With Active Components In Addition To Darlington Transistors (e.g., Antisaturation Diode, Bleeder Diode Connected Antiparallel To Input Transistor Base-emitter Junction, Etc.) Patents (Class 257/570)
  • Patent number: 10636898
    Abstract: A semiconductor device includes a first semiconductor layer, a second semiconductor layer selectively provided on the first semiconductor layer, a third semiconductor layer selectively provided on the second semiconductor layer, and a control electrode facing a portion of the second semiconductor layer via a first insulating film. The device further includes a fourth semiconductor layer provided on a lower surface side of the first semiconductor layer, a fifth semiconductor layer arranged with the fourth semiconductor layer along a lower surface of the first semiconductor layer, and a sixth semiconductor layer provided between the first and fifth semiconductor layers. The sixth semiconductor layer is connected to the fourth semiconductor layer. The device includes a connecting portion positioned between the first and fifth semiconductor layers.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: April 28, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventor: Ryohei Gejo
  • Patent number: 9553085
    Abstract: A three terminal high voltage Darlington bipolar transistor power switching device includes two high voltage bipolar transistors, with collectors connected together serving as the collector terminal. The base of the first high voltage bipolar transistor serves as the base terminal. The emitter of the first high voltage bipolar transistor connects to the base of the second high voltage bipolar transistor (inner base), and the emitter of the second high voltage bipolar transistor serves as the emitter terminal. A diode has its anode connected to the inner base (emitter of the first high voltage bipolar transistor, or base of the second high voltage bipolar transistor), and its cathode connected to the base terminal. Similarly, a three terminal hybrid MOSFET/bipolar high voltage switching device can be formed by replacing the first high voltage bipolar transistor of the previous switching device by a high voltage MOSFET.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: January 24, 2017
    Assignee: Mosway Semiconductor Limited
    Inventors: Chiu-Sing Celement Tse, On-Bon Peter Chan, Chi-Keung Tang
  • Patent number: 9374162
    Abstract: Described herein are technologies related to a semiconductor package that is installed in a portable device for data communications. More particularly, the semiconductor package that contains a memory, a digital logic chip, and an optical port in a single module or mold is described.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: June 21, 2016
    Assignee: Intel Corporation
    Inventors: Robert L. Sankman, Johanna M. Swan, Dmitri E. Nikonov, Raseong Kim
  • Patent number: 9142478
    Abstract: A semiconductor package stack may include a lower semiconductor package and an upper semiconductor package stacked on a lower package board. The upper semiconductor package may include an upper semiconductor chip mounted on an upper package board with an opening configured to expose a lower surface of the upper semiconductor chip and a first heat slug disposed within the opening, contacting the lower surface of the upper semiconductor chip, and contacting an upper surface of a lower semiconductor chip.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: September 22, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-Hoon Kim, Ji-Chul Kim, Seong-Ho Shin, In-Ho Choi
  • Publication number: 20150115315
    Abstract: A three terminal high voltage Darlington bipolar transistor power switching device includes two high voltage bipolar transistors, with collectors connected together serving as the collector terminal. The base of the first high voltage bipolar transistor serves as the base terminal. The emitter of the first high voltage bipolar transistor connects to the base of the second high voltage bipolar transistor (inner base), and the emitter of the second high voltage bipolar transistor serves as the emitter terminal. A diode has its anode connected to the inner base (emitter of the first high voltage bipolar transistor, or base of the second high voltage bipolar transistor), and its cathode connected to the base terminal. Similarly, a three terminal hybrid MOSFET/bipolar high voltage switching device can be formed by replacing the first high voltage bipolar transistor of the previous switching device by a high voltage MOSFET.
    Type: Application
    Filed: October 28, 2013
    Publication date: April 30, 2015
    Applicant: Mosway Semiconductor Limited
    Inventors: Chiu-Sing Celement Tse, On-Bon Peter Chan, Chi-Keung Tang
  • Publication number: 20150076556
    Abstract: An integrated circuit (IC) device including an electrostatic discharge (ESD) protection network for a high voltage application. The ESD protection network includes a common diode structure coupled between an external contact of the IC device and a substrate of the IC device, such that the common diode structure is forward biased towards the external contact, a Darlington transistor structure coupled between the external contact and the substrate of the IC device, and the Darlington transistor structure includes: an emitter node coupled to the external contact; a collector node coupled to the substrate; and a base node coupled between the emitter node of the Darlington transistor structure and the common diode structure. The at least one ESD protection network further comprises an isolation diode structure coupled between the emitter node and the base node of the Darlington transistor structure such that the isolation diode structure is forward biased towards the base node.
    Type: Application
    Filed: January 20, 2012
    Publication date: March 19, 2015
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Patrice Besse, Philippe Givelin, Eric Rolland
  • Patent number: 8941181
    Abstract: An integrated circuit with a shallow trench isolated, low capacitance, ESD protection diode. An integrated circuit with a gate space isolated, low capacitance, ESD protection diode. An integrated circuit with a gate space isolated, low capacitance, ESD protection diode in parallel with a shallow trench isolated, low capacitance, ESD protection diode.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: January 27, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Mahalingam Nandakumar, Sunitha Venkataraman, David L. Catlett, Jr.
  • Patent number: 8841720
    Abstract: A semiconductor substrate capable of detecting operating current of a MOSFET and diode current in a miniaturized MOSFET such as a trench-gate type MOSFET is provided. A semiconductor substrate includes a main current region and a current sensing region in which current smaller than main current flowing in the main current region flows. The main current region has a source electrode disposed on a main surface, the source electrode being in contact with a p-type semiconductor region (body) and an n+-type semiconductor region (source), and the current sensing region has a MOSFET current detecting electrode and a diode current detecting electrode on a main surface, the MOSFET current detecting electrode being in contact with the p-type semiconductor region (body) and the n+-type semiconductor region (source), the diode current detecting electrode being in contact with the p-type semiconductor region (body).
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 23, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Takayuki Hashimoto
  • Patent number: 8816388
    Abstract: Disclosed is a semiconductor device including: a semiconductor substrate; a field effect transistor formed on the semiconductor substrate; and a diode forming area adjacent to a forming area of the field effect transistor, wherein the diode forming area is insulated from the forming area of the field effect transistor on the semiconductor substrate, the diode forming area includes an anode electrode and a cathode electrode arranged side by side in a multi-finger shape, and the anode electrode and the cathode electrode are formed in a direction different from directions of a gate electrode, a source electrode, and a drain electrode of the field effect transistor arranged side by side in a multi-finger shape.
    Type: Grant
    Filed: February 29, 2012
    Date of Patent: August 26, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiharu Takada
  • Patent number: 8815682
    Abstract: A diode (200) is disclosed having improved efficiency, smaller form factor, and reduced reverse biased leakage current. Schottky diodes (212) are formed on the sidewalls (210) of a mesa region (206). The mesa region (206) is a cathode of the Schottky diode (212). The current path through the mesa region (206) has a lateral and a vertical current path. The diode (200) further comprises a MOS structure (214), p-type regions (220), MOS structures (230), and p-type regions (232). MOS structure (214) with the p-type regions (220) pinch-off the lateral current path under reverse bias conditions. P-type regions (220), MOS structures (230), and p-type regions (232) each pinch-off the vertical current path under reverse bias conditions. MOS structure (214) and MOS structures (230) reduce resistance of the lateral and vertical current path under forward bias conditions. The mesa region (206) can have a uniform or non-uniform doping concentration.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: August 26, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gordon M. Grivna, Jefferson W. Hall, Mohammed Tanvir Quddus
  • Patent number: 8564097
    Abstract: An insulated gate bipolar transistor (IGBT) is provided comprising a semiconductor substrate having the following regions in sequence: (i) a first region of a first conductive type having opposing surfaces, a column region of a second conductive type within the first region extending from a first of said opposing surfaces; (ii) a drift region of the second conductive type; (iii) a second region of the first conductive type, and (iv) a third region of the second conductive type. There is provided a gate electrode disposed to form a channel between the third region and the drift region, a first electrode operatively connected to the second region and the third region, a second electrode operatively connected to the first region and the column region.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: October 22, 2013
    Assignee: Sinopower Semiconductor, Inc.
    Inventors: Florin Udrea, Chih-Wei Hsu, Wei-Chieh Lin
  • Patent number: 8212282
    Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: July 3, 2012
    Assignee: Ricoh Company, Ltd.
    Inventors: Masaya Ohtsuka, Yoshinori Ueda
  • Publication number: 20120133025
    Abstract: An apparatus includes an electrostatic discharge (ESD) protection device configured to protect a circuit from ESD conditions. The protection device includes an emitter region having a first diffusion polarity; a collector region laterally spaced apart from the emitter region, and having the first diffusion polarity; and a barrier region interposed laterally between the emitter region and the collector region while contacting the emitter region. The barrier region has a second diffusion polarity opposite from the first diffusion polarity. The device can further include a base region having the second diffusion polarity, and laterally surrounding and underlying the emitter region and the barrier region. The barrier region can have a higher dopant concentration than the base region, and block a lateral current flow between the collector and emitter regions, thus forming a vertical ESD device having enhanced ESD performance.
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Applicant: ANALOG DEVICES, INC.
    Inventors: David Clarke, Paul Daly, Patrick McGuinness, Bernard Stenson, Anne Deignan
  • Patent number: 7932537
    Abstract: Process variation-tolerant diodes and diode-connected thin film transistors (TFTs), printed or patterned structures (e.g., circuitry) containing such diodes and TFTs, methods of making the same, and applications of the same for identification tags and sensors are disclosed. A patterned structure comprising a complementary pair of diodes or diode-connected TFTs in series can stabilize the threshold voltage (Vt) of a diode manufactured using printing or laser writing techniques. The present invention advantageously utilizes the separation between the Vt of an NMOS TFT (Vtn) and the Vt of a PMOS TFT (Vtp) to establish and/or improve stability of a forward voltage drop across a printed or laser-written diode. Further applications of the present invention relate to reference voltage generators, voltage clamp circuits, methods of controlling voltages on related or differential signal transmission lines, and RFID and EAS tags and sensors.
    Type: Grant
    Filed: April 15, 2009
    Date of Patent: April 26, 2011
    Assignee: Kovio, Inc.
    Inventors: Vivek Subramanian, Patrick Smith
  • Patent number: 7842967
    Abstract: A power supply device is disclosed that is able to satisfy the power requirements of a device in service and has high efficiency. The power supply device includes a first power supply; a voltage step-up unit that steps up an output voltage of the first power supply; a voltage step-down unit that steps down an output voltage of the voltage step-up unit; and a load that is driven to operate by an output voltage of the voltage step-down unit. The voltage step-up unit steps up the output voltage of the first power supply to a lower limit of an operating voltage of the voltage step-down unit.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: November 30, 2010
    Assignee: Ricoh Company, Ltd.
    Inventors: Masaya Ohtsuka, Yoshinori Ueda
  • Patent number: 7800428
    Abstract: Semiconductor devices and methods are disclosed wherein a switching element or a current path is coupled to a substrate, and wherein a further element is coupled to said substrate and a control input of said switching element or said current path. Accordingly, in at least one embodiment, a semiconductor device comprises a substrate and a switching element with a control input coupled to the substrate. The semiconductor device includes a compensation element having a control input and an output. The control input of the compensation element is coupled to the substrate and the output of the compensation element is coupled to the control input of the switching element.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: September 21, 2010
    Assignee: Infineon Technologies AG
    Inventors: Joachim Pichler, Maria Giovanna Lagioia
  • Patent number: 7768101
    Abstract: A p-type collector region of an IGBT and an n-type cathode region of a free wheel diode are alternately formed in a second main surface of a semiconductor substrate. A back electrode is formed on the second main surface so as to be in contact with both of the p-type collector region and the n-type cathode region, and has a titanium layer, a nickel layer and a gold layer that are successively stacked from the side of the second main surface. A semiconductor device capable of obtaining a satisfactory ON voltage in any of conduction of an insulated gate field effect transistor and conduction of the free wheel diode as well as a manufacturing method thereof can thus be obtained.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: August 3, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kenji Suzuki, Hideki Takahashi, Yoshifumi Tomomatsu
  • Patent number: 6979883
    Abstract: An integrated device in emitter-switching configuration is described. The device is integrated in a chip of semiconductor material of a first conductivity type which has a first surface and a second surface opposite to each other. The device comprises a first transistor having a base region, an emitter region and a collector region, a second transistor having a not drivable terminal for collecting charges which is connected with the emitter terminal of the first transistor, a quenching element of the first transistor which discharges current therefrom when the second transistor is turned off. The quenching element comprises at least one Zener diode made in polysilicon which is coupled with the base terminal of the first transistor and with the other not drivable terminal of the second transistor.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: December 27, 2005
    Assignee: STMicroelectronics S.r.l.
    Inventor: Sergio Tommaso Spampinato
  • Patent number: 6969904
    Abstract: There is provided a trimming pattern enabling trimming to be implemented with ease and time required for trimming to be shortened without causing damage to internal elements. The invention provides the trimming pattern for use in trimming of a semiconductor integrated circuit, comprising two pads to which a voltage is applied, a thin line part interconnecting the two pads, and two connecting parts disposed away from each side of the thin line part, and connected to an adjustment circuit and the semiconductor integrated circuit, respectively. With the invention, trimming is executed by a method of turning the adjustment circuit connected to the connecting parts into the ON state by connecting fused metal of the thin line part to the connecting parts. In this case, since the fused metal can be caused to come into contact with the connecting parts nearby with greater ease than fusion cutting of the thin line part, trimming can be implemented with ease and in shorter time.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: November 29, 2005
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Yasuharu Tsujii, Haruaki Morimoto, Yutaka Okui
  • Patent number: 6794730
    Abstract: A pnp bipolar junction transistor is formed with improved emitter efficiency by reducing the depth of the p well implant to increase carrier concentration in the emitter and making the emitter junction deeper to increase minority lifetime in the emitter. The high gain BJT is formed without added mask steps to the process flow. A blanket high energy boron implant is used to suppress the isolation leakage in SRAM in the preferred embodiment.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: September 21, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Youngmin Kim, Shaoping Tang, Seetharaman Sridhar, Amitava Chatterjee
  • Patent number: 6696354
    Abstract: A method of forming a salicide. A metal layer is formed on a silicon-based substrate comprising a gate with a spacer on the side wall of the gate and a source/drain is provided. Next, a first thermal treatment is performed to make the portions of the metal layer react with the silicon in the gate and the source/drain to form a salicide. Then, any unreacted metal and the spacer are removed. An ion containing silicon is introduced into the source/drain. Finally, a second thermal treatment is performed.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: February 24, 2004
    Assignee: Silicon Integrated Systems Corp.
    Inventor: Chao-Yuan Huang
  • Patent number: 6617660
    Abstract: This invention has an objective to provide a field effect transistor semiconductor which has great adhesiveness between a gate metal and an insulating film defining a gate electrode end and to improve production yield thereof. The field effect transistor semiconductor of this invention comprises a source/drain electrode 6 positioned in a predetermined position in a GaAs substrate 1, a channel region provided in the GaAs substrate 1 and between the source/drain electrodes 6, a gate electrode 11 which is in schottky contact with a part of a channel region and is positioned between the source/drain electrodes 6, and an insulating film 7 which electrically insulates a surface of the GaAs substrate and the gate electrode 11 at both side surfaces of the gate electrode 11.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: September 9, 2003
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Shigeyuki Murai, Emi Fujii, Shigeharu Matsushita, Hisaaki Tominaga
  • Patent number: 6545341
    Abstract: The present invention relates to a constitution of a bipolar type power transistor, which comprises: a base layer of a first conductivity type; a collector layer of the first conductivity type formed on one surface of the base layer of the first conductivity type; a first base layer of a second conductivity type formed selectively on the other surface of the base layer of the first conductivity type; and a second base layer of the second conductivity type selectively formed on the other surface of the first conductivity type base layer. The second conductivity type base layer is formed in a divided manner, and each of the second conductivity type base layers are separated by the first conductivity type base layer.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: April 8, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Masakazu Yamaguchi
  • Publication number: 20020163028
    Abstract: A method of forming a fill layer over a layer in a semiconductor stack having gaps of high aspect ratio topography, and products produced thereby.
    Type: Application
    Filed: May 7, 2001
    Publication date: November 7, 2002
    Applicant: Applied Materials, Inc.
    Inventor: Zheng Yuan
  • Patent number: 6252282
    Abstract: The invention relates to a semiconductor device including a preferably discrete bipolar transistor with a collector region, a base region, and an emitter region which are provided with connection conductors. A known means of preventing a saturation of the transistor is that the latter is provided with a Schottky clamping diode. The latter is formed in that case in that the connection conductor of the base region is also put into contact with the collector region. In a device according to the invention, the second connection conductor is exclusively connected to the base region, and a partial region of that portion of the base region which lies outside the emitter region, as seen in projection, lying below the second connection conductor is given a smaller flux of dopant atoms. The bipolar transistor in a device according to the invention is provided with a pn clamping diode which is formed between the partial region and the collector region.
    Type: Grant
    Filed: February 9, 1999
    Date of Patent: June 26, 2001
    Assignee: U.S. Philips Corporation
    Inventors: Godefridus A. M. Hurkx, Holger Schligtenhorst, Bernd Sievers
  • Patent number: 6222248
    Abstract: A device including an IGBT a formed on a chip of silicon consisting of a P type substrate with an N type epitaxial layer that contains a first P type region and a termination structure, and having a first P type termination region that surrounds the first region, a first electrode in contact with the first termination region, and a second electrode shaped in the form of a frame close to the edge of the chip and connected to a third electrode in contact with the bottom of the chip. A fourth electrode made in one piece with the first electrode is in contact with the first region. The termination structure also comprises a fifth electrode in contact with the epitaxial layer along a path parallel to the edge of the first termination region and connected to the second electrode and a second P type termination region that surrounds the fifth electrode and a sixth electrode, and which is in contact with the second termination region, connected to the first electrode.
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: April 24, 2001
    Assignee: STMicroelectronics S.r.l.
    Inventor: Leonardo Fragapane
  • Patent number: 5789799
    Abstract: An monolithic integrated circuit comprising a transistor-inductor structure is provided having simultaneously noise matched and input impedance matched characteristics at a desired frequency. The transistor-inductor structure comprises a first transistor Q.sub.1 which may be a common emitter bipolar transistor or common source MOSFET transistor Q.sub.1, a second optional transistor Q.sub.2, a first inductor L.sub.E in the emitter (source) of Q.sub.1, and a second inductor L.sub.B in the base (gate) of Q1. The emitter length l.sub.E1, or correspondingly the gate width w.sub.g, of Q1 is designed such that the real part of its optimum noise impedance is equal to the characteristic impedance of the system, Z.sub.0, which is typically 50.OMEGA.. The first inductor L.sub.E, provides matching of the real part of the input impedance and the second inductor L.sub.B cancels out the noise reactance and input impedance reactance of the structure.
    Type: Grant
    Filed: September 27, 1996
    Date of Patent: August 4, 1998
    Assignee: Northern Telecom Limited
    Inventors: Sorin P. Voinigescu, Michael C. Maliepaard
  • Patent number: 5502338
    Abstract: A power transistor device is provided which has a function of clamping the collector voltage to a stable level for a wide range of temperature variations. In the power transistor device, a plurality of pn junctions are formed to fabricate Zener diodes in the polycrystalline silicon film in the form of rings. The ring configuration of the Zener diodes eliminates an end at the pn junction and prevents the junction surface from being exposed, making it possible to use as a stable Zener voltage the dielectric strength characteristic of the pn junction having a very small temperature coefficient.
    Type: Grant
    Filed: November 18, 1994
    Date of Patent: March 26, 1996
    Assignee: Hitachi, Ltd.
    Inventors: Minoru Suda, Masatoshi Nakasu, Tetsuo Iijima
  • Patent number: 5481132
    Abstract: A bipolar integrated circuit with N-type wells (2) formed in a P-type substrate (1) includes in first wells, first transistors (EBC), the well of which constitutes the collector. P-type base region (7a) is formed in the first well with an N+ emitter region (8) formed in the base region. In at least a second well forming a collector, a composite second transistor (E'B'C') is constituted by an elemental third transistor (E.sub.1 B.sub.1 C') comprising regions of the same doping level as the first transistor and an elemental fourth transistor (E.sub.2 B.sub.2 C') having a base region (11) with a high doping level with respect to that of the bases of the first transistor. Emitter regions (8b, 12) of the elemental transistors are of the same doping level as that of the first transistors. The emitters and bases of the third and fourth elementary transistors are interconnected and constitute the emitter and the base of the composite second transistor.
    Type: Grant
    Filed: November 18, 1993
    Date of Patent: January 2, 1996
    Assignee: SGS-Thomson Microelectronics S.A.
    Inventor: Jean-Michel Moreau
  • Patent number: 5469103
    Abstract: A semiconductor device, comprising a transistor, a constant voltage diode having a first end of a first conductivity type connected to an emitter of the transistor and a second end of a second conductivity type, a reverse current preventive diode having a first end of the first conductivity type connected to a collector of the transistor and a second end of the second conductivity type connected to the second end of the constant voltage diode, and a high speed diode reverse-bias connected between the transistor collector and the emitter of the transistor.
    Type: Grant
    Filed: March 22, 1994
    Date of Patent: November 21, 1995
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Hisao Shigekane
  • Patent number: 5428233
    Abstract: A voltage controlled resistive device is provided by coupling a vertical bipolar transistor (34) with a junction field effect transistor (36) through a well region 18, which functions as both a drain region for the junction field effect transistor (36), and as a collector region for the vertical bipolar transistor (34). The voltage controlled resistive device of the invention provides a means of varying the output current of the vertical bipolar transistor (34) by application of a variable voltage level to the gate region (26) of the junction field effect transistor (36). To obtain proper junction bias characteristics and a compact device size, the source region (24), the gate region (26) of the junction field effect transistor (36), and the base region (22) of the vertical bipolar transistor (34) are formed in a single well region (18) of a semiconductor substrate (10).
    Type: Grant
    Filed: April 4, 1994
    Date of Patent: June 27, 1995
    Assignee: Motorola Inc.
    Inventor: Frederick W. Walczyk
  • Patent number: 5397914
    Abstract: In a transistor where collector is connected to an inductive load and switching current flows, a Zener diode comprising structure of plural pn-junctions constituted in series form to a polysilicon is provided between collector and base. Further MOSFET is switch-controlled by control voltage formed based on Zener current flowing through the Zener diode, and current path in parallel form to the Zener diode is constituted. Since temperature characteristic coefficient of a Zener diode formed in a polysilicon film is very small, the reverse voltage generated in the inductive load can be set to stable voltage in spite of the temperature variation. Further the MOSFET is provided in parallel form, thereby relatively large ON-resistance value of the Zener diode can be decreased.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: March 14, 1995
    Assignee: Hitachi Ltd.
    Inventors: Minoru Suda, Masatoshi Nakasu, Tetsuo Iijima
  • Patent number: 5306937
    Abstract: The present invention to a semiconductor switching device for use in semiconductor converter devices, which switching device has a built-in current sensor to detect the current flowing into parasitic diodes integrally formed as part of the semiconductor switching device. Detection of the parasitic-diode current is useful for adjusting the switching timing for a commutation, which in turn allows reduction in switching loss. The parasitic diodes consist of a first region of a first conductivity type serving as a semiconductor substrate, and a second region of a second conductivity type formed in a first surface portion of the first region. A third region of the same conductivity type, impurity concentration and depth as the second region is formed in the surface layer of the first region. When current flows through the parasitic diode, a current corresponding to the parasitic-diode current flows through the sensing diodes consisting of the first and the third regions.
    Type: Grant
    Filed: September 16, 1992
    Date of Patent: April 26, 1994
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Takeyoshi Nishimura
  • Patent number: 5233214
    Abstract: The invention relates to a controllable, temperature-compensated voltage limiter with a p.sup.+ np.sup.+ (or n.sup.+ pn.sup.+) semiconductor structure in which the width and doping of the central zone is selected such that no avalanche or Zener effect appears when voltage is applied to the two outer layers (punch-through diode). In accordance with the invention, the voltage U.sub.B to be limited is applied between the blocking pn-juncture (B-C). In addition, an adjustable auxiliary voltage (U.sub.H) is applied between the other pn-junction (H-C). The punch-through can be set to a higher defined value via the auxiliary voltage U.sub.H, this value being independent of the temperature to a large extent.
    Type: Grant
    Filed: November 27, 1991
    Date of Patent: August 3, 1993
    Assignee: Robert Bosch GmbH
    Inventors: Alfred Gorlach, Horst Meinders
  • Patent number: 5200630
    Abstract: A semiconductor device including a semiconducting layer made of polycrystalline silicon, an insulating film provided on an upper face of the semiconducting layer and an electrode provided on an upper face of the insulating film such that channels are formed on the upper face of the semiconducting layer, the improvement comprising: a further semiconducting layer made of amorphous silicon, which is provided between the semiconducting layer and the insulating film.
    Type: Grant
    Filed: August 7, 1991
    Date of Patent: April 6, 1993
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Noboru Nakamura, Hiroyuki Kuriyama, Shinya Tsuda, Shoichi Nakano
  • Patent number: 5170240
    Abstract: An input protection structure for integrated circuits is connected in a semiconductor substrate between an input and an output for a reference potential. The input protection structure includes a first transistor acting as an input transistor and a second transistor acting as a trigger transistor. The input transistor and the trigger transistor are connected in a cascade. The input transistor and the trigger transistor have a common collector forming the input of the protection structure. The input transistor has an emitter connected to the output for the reference potential. An oxide isolation is provided for adjacent components.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: December 8, 1992
    Assignee: Siemens Aktiengesellschaft
    Inventor: Burkhard Becker
  • Patent number: RE40222
    Abstract: A device including an IGBT a formed on a chip of silicon consisting of a P type substrate with an N type epitaxial layer that contains a first P type region and a termination structure, and having a first P type termination region that surrounds the first region, a first electrode in contact with the first termination region, and a second electrode shaped in the form of a frame close to the edge of the chip and connected to a third electrode in contact with the bottom of the chip. A fourth electrode made in one piece with the first electrode is in contact with the first region. The termination structure also comprises a fifth electrode in contact with the epitaxial layer along a path parallel to the edge of the first termination region and connected to the second electrode and a second P type termination region that surrounds the fifth electrode and a sixth electrode, and which is in contact with the second termination region, connected to the first electrode.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: April 8, 2008
    Assignee: STMicroelectronics S.r.l.
    Inventor: Leonardo Fragapane