Machines Corporation
    Inventors: John Joseph Ellis-Monaghan, Alvin Jose Joseph, Qizhi Liu, Kirk David Peterson
  • Patent number: 6911715
    Abstract: A bipolar transistor in which the occurrence of Kirk effect is suppressed when a high current is injected into the bipolar transistor and a method of fabricating the bipolar transistor are described. The bipolar transistor includes a first collector region of a first conductive type having high impurity concentration, a second collector region of a first conductive type which has high impurity concentration and is formed on the first collector region, a base region of a second conductive type being formed a predetermined portion of the second collector region, and an emitter region of a first conductive type being formed in the base region. The bipolar transistor further includes the third collector region, which has higher impurity concentration than the second collector region, at the bottom of the base region.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: June 28, 2005
    Assignee: Fairchild Korea Semiconductor Ltd
    Inventors: Chan-ho Park, Jin-myung Kim, Kyeong-seok Park, Dong-ho Hyun
  • Patent number: 6870242
    Abstract: A method including a buried layer formed on a semiconductor substrate, an active region formed adjacent to at least a portion of the buried layer, an isolation structure formed adjacent to at least a portion of the active region, and a gate oxide formed adjacent to at least a portion of the active region. The method also includes a polysilicon layer formed adjacent to at least a portion of the gate oxide having a portion removed to form a polysilicon definition structure that substantially surrounds and defines an emitter contact region. The method also includes forming a self-aligned implant region of the emitter contact region.
    Type: Grant
    Filed: September 19, 2003
    Date of Patent: March 22, 2005
    Assignee: Texas Instruments Incorporated
    Inventor: Xiaoju Wu
  • Patent number: 6798040
    Abstract: An IGBT structure includes successive regions whose conductivities have alternating signs. The structure is dimensioned for punch-through and is provided with two buffer layers. As a result, the component becomes symmetrically blocking and is suitable as a semiconductor switch, e.g., for converters.
    Type: Grant
    Filed: June 4, 2001
    Date of Patent: September 28, 2004
    Assignee: Infineon Technologies AG
    Inventor: Daniel Reznik
  • Patent number: 6791155
    Abstract: A shallow trench isolation (STI) structure in a semiconductor substrate and a method for forming the same are provided. A trench is formed in a semiconductor substrate. A first dielectric layer is formed on sidewalls of the trench. The first dielectric layer is formed thicker at a top portion of the sidewalls than a bottom portion of the sidewalls and leaving an entrance of the trench open to expose the trench. A second dielectric layer is conformally formed on the first dielectric layer to close the entrance, thus forming a void buried within the trench. Thus, the stress between the trench dielectric layer and the surrounding silicon substrate during thermal cycling can be substantially reduced.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: September 14, 2004
    Assignee: Integrated Device Technology, Inc.
    Inventors: Guo-Qiang (Patrick) Lo, Brian Schorr, Gary Foley, Shih-Ked Lee
  • Patent number: 6753592
    Abstract: A dual polysilicon emitter, complementary output is provided which utilizes a buried power buss. While providing these advantages, the process is not complicated. The process has the speed performance of the ASSET technology with an easier process to produce. In addition, the process described in the present invention provides additional advantages that the ASSET process does not have.
    Type: Grant
    Filed: September 6, 2002
    Date of Patent: June 22, 2004
    Assignee: Micrel, Inc.
    Inventor: John Durbin Husher
  • Patent number: 6737724
    Abstract: Disclosed is a semiconductor device including a transistor structure including an epitaxial silicon layer formed on a main surface of an n-type semiconductor substrate, source-drain diffusion layers formed on at least the epitaxial silicon layer, a channel region formed between the source and drain regions, and a gate electrode formed on the channel region with a gate insulating film interposed therebetween, an element isolation region being sandwiched between adjacent transistor structures, wherein a punch-through stopper layer formed in a lower portion of the channel region has an impurity concentration higher than that of the channel region, and the source-drain diffusion layers do not extend to overlap with edge portion of insulating films for the element isolation.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: May 18, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuhiko Hieda, Kyoichi Suguro
  • Patent number: 6703685
    Abstract: The invention relates to a process of forming a compact bipolar junction transistor (BJT) that includes forming a self-aligned collector tap adjacent the emitter stack and an isolation structure. A base layer is formed from epitaxial silicon that is disposed in the substrate.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: March 9, 2004
    Assignee: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green
  • Patent number: 6570240
    Abstract: In order to form a semiconductor device including a lateral bipolar transistor which is a match in the device performance for a vertical bipolar transistor, an electrically conductive film which is formed by filling a trench reaching a buried oxide film in an SOI substrate with an electrically conductive film is utilized for an emitter and/or a collector, whereby a bipolar transistor is formed through a simple process.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: May 27, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Takasumi Ohyanagi, Atsuo Watanabe
  • Patent number: 6569730
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: May 27, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6566733
    Abstract: A power lateral PNP device is disclosed which includes an epitaxial layer; a first and second collector region embedded in the epitaxial layer; an emitter region between the first and second collector regions. Therefore slots are placed in each of the regions. Accordingly, in a first approach the standard process flow will be followed until reaching the point where contact openings and metal are to be processed. In this approach slots are etched that are preferably 5 to 6 um deep and 5 to 6 um wide. These slots are then oxidized and will be subsequently metalized. When used for making metal contacts to the buried layer or for ground the oxide is removed from the bottom of the slots by an anisotropic etch. Subsequently when these slots receive metal they will provide contacts to the buried layer where this is desired and to the substrate when a ground is desired. In a second approach the above-identified process is completed up through the slot process without processing the lateral PNPs.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: May 20, 2003
    Assignee: Micrel, Inc.
    Inventors: John Durbin Husher, Ronald L. Schlupp
  • Patent number: 6404039
    Abstract: A bipolar transistor comprising an external base diffusion layer formed on the outer circumference of an intrinsic base diffusion layer is provided with the high withstand voltage and high reliability. A intrinsic base diffusion layer is formed on the substantially central portion of a semiconductor region surrounded by a separating insulation film on the major surface of a semiconductor substrate. An external base diffusion layer overlapping with the outer circumference of the intrinsic base diffusion layer, surrounding this intrinsic base diffusion layer, and reaching the separating insulation film is formed. Furthermore, common base diffusion layers overlapping with the intrinsic base diffusion layer, and overlapping with at least the inner circumference of the external base diffusion layer are formed. The depth of these common base diffusion layers is made deeper than the depth of the external base diffusion layer, but not exceeding the depth of the intrinsic base diffusion layer.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: June 11, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Hidenori Fujii
  • Patent number: 6288427
    Abstract: A BiCMOS integrated circuit is formed with CMOS transistors on an SOI substrate in a silicon layer having a standard thickness of 0.1 &mgr;m to 0.2 &mgr;m and with Bipolar SiGe transistors formed in an epitaxial layer nominally 0.5 &mgr;m thick. The CMOS transistors are formed first with standard processing, then covered with an insulating film. The insulating film is stripped in the bipolar areas and an epitaxial SiGe layer is deposited on the Si substrate. The bipolar transistors are formed using the SiGe epi layer for the base and having an encapsulated structure for device isolation using shallow isolation trenches and the buried oxide.
    Type: Grant
    Filed: January 24, 2001
    Date of Patent: September 11, 2001
    Assignee: International Business Machines Corporation
    Inventor: Feng-Yi Huang
  • Patent number: 6245609
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: June 12, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6242793
    Abstract: A method and a related circuit structure are described for improving the effectiveness of ESD protection in circuit structures realized in a semiconductor substrate overlaid with an epitaxial layer and including at least one ESD protection lateral bipolar transistor realized in the surface of the epitaxial layer. The method consists of forming under the transistor an isolating well that isolates the transistor from the substrate. Advantageously, the transistor can be fully isolated from the substrate by first and second N wells which extend from the surface of the epitaxial layer down to and in contact with the buried well.
    Type: Grant
    Filed: December 30, 1998
    Date of Patent: June 5, 2001
    Assignee: STMicroelectronics S.r.l.
    Inventors: Paolo Colombo, Emilio Camerlenghi
  • Patent number: 6225679
    Abstract: A structure for the protection of a high-voltage pad includes a lateral bipolar transistor, an N-type diffusion of which, connected to the pad to be protected, is made in an N-type tub with a zone that extends laterally outside the tub in the base. A P-type implantation is made on the entire substrate outside the N-type tub except in the region in which the zone extends.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: May 1, 2001
    Assignee: SGS-Thomson Microelectronics S.A.
    Inventors: Richard Fournel, Fabrice Marinet
  • Patent number: 6049131
    Abstract: A method and the device produced by the method of selective refractory metal growth/deposition on exposed silicon, but not on the field oxide is disclosed. The method includes preconditioning a wafer in a DHF dip followed by the steps of 1) selectively depositing a refractory metal on the exposed surfaces of the silicon substrate by reacting a refractory metal halide with the exposed surfaces of said silicon substrate; 2) limiting silicon substrate consumption by reacting the refractory metal halide with a silicon containing gas; and 3) further increasing the refractory metal thickness by reacting the refractory metal halide with hydrogen. Through an adequate pretreatment and selection of the parameters of 1) temperature; 2) pressure; 3) time; 4) flow and 5) flow ratio during each of the deposition steps, this invention adequately addresses the difficulties of uneven n+ versus p+ (source/drain) growth, deep consumption/encroachment by the refractory metal into silicon regions (e.g.
    Type: Grant
    Filed: July 3, 1997
    Date of Patent: April 11, 2000
    Assignee: International Business Machines Corporation
    Inventors: Stephen Bruce Brodsky, Richard Anthony Conti, Seshadri Subbanna
  • Patent number: 6008525
    Abstract: A minority carrier device includes at least one junction of at least two dissimilar materials, at least one of which is a semiconductor, and a passivating layer on at least one surface of the device. The passivating layer includes a Group 13 element and a chalcogenide component. Embodiments of the minority carrier device include, for example, laser diodes, light emitting diodes, heterojunction bipolar transistors, and solar cells.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: December 28, 1999
    Assignees: President and Fellows of Harvard College, TriQuint Semiconductor, Inc., The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Andrew R. Barron, Aloysius F. Hepp, Phillip P. Jenkins, Andrew N. MacInnes
  • Patent number: 6005284
    Abstract: A bipolar semiconductor device includes an npn transistor using a base outlet electrode in the form of a polycrystalline Si film and one or more other devices using an electrode in the form of a polycrystalline Si film supported on a common p-type Si substrate, the sheet resistance of the polycrystalline Si film forming the base outlet electrode of the npn transistor is decreased to two thirds of the sheet resistance of the polycrystalline Si film forming at least one electrode of at least one other device. The base outlet electrode can be made by first making the polycrystalline Si film on the entire surface of the substrate, then applying selective ion implantation of Si to a selective portion of the polycrystalline Si film for making the base outlet electrode to change it into an amorphous state, and then annealing the product to grow the polycrystalline Si film by solid-phase growth.
    Type: Grant
    Filed: May 21, 1997
    Date of Patent: December 21, 1999
    Assignee: Sony Corporation
    Inventors: Hirokazu Ejiri, Hiroyuki Miwa, Hiroaki Ammo
  • Patent number: 6005282
    Abstract: Process for making an integrated-circuit (IC) chip with junction-isolated complementary bipolar transistors. In this process an N-well is formed in a P-type substrate. P-type dopant is implanted in the N-well to become a sub-collector for a pnp transistor. N-type dopant is implanted in the substrate in a location laterally displaced from the N-well to become a sub-collector for an npn transistor. N-type material is implanted in the N-well to begin the formation of an isolation wall for the pnp transistor. A P-type epitaxial (epi) layer then is grown over the P-type substrate. N-type material is implanted in the epi layer to complete the isolation wall for the pnp transistor, and to complete the collector for the npn transistor. P-type and N-type material also is implanted in the P-type epi layer to form the bases and emitters for the npn and pnp transistors.
    Type: Grant
    Filed: January 18, 1995
    Date of Patent: December 21, 1999
    Assignee: Analog Devices, Inc.
    Inventors: Jerome F. Lapham, Brad W. Scharf
  • Patent number: 5994740
    Abstract: An n.sup.- -type silicon active layer having a thickness of 6 .mu.m or less is formed on a silicon substrate via a silicon oxide film. An npn bipolar transistor with a low withstand voltage and an IGBT with a high withstand voltage are formed in the active layer. The two devices are insulated and isolated from each other through a trench. The bipolar transistor has an n-type well layer formed in the surface of the active layer. A p-type well layer is formed in the surface of the n-type well layer. The thickness of the n-type well layer under the p-type well layer is set to be 1 .mu.m or more. A first n.sup.+ -type diffusion layer is formed in the surface of the n-type well layer. A p.sup.+ -type diffusion layer and a second n.sup.+ -type diffusion layer are formed in the surface of the p-type well layer. The n-type well layer and the first n.sup.+ -type diffusion layer serve as a collector region. The p-type well layer and the p.sup.+ -type diffusion layer serve as a base region. The second n.sup.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: November 30, 1999
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akio Nakagawa, Yoshihiro Yamaguchi, Tomoko Matsudai
  • Patent number: 5982216
    Abstract: A circuit configuration for reducing an injection of minority carriers into a substrate protects against malfunction due to injected minority carriers by providing a series circuit connected to an external terminal. The series circuit has a transistor and a diode disposed between a supply potential and the external terminal and fed back through a control loop from the external terminal to a control terminal of the transistor.
    Type: Grant
    Filed: November 19, 1997
    Date of Patent: November 9, 1999
    Assignee: Siemens Aktiegesellschaft
    Inventor: Dieter Draxelmayr
  • Patent number: 5939759
    Abstract: In a semiconductor device including a silicon substrate, an insulating layer on the silicon substrate, a silicon layer on the insulating layer, the silicon layer being weakly doped with impurities of a first conduction type, a base region extending into the silicon layer from the free surface thereof, the base region being doped with impurities of a second conduction type, an emitter region extending into the base region from the free surface thereof, the emitter region being heavily doped with impurities of the first conduction type, and at least one collector region extending into the silicon layer from the free surface thereof at a lateral distance from the base region, the collector region being doped with impurities of the first conduction type, a floating collector region is provided in the silicon layer between the insulating layer and the base region at a distance from the base region.
    Type: Grant
    Filed: June 21, 1997
    Date of Patent: August 17, 1999
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventor: Torkel Bengt Arnborg
  • Patent number: 5896313
    Abstract: An SRAM memory cell is provided in which a pair of cross-coupled n-type MOS pull-down transistors are coupled to respective parasitically formed bipolar pull-up transistors. The memory cell is formed within a semiconductor layer which extends over a buried layer. The bipolar transistors are formed parasitically from the buried layer and the semiconductor layer used to form the pull-down transistors. The bases of the bipolar transistors may also be dynamically controlled. An SRAM memory array having a plurality of such memory cells and a computer system incorporating the SRAM memory array are also provided.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: April 20, 1999
    Assignee: Micron Technology, Inc.
    Inventors: David A. Kao, Fawad Ahmed
  • Patent number: 5889309
    Abstract: An electrostatic discharge protection circuit formed in a semiconductor substrate includes a vertical bipolar junction transistor having a base which is grounded, an emitter connected to an output/input bonding pad of an integrated circuit, and a collector connected to a high power source via a resistor. The resistor is a parasitic resistor created by controlling the distance between the diffusion regions or the distance between a p-type well region and an n-type well region or formed by a lightly doped diffusion region in the semiconductor substrate to prevent current crowding and increase electrostatic protection.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: March 30, 1999
    Assignee: Windbond Electronics, Corp.
    Inventors: Ta-Lee Yu, Chau-Neng Wu, Ling-Yen Yeh, Frank S-T Lin, Konrad Young