In Array Patents (Class 257/5)
  • Patent number: 9018612
    Abstract: An access device having a reduced height and capable of suppressing leakage current, a method of fabricating the same, and a semiconductor memory device including the same, are provided. The access device may include a stacked structure including a first-type semiconductor layer having a first dopant, a second-type semiconductor layer having a second dopant, and a third-type semiconductor layer. A first counter-doping layer, having a counter-dopant to the first dopant, is interposed between the first-type semiconductor layer and the third-type semiconductor layer. A second counter-doping layer, having a counter-dopant to the second dopant, is interposed between the third-type semiconductor layer and the second-type semiconductor layer.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: April 28, 2015
    Assignee: SK Hynix Inc.
    Inventors: Young Ho Lee, Keum Bum Lee, Min Young Lee, Hyung Suk Lee, Seung Beom Baek
  • Patent number: 9018037
    Abstract: Forming a resistive switching layer having a vertical interface can generate defects confined along the interface between two electrodes. The confined defects can form a pre-determined region for filament formation and dissolution, leading to low power resistive switching and low program voltage or current variability. In addition, the filament forming process of the resistive memory device can be omitted due to the existence of the confined defects.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: April 28, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Federico Nardi, Randall J. Higuchi, Robert A. Huertas, Yun Wang
  • Patent number: 9018771
    Abstract: A thin film apparatus having a plurality of thin film cells is disclosed. Each thin film cell includes a crystalline layer and a surrounding layer. The crystalline layer has a shape of polygon. The surrounding layer is partially located on the crystalline layer. The crystalline layer is surrounded by the surrounding layer.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: April 28, 2015
    Assignee: Sensor Tek Co., Ltd.
    Inventors: Po-Wei Lu, Mao-Chen Liu, Wen-Chieh Chou, Chun-Chieh Wang, Shu-Yi Weng
  • Publication number: 20150108422
    Abstract: A method and resulting structure, is disclosed to fabricate vertical bipolar junction transistors including a regular array of base contact pillars and emitter contact pillars with a at least one dimension below the minimum lithographical resolution, F, of the lithographic technique employed. A storage element, such as a phase change storage element, can be formed above the regular array of base contact pillars and emitter contact pillars.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Inventors: Fabio Pellizzer, Marcello Mariani, Giorgio Servalli
  • Patent number: 9012879
    Abstract: A nonvolatile memory device contains a resistive switching memory element with improved device switching performance and life and methods for forming the same. The nonvolatile memory device has a first layer on a substrate, a resistive switching layer on the first layer, and a second layer. The resistive switching layer is disposed between the first layer and the second layer and the resistive switching layer comprises a material having the same morphology as the top surface of the first layer. A method of forming a nonvolatile memory element in a ReRAM device includes forming a resistive switching layer on a first layer and forming a second layer, so that the resistive switching layer is disposed between the first layer and the second layer. The resistive switching layer comprises a material formed with the same morphology as the top surface of the first layer.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: April 21, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Federico Nardi, Yun Wang
  • Patent number: 9012260
    Abstract: An internal electrical field in a resistive memory element can be formed to reduce the forming voltage. The internal electric field can be formed by incorporating one or more charged layers within the switching dielectric layer of the resistive memory element. The charged layers can include adjacent charge layers to form dipole layers. The charged layers can be formed at or near the interface of the switching dielectric layer with an electrode layer. Further, the charged layer can be oriented with lower valence substitution side towards lower work function electrode, and higher valence substitution side towards higher work function electrode.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: April 21, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Sergey Barabash, Charlene Chen, Dipankar Pramanik
  • Patent number: 9012877
    Abstract: A semiconductor device includes a first semiconductor layer extending in a first direction on a substrate, a plurality of second semiconductor layers spaced apart in the first direction on the first semiconductor layer, and an insulation layer structure surrounding side walls of the first semiconductor layer and the plurality of second semiconductor layers. The first semiconductor layer may have a first conductivity type, and the plurality of second semiconductor layers may have a second conductivity type.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-kyu Lee, Seung-pil Ko, Yong-jun Kim, Eun-jung Kim
  • Publication number: 20150102282
    Abstract: A semiconductor memory device includes pillars extending upright on a substrate in a direction perpendicular to the substrate, a stack disposed on the substrate and constituted by a first interlayer insulating layer, a first conductive layer, a second interlayer insulating layer, and a second conductive layer, a variable resistance layer interposed between the pillars and the first conductive layer, and an insulating layer interposed between the first pillars and the second conductive layer.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 16, 2015
    Inventors: LIJIE ZHANG, YOUNG-BAE KIM, YOUN-SEON KANG, IN-GYU BAEK, MASAYUKI TERAI
  • Patent number: 9006023
    Abstract: Provided are resistive random access memory (ReRAM) cells having diffusion barrier layers formed from various materials, such as beryllium oxide or titanium silicon nitrides. Resistive switching layers used in ReRAM cells often need to have at least one inert interface such that substantially no materials pass through this interface. The other (reactive) interface may be used to introduce and remove defects from the resistive switching layers causing the switching. While some electrode materials, such as platinum and doped polysilicon, may form inert interfaces, these materials are often difficult to integrate. To expand electrode material options, a diffusion barrier layer is disposed between an electrode and a resistive switching layer and forms the inert interface with the resistive switching layer. In some embodiments, tantalum nitride and titanium nitride may be used for electrodes separated by such diffusion barrier layers.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: April 14, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Imran Hashim
  • Publication number: 20150097155
    Abstract: An ultra-high-density vertical cross-point array comprises a plurality of horizontal line layers having horizontal lines interleaved with a plurality of vertical lines arranged in rows and columns. The vertical lines are interleaved with the horizontal lines such that a row of vertical lines is positioned between each consecutive pair of horizontal lines in each horizontal line layer. Each vertical line comprises a center conductor surrounded by a single or multi-layered memory film. Accordingly, when interleaved with the horizontal lines, two-terminal memory cells are integrally formed between the center conductor of each vertical line and each crossing horizontal line. By configuring the vertical and horizontal lines so that a row of vertical lines is positioned between each consecutive pair of horizontal lines, a unit memory cell footprint of just 2F2 may be realized.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventor: Bruce Lynn Bateman
  • Publication number: 20150097154
    Abstract: At least one example embodiment discloses a semiconductor device including a first wiring on a substrate. A second wiring is on the first wiring. A first cell is between the first wiring and the second wiring. The first cell has a first selector and a first resistive change device. A third wiring is on the second wiring. A second cell is between the second wiring and the third wiring. The second cell has a second selector and a second resistive change device. The second selector has a different thickness from the first selector.
    Type: Application
    Filed: July 2, 2014
    Publication date: April 9, 2015
    Inventors: Kyung-Min KIM, Min-Kyu YANG, Gun-Hwan KIM
  • Patent number: 9000411
    Abstract: Various embodiments of the present invention are direct to nanoscale, reconfigurable, two-terminal memristor devices. In one aspect, a device (400) includes an active region (402) for controlling the flow of charge carriers between a first electrode (104) and a second electrode (106). The active region is disposed between the first electrode and the second electrode and includes a storage material. Excess mobile oxygen ions formed within the active region are stored in the storage material by applying a first voltage.
    Type: Grant
    Filed: January 6, 2009
    Date of Patent: April 7, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Zhiyong Li, Alexandre M. Bratkovski, Jianhua Yang
  • Patent number: 9000412
    Abstract: A switching device and an operating method for the same and a memory array are provided. The switching device comprises a first solid electrolyte, a second solid electrolyte and a switching layer. The switching layer is adjoined between the first solid electrolyte and the second solid electrolyte.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: April 7, 2015
    Assignee: Macronix International Co., Ltd.
    Inventors: Wei-Chih Chien, Feng-Ming Lee, Ming-Hsiu Lee
  • Patent number: 9000408
    Abstract: An electronic device includes a first electrode and a second electrode. The device also includes a resistive material between the first and second electrodes. An active material is between the first electrode and the resistive material. The active material is in electrical communication with the first electrode and the active material is in electrical communication with the second electrode through the resistive layer.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: April 7, 2015
    Assignee: Ovonyx, Inc.
    Inventors: Sergey Kostylev, Tyler Lowrey, Wolodymyr Czubatyj
  • Patent number: 8993374
    Abstract: Memory cells and memory cell structures having a number of phase change material gradients, devices utilizing the same, and methods of forming the same are disclosed herein. One example of forming a memory cell includes forming a first electrode material, forming a phase change material gradient on the first electrode material, and forming a second electrode material on the phase change material gradient.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 31, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Davide Erbetta, Luca Fumagalli
  • Publication number: 20150089087
    Abstract: A semiconductor memory may include: a first stacked structure including a first word line disposed over a substrate and extended in a first direction, a first bit line disposed over the first word line and extended in a second direction crossing the first direction, and a first variable resistance layer interposed between the first word line and the first bit line; and a second stacked structure including a second bit line disposed over the first stacked structure and extended in the second direction, a second word line disposed over the second bit line and extended in the first direction, and a second variable resistance layer interposed between the second word line and the second bit line; and a first selecting element layer interposed between the first bit line and the second bit line.
    Type: Application
    Filed: February 7, 2014
    Publication date: March 26, 2015
    Applicant: SK HYNIX INC.
    Inventors: Hyo-June KIM, Ja-Chun KU, Sung-Kyu MIN, Seung-Beom BAEK, Byung-Jick CHO, Won-Ki JU, Hyun-Kyu KIM, Jong-Chul LEE
  • Patent number: 8987694
    Abstract: Semiconductor devices, and methods of manufacturing the same, include a field region in a semiconductor substrate to define an active region. An interlayer insulating layer is on the semiconductor substrate. A semiconductor pattern is within a hole vertically extending through the interlayer insulating layer. The semiconductor pattern is in contact with the active region. A barrier region is between the semiconductor pattern and the interlayer insulating layer. The barrier region includes a first buffer dielectric material and a barrier dielectric material. The first buffer dielectric material is between the barrier dielectric material and the semiconductor pattern, and the barrier dielectric material is spaced apart from both the semiconductor pattern and the active region.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Jong Han, Kong-Soo Lee, Yoon-Goo Kang, Ho-Kyun An, Seong-Hoon Jeong
  • Patent number: 8987697
    Abstract: Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 ? and about 100 ?, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: March 24, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Hieu Pham, Vidyut Gopal, Imran Hashim, Tim Minvielle, Yun Wang, Takeshi Yamaguchi, Hong Sheng Yang
  • Patent number: 8987702
    Abstract: Some embodiments include selectively conducting devices having a first electrode, a second electrode, and dielectric material between the first and second electrodes. The dielectric material may be configured to conduct current from the first electrode to the second electrode when a first voltage is applied across the first electrode and the second electrode. Furthermore, the dielectric material may be configured to inhibit current from flowing from the second electrode to the first electrode when a second voltage having a polarity opposite that of a polarity of the first voltage is applied across the first electrode and the second electrode. The diode material may comprise a plurality of layers of different dielectric materials arranged in order of increasing barrier height. Quantum wells may form at junctions of layers of the plurality responsive to the first voltage. Some embodiments include diode forming methods.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: March 24, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8987698
    Abstract: Some embodiments include memory constructions having a plurality of bands between top and bottom electrically conductive materials. The bands include chalcogenide bands alternating with non-chalcogenide bands. In some embodiments, there may be least two of the chalcogenide bands and at least one of the non-chalcogenide bands. In some embodiments, the memory cells may be between a pair of electrodes; with one of the electrodes being configured as a lance, angled plate, container or beam. In some embodiments, the memory cells may be electrically coupled with select devices, such as, for example, diodes, field effect transistors or bipolar junction transistors.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: March 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Agostino Pirovano
  • Publication number: 20150076442
    Abstract: In one embodiment of the present invention, a memory cell includes a first resistive switching element having a first terminal and a second terminal, and a second resistive switching element having a first terminal and a second terminal. The memory further includes a three terminal transistor, which has a first terminal, a second terminal, and a third terminal. The first terminal of the three terminal transistor is coupled to the first terminal of the first resistive switching element. The second terminal of the three terminal transistor is coupled to the first terminal of the second resistive switching element. The third terminal of the three terminal transistor is coupled to a word line.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Inventor: Michael A. Van Buskirk
  • Patent number: 8980722
    Abstract: A variable resistive element comprising a configuration that an area of an electrically contributing region of a variable resistor body is finer than that constrained by an upper electrode or a lower electrode and its manufacturing method are provided. A bump electrode material is formed on a lower electrode arranged on a base substrate. The bump electrode material is contacted to a variable resistor body at a surface different from a contact surface to the lower electrode. The variable resistor body is contacted to an upper electrode at a surface different from a contact surface to the bump electrode material. Thus, a cross point region between the bump electrode material (the variable resistor body) and the upper electrode becomes an electrically contributing region of the variable resistor body, and then an area thereof can be reduced compared with that of the region regarding the conventional variable resistive element.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: March 17, 2015
    Assignee: Xenogenic Development Limited Liability Company
    Inventors: Yasunari Hosoi, Kazuya Ishihara, Takahiro Shibuya, Tetsuya Ohnishi, Takashi Nakano
  • Patent number: 8980683
    Abstract: A resistive memory device and a fabrication method thereof are provided. The resistive memory device includes a variable resistive layer formed on a semiconductor substrate in which a bottom structure is formed, a lower electrode formed on the variable resistive layer, a switching unit formed on the lower electrode, and an upper electrode formed on the switching unit.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: March 17, 2015
    Assignee: SK Hynix Inc.
    Inventors: Min Yong Lee, Young Ho Lee, Seung Beom Baek, Jong Chul Lee
  • Patent number: 8981329
    Abstract: Embodiments of the invention include a nonvolatile memory device that contains nonvolatile resistive random access memory device with improved device performance and lifetime. In some embodiments, nonvolatile resistive random access memory device includes a diode, a metal silicon nitride embedded resistor, and a resistive switching layer disposed between a first electrode layer and a second electrode layer. In some embodiments, the method of forming a resistive random access memory device includes forming a diode, forming a metal silicon nitride embedded resistor, forming a first electrode layer, forming a second electrode layer, and forming a resistive switching layer disposed between the first electrode layer and the second electrode layer.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: March 17, 2015
    Assignees: Intermolecular, Inc., Kabushiki Kaisha Toshiba, SanDisk 3D LLC
    Inventors: Mihir Tendulkar, David Chi
  • Patent number: 8981327
    Abstract: Control elements that can be suitable for nonvolatile memory device applications are disclosed. The control element can have low leakage currents at low voltages to reduce sneak current paths for non-selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. The control element can be based on multilayer dielectric stacks. The control element can include a titanium oxide-carbon-doped silicon-titanium oxide multilayer stack. Electrode materials may include one of ruthenium, titanium nitride, or carbon. The titanium oxide layers may be replaced by one of zirconium oxide, hafnium oxide, aluminum oxide, magnesium oxide, or a lanthanide oxide.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: March 17, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Monica Sawkar Mathur, Prashant B. Phatak
  • Patent number: 8981336
    Abstract: A low resistivity interface material is provided between a self-aligned vertical heater element and a contact region of a selection device. A phase change chalcogenide material is deposited directly on the vertical heater element. In an embodiment, the vertical heater element in L-shaped, having a curved vertical wall along the wordline direction and a horizontal base. In an embodiment, the low resistivity interface material is deposited into a trench with a negative profile using a PVD technique. An upper surface of the low resistivity interface material may have a tapered bird-beak extension.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: March 17, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Barbara Zanderighi, Francesco Pipia
  • Patent number: 8981325
    Abstract: A memory device 10 has an arrangement in which a memory thin film 4 is sandwiched between first and second electrodes 2 and 6, the memory thin film 6 contains at least rare earth elements, the memory thin film 4 or a layer 3 in contact with the memory thin film 4 contains any one of elements selected from Cu, Ag, Zn and the memory thin film 4 or the layer 3 in contact with the memory thin film 4 contains any one of elements selected from Te, S, Se. The memory device can record and read information with ease stably, and this memory device can be manufactured easily by a relatively simple manufacturing method.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: March 17, 2015
    Assignee: Sony Corporation
    Inventors: Katsuhisa Aratani, Akihiro Maesaka, Akira Kouchiyama, Tomohito Tsushima
  • Publication number: 20150069320
    Abstract: A 3D memory array having a vertically oriented thin film transistor (TFT) selection device that has a body formed from a wide energy band gap semiconductor is disclosed. The wide energy band gap semiconductor may be an oxide semiconductor, such as a metal oxide semiconductor. As examples, this could be an InGaZnO, InZnO, HfInZnO, or ZnInSnO body. The source and drains can also be formed from the wide energy band gap semiconductor, although these may be doped for better conduction. The vertically oriented TFT selection device serves as a vertical bit line selection device in the 3D memory array. A vertical TFT select device has a high drive current, a high breakdown voltage and low leakage current.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: SanDisk 3D LLC
    Inventors: Peter Rabkin, Masaaki Higashitani
  • Patent number: 8975610
    Abstract: Control elements that can be suitable for nonvolatile memory device applications are disclosed. The control element can have low leakage currents at low voltages to reduce sneak current paths for non-selected devices, and high leakage currents at high voltages to minimize voltage drops during device switching. The control element can be based on multilayer dielectric stacks. The control element can include a titanium oxide-silicon-titanium oxide multilayer stack. Electrode materials may include one of ruthenium, titanium nitride, or carbon. The control element can include a silicon nitride-silicon-silicon nitride multilayer stack. Electrode materials may include titanium nitride.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: March 10, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Monica Sawkar Mathur, Prashant B. Phatak
  • Patent number: 8975611
    Abstract: According to one embodiment, a nonvolatile variable resistance device includes a first electrode, a second electrode, a first layer, and a second layer. The second electrode includes a metal element. The first layer is arranged between the first electrode and the second electrode and includes a semiconductor element. The second layer is inserted between the second electrode and the first layer and includes the semiconductor element. The percentage of the semiconductor element being unterminated is higher in the second layer than in the first layer.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: March 10, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yamauchi, Shosuke Fujii, Reika Ichihara
  • Patent number: 8975609
    Abstract: A method of forming a non-volatile memory device. A substrate is provided and a first dielectric material forms overlying the substrate. A first polysilicon material is deposited overlying the first dielectric material. A second dielectric material is deposited overlying the first polysilicon material. A second polysilicon material is deposited overlying the second dielectric material. A third dielectric material is formed overlying the second polysilicon material. The third dielectric material, the second polysilicon material, the second dielectric material, and the first polysilicon material is subjected to a first pattern and etch process to form a first wordline associated with a first switching device and a second wordline associated with a second switching device from the first polysilicon material, a third wordline and associated with a third switching device, and a fourth wordline associated with a fourth switching device from the second polysilicon material.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: March 10, 2015
    Assignee: Crossbar, Inc.
    Inventors: Harry Gee, Sung Hyun Jo, Hagop Nazarian, Scott Brad Herner
  • Patent number: 8976565
    Abstract: MIMCAP diodes are provided that can be suitable for memory device applications, such as current selector devices for cross point memory array. The MIMCAP diodes can have lower thermal budget as compared to Schottky diodes and controllable lower barrier height and lower series resistance as compared to MIMCAP tunneling diodes. The MIMCAP diode can include a barrier height modification layer, a low leakage dielectric layer and a high leakage dielectric layer. The layers can be sandwiched between two electrodes.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: March 10, 2015
    Assignee: Intermolecular, Inc.
    Inventor: Prashant B Phatak
  • Publication number: 20150060755
    Abstract: A semiconductor structure is described containing a deflector between a first nanoscale device and a second nanoscale device. The deflector is designed to deflect near-field radiation from emanating from the first nanoscale device to the second nanoscale device. In some embodiments, this may be accomplished using at least one nanoscale element located between the first and second nanoscale device, where the nanoscale element is tuned to the proper plasmon-polariton frequency to deflect the near field radiation.
    Type: Application
    Filed: July 17, 2014
    Publication date: March 5, 2015
    Inventors: Daniel Krebs, Gabriele Raino
  • Patent number: 8969129
    Abstract: Provided are resistive random access memory (ReRAM) cells and methods of fabricating thereof. A ReRAM cell includes an embedded resistor and a resistive switching layer connected in series with this resistor. The resistor is configured to prevent over-programming of the cell by limiting electrical currents through the resistive switching layer. Unlike the resistive switching layer, which changes its resistance in order to store data, the embedded resistor maintains a substantially constant resistance during operation of the cell. The embedded resistor is formed from tantalum nitride and silicon nitride. The atomic ratio of tantalum and silicon may be specifically selected to yield resistors with desired densities and resistivities as well as ability to remain amorphous when subjected to various annealing conditions. The embedded resistor may also function as a diffusion barrier layer and prevent migration of components between one of the electrodes and the resistive switching layer.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: March 3, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Chien-Lan Hsueh, Randall J. Higuchi, Mihir Tendulkar
  • Publication number: 20150053911
    Abstract: A semiconductor memory device according to one embodiment of the present invention includes a dielectric film configured to store information depending on presence or absence of a conductive path therein, and a plurality of electrodes provided to contact a first surface of the dielectric film. The conductive path can be formed between two electrodes arbitrarily selected form the plurality of electrodes. The conductive path has a rectifying property of allowing a current to flow more easily in a first direction connecting arbitrary two electrodes than in a second direction opposite to the first direction. The largest possible number of the conductive paths that may be formed is larger than the number of the plurality of electrodes.
    Type: Application
    Filed: October 15, 2014
    Publication date: February 26, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Yoshiaki FUKUZUMI, Hideaki AOCHI
  • Patent number: 8963115
    Abstract: According to one embodiment, a memory device includes a first conductive line extending in a first direction, second conductive lines each extending in a second direction intersect with the first direction, a third conductive line extending in a third direction intersect with the first and second directions, an insulating layer disposed between the second conductive lines and the third conductive line, resistance change elements each disposed on one of first and second surfaces of each of the second conductive lines in the third direction, and each connected to the third conductive line, a semiconductor layer connected between the first conductive line and one end of the third conductive line, and a select FET having a select gate electrode, and using the semiconductor layer as a channel.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: February 24, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kenichi Murooka
  • Patent number: 8964448
    Abstract: Resistance variable memory cells having a plurality of resistance variable materials and methods of operating and forming the same are described herein. As an example, a resistance variable memory cell can include a plurality of resistance variable materials located between a plug material and an electrode material. The resistance variable memory cell also includes a first conductive material that contacts the plug material and each of the plurality of resistance variable materials and a second conductive material that contacts the electrode material and each of the plurality of resistance variable materials.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: February 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Ugo Russo, Andrea Redaelli, Fabio Pellizzer
  • Patent number: 8962438
    Abstract: Provided are a variable resistance memory device and a method of forming the same. The variable resistance memory device may include a substrate, a plurality of bottom electrodes on the substrate, and a first interlayer insulating layer including a trench formed therein. The trench exposes the bottom electrodes and extends in a first direction. The variable resistance memory device further includes a top electrode provided on the first interlayer insulating layer and extending in a second direction crossing the first direction and a plurality of variable resistance patterns provided in the trench and having sidewalls aligned with a sidewall of the top electrode.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeonghee Park, Hideki Horii, Hyeyoung Park, Jin Ho Oh, Hyun-Suk Kwon
  • Patent number: 8962384
    Abstract: Memory cells having heaters with angled sidewalls and methods of forming the same are described herein. As an example, a method of forming an array of resistive memory cells can include forming a first resistive memory cell having a first heater element angled with respect to a vertical plane, forming a second resistive memory cell adjacent to the first resistive memory cell and having a second heater element angled with respect to the vertical plane and toward the first heater, and forming a third resistive memory cell adjacent to the first resistive memory cell and having a third heater element angled with respect to the vertical plane and away from the first heater element.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: February 24, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Giorgio Servalli, Pietro Petruzza, Cinzia Perrone
  • Patent number: 8958229
    Abstract: A nonvolatile memory device includes multiple variable resistive elements formed on a substrate; multiple bit lines formed on the variable resistive elements, extended in a first direction, and separated from each other by a first pitch; multiple circuit word lines formed on the multiple bit lines, extended in a second direction, and separated from each other by a second pitch; and multiple circuit word lines formed on the multiple bit lines, extended in the first direction, and separated from each other by a third pitch, wherein the third pitch of the multiple circuit word lines is larger than the first pitch of the multiple bit lines.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: February 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Hyun Park, Jae-Hee Oh, Sung-Won Kim
  • Publication number: 20150043267
    Abstract: A variable resistance memory system includes a variable resistance memory device including a memory cell array including first and second areas; and a memory controller configured to control the variable resistance memory device. The first area includes first variable resistance memory cells including a first variable resistance material layer and the second area includes second variable resistance memory cells including a second variable resistance material layer having a metallic doping concentration higher than a metallic doping concentration of the first variable resistance material layer. The first variable resistance memory cells are used as storage and the second variable resistance memory cells are used as a buffer memory.
    Type: Application
    Filed: April 21, 2014
    Publication date: February 12, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung-chang Ryoo, Hongsik Jeong, Daehwan Kang, JaeHee Oh, Jihyung Yu
  • Patent number: 8952493
    Abstract: According to one embodiment of the present invention, a solid state electrolyte memory cell includes a cathode, an anode and a solid state electrolyte. The anode includes an intercalating material and first metal species dispersed in the intercalating material.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 10, 2015
    Assignees: Adesto Technologies Corporation, Artemis Acquisition LLC
    Inventor: Sandra Mege
  • Patent number: 8952349
    Abstract: A switching device includes a substrate; a first electrode formed over the substrate; a second electrode formed over the first electrode; a switching medium disposed between the first and second electrode; and a nonlinear element disposed between the first and second electrodes and electrically coupled in series to the first electrode and the switching medium. The nonlinear element is configured to change from a first resistance state to a second resistance state on application of a voltage greater than a threshold.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: February 10, 2015
    Assignee: Crossbar, Inc.
    Inventors: Wei Lu, Sung Hyun Jo
  • Publication number: 20150036414
    Abstract: A non-volatile storage device comprises: a substrate; a monolithic three dimensional array of memory cells; word lines connected to the memory cells; global bit lines; vertical bit lines connected to the memory cells; and a plurality of double gated vertically oriented select devices. The double gated vertically oriented select devices are connected to the vertical bit lines and the global bit lines so that when the double gated vertically oriented select devices are activated the vertical bit lines are in communication with the global bit lines. Each double gated vertically oriented select device has two gates that are offset from each other with respect to distance to the substrate. Both gates for the double gated vertically oriented select device need be in an “on” condition for the double gated vertically oriented select devices to be activated.
    Type: Application
    Filed: July 24, 2014
    Publication date: February 5, 2015
    Inventors: Tianhong Yan, George Samachisa, Tz-yi Liu, Tim Chen, Perumal Ratnam
  • Patent number: 8946046
    Abstract: A method of forming a non-volatile memory device, includes forming a first electrode above a substrate, forming a dielectric layer overlying the first electrode, forming an opening structure in a portion of the dielectric layer to expose a surface of the first electrode having an aspect ratio, forming a resistive switching material overlying the dielectric layer and filling at least a portion of the opening structure using a deposition process, the resistive switching material having a surface region characterized by a planar region and an indent structure, the indent structure overlying the first electrode, maintaining a first thickness of resistive switching material between the planar region and the first electrode, maintaining a second thickness of resistive switching material between the indent structure and the first electrode, wherein the first thickness is larger than the second thickness, and forming a second electrode overlying the resistive switching material including the indent structure.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: February 3, 2015
    Assignee: Crossbar, Inc.
    Inventor: Sung Hyun Jo
  • Patent number: 8946670
    Abstract: A three-dimensional semiconductor device, a resistive variable memory device including the same, and a method of manufacturing the same are provided. The 3D semiconductor device includes a source formed of a first semiconductor material, a channel layer formed on the source and formed of the first semiconductor material, a lightly doped drain (LDD) region formed on the channel layer and formed of a second semiconductor material having a higher oxidation rate than that of the first semiconductor material, a drain formed on the LDD region and formed of the first semiconductor material, and a gate insulating layer formed on outer circumferences of the channel layer, the LDD region, and the drain.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: February 3, 2015
    Assignee: SK Hynix Inc.
    Inventor: Nam Kyun Park
  • Patent number: 8946673
    Abstract: A non-volatile memory device structure includes a first conductor extending in a first direction, a second conductor extending in a second direction approximately orthogonal to the first direction, an amorphous silicon material disposed in an intersection between the first and second conductors characterized by a first resistance upon application of a first voltage, wherein the first resistance is dependent on a conductor structure comprising material from the second conductor formed in a portion of the resistive switching material, and a layer of material configured in between the second conductor and the amorphous silicon material, wherein the layer maintains at least a portion the conductor structure in the amorphous silicon material, and wherein the layer inhibits conductor species from the portion of the conductor structure from migrating away from the second conductor when a second voltage having an amplitude less than the first voltage is applied.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: February 3, 2015
    Assignee: Crossbar, Inc.
    Inventor: Tanmay Kumar
  • Patent number: 8946667
    Abstract: A method for forming a resistive switching device. The method includes providing a substrate having a surface region and forming a first dielectric material overlying the surface region of the substrate. A first wiring structure overlies the first dielectric material. The method forms a first electrode material overlying the first wiring structure and a resistive switching material comprising overlying the first electrode material. An active metal material is formed overlying the resistive switching material. The active metal material is configured to form an active metal region in the resistive switching material upon application of a thermal energy characterized by a temperature no less than about 100 Degree Celsius. In a specific embodiment, the method forms a blocking material interposing the active metal material and the resistive switching material to inhibit formation of the active metal region in the resistive switching material during the subsequent processing steps.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: February 3, 2015
    Assignee: Crossbar, Inc.
    Inventors: Mark Harold Clark, Steven Maxwell, Harry Gee, Natividad Vasquez
  • Publication number: 20150028283
    Abstract: Some embodiments include methods of forming memory cells. Heater structures are formed over an array of electrical nodes, and phase change material is formed across the heater structures. The phase change material is patterned into a plurality of confined structures, with the confined structures being in one-to-one correspondence with the heater structures and being spaced from one another by one or more insulative materials that entirely laterally surround each of the confined structures. Some embodiments include memory arrays having heater structures over an array of electrical nodes. Confined phase change material structures are over the heater structures and in one-to-one correspondence with the heater structures. The confined phase change material structures are spaced from one another by one or more insulative materials that entirely laterally surround each of the confined phase change material structures.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 29, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Giorgio Servalli, Carmela Cupeta, Fabio Pellizzer
  • Publication number: 20150028284
    Abstract: Memory cells having a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the memory element and a second portion of the memory element. Memory cells having a select device comprising a select device material located between a first electrode and a second electrode, a memory element located between the second electrode and a third electrode, and a number of conductive diffusion barrier materials located between a first portion of the select device and a second portion of the select device. Manufacturing methods are also described.
    Type: Application
    Filed: July 26, 2013
    Publication date: January 29, 2015
    Applicant: Micron Technology, Inc.
    Inventors: Andrea Gotti, F. Daniel Gealy, Davide Columbo