With Heterojunction Patents (Class 257/90)
  • Publication number: 20100264400
    Abstract: A light emitting device (LED) may include a first semiconductor layer; an active layer formed on the first semiconductor layer and configured to generate first light having a first wavelength; a second semiconductor layer, formed on the active layer; and a plurality of semiconductor nano-structures arranged apart from each other and formed on the second semiconductor layer. The nano-structures may be configured to at least partially absorb the first light and emit second light having a second wavelength different from the first wavelength.
    Type: Application
    Filed: December 17, 2009
    Publication date: October 21, 2010
    Inventor: Taek Kim
  • Publication number: 20100244062
    Abstract: This invention provides a white light emitting element having a prolonged lifetime that can emit white light having high color purity. The white light emitting element comprises: opposed electrodes 3, 4; a luminescent layer A comprising an organic material and/or inorganic nanoparticles that emit light by EL; a luminescent layer B comprising inorganic nanoparticles that emit light by PL; and opposed reflective layers 5, 6 that allow light generated in the luminescent layer A to resonate within the element, light generated in the luminescent layer A and light generated in the luminescent layer B together producing white light, wherein one of the opposed electrodes 3, 4 or a layer adjacent to the electrodes has a total reflection function and is provided as one of the reflective layers, and the other electrode or a layer adjacent to the other electrode has a semi-transparent reflection function and is provided as the other reflective layer.
    Type: Application
    Filed: September 29, 2008
    Publication date: September 30, 2010
    Applicant: Dai Nippon Printing Co., Ltd.
    Inventor: Shigehiro Ueno
  • Patent number: 7800093
    Abstract: An integrated circuit including a memory cell includes a vertical bipolar select device including a base and an emitter. The memory cell includes a resistive memory element coupled to the emitter and a buried metallized word line contacting the base.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: September 21, 2010
    Assignee: Qimonda North America Corp.
    Inventors: Thomas Happ, Jan Boris Philipp
  • Publication number: 20100224889
    Abstract: A semiconductor device is provided comprising a first potential well located within a pn junction and a second potential well not located within a pn junction. The potential wells may be quantum wells. The semiconductor device is typically an LED, and may be a white or near-white light LED. The semiconductor device may additionally comprise a third potential well not located within a pn junction. The semiconductor device may additionally comprise absorbing layers surrounding or closely or immediately adjacent to the second or third quantum wells. In addition, graphic display devices and illumination devices comprising the semiconductor device according to the present invention are provided.
    Type: Application
    Filed: May 17, 2010
    Publication date: September 9, 2010
    Inventors: Thomas J. Miller, Michael A. Haase, Xiaoguang Sun
  • Patent number: 7781784
    Abstract: A display apparatus includes pixel electrodes disposed on a first base substrate, a second base substrate which faces the first base substrate, color pixels disposed on the second base substrate, the color pixels correspond to the pixel electrodes in a one-to-one correspondence, each color pixel partially covers the corresponding pixel electrode, a common electrode disposed on the second base substrate to cover the pixel electrodes and an electrophoretic layer including a plurality of electrophoretic particles, the electrophoretic layer being interposed between the pixel electrodes and the common electrode.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: August 24, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Il Kim, Son-Uk Lee, Nam-Seok Roh, Jeong-Kuk Lee
  • Patent number: 7768020
    Abstract: Disclosed herein is an AC light emitting diode. The light emitting diode comprises a plurality of light emitting cells two-dimensionally arranged on a single substrate. Wires electrically connect the light emitting cells to one another to thereby form a serial array of the light emitting cells. Further, the light emitting cells are spaced apart from one another by distances within a range of 10 to 30 D, and the serial array is operated while connected to an AC power source. Accordingly, the excellent operating characteristics and light output power can be secured in an AC light emitting diode with a limited size.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: August 3, 2010
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Dae Won Kim, Yeo Jin Yoon, Dae Sung Kal
  • Publication number: 20100181581
    Abstract: An LED is provided comprising two or more light-emitting Type II interfaces wherein at least two of the Type II interfaces differ in transition energy by at least 5%, or more typically by at least 10%, and wherein at least one of the Type II interfaces is within a pn junction. Alternately, an LED is provided comprising two or more light-emitting Type II interfaces wherein at least two of the Type II interfaces differ in transition energy by at least 5%, or more typically by at least 10%. The Type II interfaces may include interfaces from a layer which is an electron quantum well and not a hole quantum well, interfaces to a layer which is a hole quantum well and not an electron quantum well; and interfaces that satisfy both conditions simultaneously. The Type II interfaces may be within a pn or pin junction or not within a pn or pin junction. In the later case, emission from the Type II interfaces may be photopumped by a nearby light source. The LED may be a white or near-white light LED.
    Type: Application
    Filed: March 29, 2010
    Publication date: July 22, 2010
    Inventors: Thomas J. Miller, Michael A. Haase
  • Patent number: 7745839
    Abstract: Provided are a double wavelength semiconductor light emitting device, having an n electrode and p electrode disposed on the same surface side, in which the area of a chip is reduced to increase the number of chips taken from one single wafer, in which light focusing performance of double wavelength optical beams are improved, and in which an active layer of a light emitting element having a longer wavelength can be prevented from deteriorating in a process of manufacturing; and a method of manufacturing the same. Semiconductor lasers D1 and D2 as two light emitting elements having different wavelengths are integrally formed on a common substrate 1. A semiconductor laminate A is deposited on an n-type contact layer 21 in a semiconductor laser D1, and a semiconductor laminate B is deposited in a semiconductor laser D2. The semiconductor laminate A and semiconductor laminate B are configured to have different layer structures.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: June 29, 2010
    Assignee: Rohm Co., Ltd.
    Inventors: Shinichi Tamai, Ken Nakahara, Atsushi Yamaguchi
  • Patent number: 7737453
    Abstract: Disclosed is a light emitting diode structure including a Constructive Oxide Contact Structure contact layer. The light emitting diode structure comprises a substrate, a buffer layer formed on the substrate, a lower confinement layer formed on the buffer layer, a light emitting layer formed on the lower confinement layer, an upper confinement layer formed on the light emitting layer, a Constructive Oxide Contact Structure contact layer formed on the upper confinement layer whose conducting type can be P-type, N-type, or I-type, a first electrode, and a second electrode (transparent electrode). The transparent electrode is formed on the Constructive Oxide Contact Structure contact layer as an anode of the light emitting diode. The first electrode is formed on the lower confinement layer and is spaced apart from the light emitting layer, the upper confinement layer, the contact layer, and the transparent electrode. The first electrode is used as a cathode of the light emitting diode.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: June 15, 2010
    Assignee: Huga Optotech Inc.
    Inventors: Tzong-Liang Tsai, Chi-Shen Lee, Ting-Kai Huang
  • Patent number: 7732825
    Abstract: Disclosed herein is an AC light emitting diode. The light emitting diode comprises a plurality of light emitting cells two-dimensionally arranged on a single substrate. Wires electrically connect the light emitting cells to one another to thereby form a serial array of the light emitting cells. Further, the light emitting cells are spaced apart from one another by distances within a range of 10 to 30 ?m, and the serial array is operated while connected to an AC power source. Accordingly, the excellent operating characteristics and light output power can be secured in an AC light emitting diode with a limited size.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: June 8, 2010
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Dae Won Kim, Yeo Jin Yoon, Dae Sung Kal
  • Patent number: 7719013
    Abstract: A semiconductor light emitting device and a method of manufacturing the semiconductor light emitting device are provided. The semiconductor light emitting device includes a substrate, at least two light emitting cells located on the substrate and formed by stacking semiconductor material layers, a reflection layer and a transparent insulating layer sequentially stacked between the light emitting cells, and a transparent electrode covering the upper surface of the light emitting cells.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: May 18, 2010
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Jeong-wook Lee
  • Publication number: 20100117997
    Abstract: Light emitting systems and method of fabricating the same are disclosed. The light emitting system includes two or more monolithically integrated luminescent elements. Each luminescent element includes an electroluminescent device and a dedicated switching circuit for driving the electroluminescent device. At least one luminescent element includes a potential well for down converting light emitted by the electroluminescent device in the luminescent element.
    Type: Application
    Filed: February 26, 2008
    Publication date: May 13, 2010
    Inventor: Michael A. Haase
  • Patent number: 7704762
    Abstract: A method of producing a lamp, including: mounting light emitting junctions in respective receptacles; mounting the receptacles on a curved support structure so as to form a three-dimensional array; and placing the light emitting junctions in electrical connection with the support structure.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: April 27, 2010
    Assignee: Lednium Technology PTY Limited
    Inventors: Balu Jeganathan, John Albert Montagnat
  • Patent number: 7700959
    Abstract: A semiconductor light-emitting device capable of obtaining a high light reflectance through the use of a high-reflection metal layer formed on the side of an electrode on one side and capable of preventing migration of atoms from the high-reflectance metal layer is provided. Semiconductor layers of the opposite conduction types are formed on the opposite sides of an active layer, and an ohmic contact layer being a thin film for contriving a decrease in contact resistance, a transparent and conductive layer, and a high-reflection metal layer for reflecting light generated in the active layer are sequentially layered on one of the semiconductor layers. Since the transparent conductive layer functions also as a barrier layer and it transmits light, a high light take-out efficiency can be obtained through the reflection at the high-reflectance metal layer.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 20, 2010
    Assignee: Sony Corporation
    Inventors: Jun Suzuki, Masato Doi, Hiroyuki Okuyama, Goshi Biwa
  • Patent number: 7700953
    Abstract: A light-emitting device that improves the injection efficiency of electrons or holes by providing electrons or holes to an emitting layer using nano size needles, including a first electrode with a first polarity a second electrode with a second polarity opposite to the first polarity an emitting layer interposed between the first electrode and the second electrode to emit light and a plurality of conductive needles inserted in the first electrode and extending toward the emitting layer.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: April 20, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Noe-jung Park, Sung-hoon Lee, Hyo-sug Lee, Young-gu Jin
  • Patent number: 7692208
    Abstract: The disclosed subject matter includes a semiconductor optical device with a stable optical characteristic, an excellent radiant efficiency, and a high mounting reliability. A casing can be configured with a concaved-shaped cavity that includes an opening and a bottom portion. Each of one end portions of first/second lead frame electrodes 3a, 3b can be exposed on the bottom portion. The first one end portion can include an optical chip mounted thereon, and the second one end portion can be connected to another electrode of the optical chip via a bonding wire. The first lead frame electrode extends from an outside surface substantially perpendicular to the bottom portion and is bent in a direction towards the opening. The second lead frame electrode extends from an outside surface of the casing that is opposite to the outside surface from which the first electrode extends. Various physical configurations of the electrodes are disclosed.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: April 6, 2010
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Akihiko Hanya
  • Publication number: 20100078625
    Abstract: The present application relates to an opto-electronic device. The opto-electronic device includes a first light-emitting structure and a second light-emitting structure. The first light-emitting structure is capable of generating a first light having a first wavelength. The second light-emitting structure is capable of generating a second light having a second wavelength. The first light-emitting structure includes a nanorod structure having a first active layer, and the first active layer can absorb the second light to generate the first light.
    Type: Application
    Filed: September 30, 2009
    Publication date: April 1, 2010
    Inventor: Ta-Cheng HSU
  • Patent number: 7687153
    Abstract: A donor substrate for laser transfer comprises: a base film; a light-to-heat conversion layer formed on the base film; and a transfer layer formed of an organic material on the light-to-heat conversion layer. The transfer layer contains a thermosetting electroluminescent material, and an organic electroluminescence display device is manufactured using the same. Thus, R, G and B emission layers are simply formed with a fine pattern by a thermal curing process after laser transfer. As a result, the emission layers are not damaged, and the manufacturing cost of a full-color organic electroluminescence display device is reduced due to employment of a simplified mask process. The donor substrate is advantageous to use in the manufacture of a large-sized organic electroluminescence display device.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: March 30, 2010
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Nam-Choul Yang, Seong-Taek Lee, Min-Chul Suh, Tae-Min Kang, Mu-Hyun Kim, Byung-Doo Chin
  • Patent number: 7683383
    Abstract: A light emitting device having a circuit protection unit is provided. The circuit protection unit has a low-resistance layer and a potential barrier layer, wherein a barrier potential exists at the interface between the low-resistance layer and the potential barrier layer. The circuit protection unit is electrically connected with the light emitting device. When an electrostatic discharge or excessive forward current is occurred in the light emitting device, the circuit protection unit provides a rectifying function for preventing damages caused by static electricity or excessive forward current to the light emitting device.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: March 23, 2010
    Assignee: Epistar Corporation
    Inventors: Steve Meng-Yuan Hong, Jen-Shui Wang, Tzu-Feng Tseng, Ching-San Tao, Wen-Huang Liu, Min-Hsun Hsieh
  • Patent number: 7679097
    Abstract: A semiconductor light emitting device having a semiconductor stacking structure bonded onto the support member and having excellent characteristics is provided by a preferable electrode structure. The semiconductor light emitting device comprising; a semiconductor stacking structure having a first semiconductor layer and a second semiconductor layer of conductivity types different from each other, a first electrode connected to the first semiconductor layer, and a second electrode connected to the second semiconductor layer, wherein one principal surface of the first electrode has a portion that makes contact with the first semiconductor layer so as to establish electrical continuity and an external connection section.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: March 16, 2010
    Assignee: Nichia Corporation
    Inventor: Kazuyuki Akaishi
  • Patent number: 7675075
    Abstract: An LED array chip (2), which is one type of a semiconductor light emitting device, includes an array of LEDs (6), a base substrate (4) supporting the array of the LEDs (6), and a phosphor film (48). The array of LEDs (6) is formed by dividing a multilayer epitaxial structure including a light emitting layer into a plurality of portions. The phosphor film (48) covers an upper surface of the array of the LEDs (6) and a part of every side surface of the array of LEDs (6). Here, the part extends from the upper surface to the light emitting layer.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: March 9, 2010
    Assignee: Panasonic Corporation
    Inventor: Hideo Nagai
  • Patent number: 7659546
    Abstract: A light emitting device firstly includes a light emitting diode (LED) structure, having a top surface with a light emitting region. The device also has a heterojunction within the device structure, the heterojunction having a p-type and an n-type semiconductor layer, and a plurality of electrodes positioned on the top surface, each being electrically connected to one of the p-type and n-type semiconductor layers. At least a first and a second electrodes are connected to a same type semiconductor layer and are physically separated from each other. The device further includes a first and a second heterojunction regions within the heterojunction, each being respectively defined between one of the first and second electrodes and one of the other electrodes connected to the other type semiconductor layer. The first and second heterojunction regions are alternatively driven for emitting lights in the time domain.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: February 9, 2010
    Assignee: Hong Kong Applied Science and Technology Research Institute Co., Ltd.
    Inventors: Ming Lu, Geoffrey Wen Tai Shuy
  • Publication number: 20100006873
    Abstract: A packaged light emitting device. The device has a substrate member comprising a surface region. The device also has two or more light emitting diode devices overlying the surface region. Each of the light emitting diode device is fabricated on a semipolar or nonpolar GaN containing substrate. The two or more light emitting diode devices are fabricated on the semipolar or nonpolar GaN containing substrate emits substantially polarized emission.
    Type: Application
    Filed: June 9, 2009
    Publication date: January 14, 2010
    Applicant: SORAA, INC.
    Inventors: James W. Raring, Daniel F. Feezell
  • Publication number: 20100001300
    Abstract: A packaged light emitting device. The device has a substrate member comprising a surface region. The device has a substrate member comprising a surface region. The device also has two or more light emitting diode devices overlying the surface region according to a specific embodiment. At least a first of the light emitting diode device is fabricated on a semipolar GaN containing substrate and at least a second of the light emitting diode devices is fabricated on a nonpolar GaN containing substrate. In a preferred embodiment, the two or more light emitting diode devices emits substantially polarized emission. Of course, there can be other variations, modifications, and alternatives.
    Type: Application
    Filed: June 24, 2009
    Publication date: January 7, 2010
    Applicants: Soraa, Inc., Kaai, Inc.
    Inventors: JAMES W. RARING, DANIEL F. FEEZELL, MARK P. D'EVELYN
  • Patent number: 7642560
    Abstract: A composite semiconductor light-emitting device includes a first semiconductor element portion made of a first semiconductor material and a second semiconductor element portion made of a second semiconductor material different from the first semiconductor material. The first semiconductor element portion has a first semiconductor layered structure, and the second semiconductor element portion has a second semiconductor layered structure. The first semiconductor element portion has a plurality of light-emitting regions that emit lights of different wavelengths. The second semiconductor element portion has at least one light-emitting region that emits light whose wavelength is different from the lights emitted by the light-emitting regions of the first semiconductor element portion. The light-emitting regions of the first semiconductor element portion and at least one light-emitting region of the second semiconductor element portion are electrically connected to each other.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: January 5, 2010
    Assignee: Oki Data Corporation
    Inventor: Mitsuhiko Ogihara
  • Patent number: 7638809
    Abstract: A light emitting device includes a transparent substrate having first and second surfaces, a semiconductor layer provided on the first surface, a first light emission layer provided on the semiconductor layer and emitting first ultraviolet light including a wavelength corresponding to an energy larger than a forbidden bandwidth of a semiconductor of the semiconductor layer, a second light emission layer provided between the first light emission layer and the semiconductor layer, absorbing the first ultraviolet light emitted from the first light emission layer, and emitting second ultraviolet light including a wavelength corresponding to an energy smaller than the forbidden bandwidth of the semiconductor of the semiconductor layer, and first and second electrodes provided to apply electric power to the first light emission layer.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: December 29, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuo Ohba
  • Patent number: 7638807
    Abstract: A transparent conductive multi-layer structure having a smooth base material 1, a transparent conductive layer 2 formed on the smooth base material 1 by coating, an auxiliary electrode layer 3 formed in a pattern on the transparent conductive layer 2, and a transparent substrate 5 joined to the transparent conductive layer 2 and auxiliary electrode layer 3 through an adhesive layer 4. On a smooth peeled-off surface of the transparent conductive layer 2 from which the smooth base material 1 has been peeled off, various devices are formed to set up devices such as a dye-sensitized solar cell and an organic electroluminescent device.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: December 29, 2009
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventor: Masaya Yukinobu
  • Patent number: 7633093
    Abstract: An optical light engine is fabricated by providing a thermally conductive base having one or more mounting pedestals for elevating one or more LED die above the base's surface. The LED die are mounted on the pedestals, electrically connected, and a mold having a molding surface for molding a dome centered around the LED die is disposed on the base over the pedestal-mounted LED die. The encapsulating material is then injected through an input port disposed in the base to mold the dome around the LED die. The encapsulant material is cured and the mold is removed. In an advantageous embodiment, the light engine comprises a ceramic-coated metal base made by the low temperature co-fired ceramic-on-metal process (LTCC-M).
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: December 15, 2009
    Assignee: Lighting Science Group Corporation
    Inventors: Greg Blonder, Shane Harrah
  • Patent number: 7608862
    Abstract: A light emitting device comprises at least two lead wires, a light emitting element that is disposed on an end portion of at least one of said lead wires and connected electrically with the end portion and the other lead wire, and a phosphor that absorbs at least part of the light emitted from said light emitting element and emanates light having different wavelengths from the wavelength of the light emitted from said light emitting element, wherein the excitation spectrum of said phosphor has a flat region in a wavelength range including a primary wavelength of the light from said light emitting element.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: October 27, 2009
    Assignees: Fujikura Ltd., National Institute for Materials Science
    Inventors: Ken Sakuma, Koji Omichi, Naoto Hirosaki
  • Publication number: 20090250686
    Abstract: A yellow Light Emitting Diode (LED) with a peak emission wavelength in the range 560-580 nm is disclosed. The LED is grown on one or more III-nitride-based semipolar planes and an active layer of the LED is composed of indium (In) containing single or multi-quantum well structures. The LED quantum wells have a thickness in the range 2-7 nm. A multi-color LED or white LED comprised of at least one semipolar yellow LED is also disclosed.
    Type: Application
    Filed: April 6, 2009
    Publication date: October 8, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hitoshi Sato, Hirohiko Hirasawa, Roy B. Chung, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 7598530
    Abstract: A light emitting diode (80) includes a first and a second semiconductor structures (30, 40), and an adhesive layer (34, 46) between the first and the second semiconductor structures. The first semiconductor structure includes a n-type AlGaInP cladding layer (13), a p-type AlGaInP cladding layer (17), an AlGaInP active layer (15) between the n-type and the p-type AlGaInP cladding layers, a transparent conducting layer (62) on the n-type AlGaInP cladding layer, a first electrical contact (82) on the transparent conducting layer, ohmic electrodes (21) ohmic contact the p-type AlGaInP cladding layer, and a reflecting layer (32) on an opposite side of the p-type AlGaInP cladding layer to the AlGaInP active layer. The second semiconductor structure includes a carrier substrate (42), an ohmic contact layer (44) on the carrier substrate, and a second electrical contact (74) on an opposite side of the carrier substrate to the ohmic contact layer.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: October 6, 2009
    Assignee: Foxsemicon Integrated Technology, Inc.
    Inventor: Yuan-Fa Chu
  • Patent number: 7598529
    Abstract: A semiconductor chip (1), to which a layer sequence (2) intended for the production of a soldered connection has been applied. The layer sequence (2) comprises a solder layer (15) and an oxidation prevention layer (17), which follows the solder layer (15) as seen from the semiconductor chip (1). A barrier layer (16) is included between the solder layer (15) and the oxidation prevention layer (17). This prevents a constituent of the solder layer (15) from diffusing through the oxidation prevention layer (17) prior to the soldering operation, where it would effect oxidation that is disadvantageous for producing a soldered connection.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: October 6, 2009
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Andreas Ploessl, Stefan Illek, Vincent Grolier
  • Patent number: 7592633
    Abstract: A semiconductor lamination portion is formed on a substrate by laminating semiconductor layers so as to form a light emitting layer, and a plurality of light emitting units are formed by separating the semiconductor lamination portion electrically into a plurality of units. Each of the units has a pair of electric connecting portions which are connected to a pair of conductivity type layers and they are connected to each other with a wiring film. Each of the plurality of the light emitting units is separated electrically by dividing the conductivity type layers of the semiconductor lamination portion with at least twofold separating grooves (a first separating groove and a second separating groove). As a consequence, a semiconductor light emitting device with a high luminance and being formed in a monolithic type having a plurality of light emitting units can be obtained to solve a problem of a short-circuit occurrence between the light emitting units while keeping high reliability of wiring or the like.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: September 22, 2009
    Assignee: Rohm Co., Ltd.
    Inventor: Yukio Shakuda
  • Patent number: 7569863
    Abstract: A semiconductor light emitting device is composed of a blue light emitting diode, a red light emitting layer grown epitaxially on the blue light emitting diode, and an insulating material containing a YAG fluorescent material. The red light emitting layer is made of, e.g., undoped In0.4Ga0.6N having a forbidden band width of 1.9 eV and formed on a p-type semiconductor layer to have a configuration consisting of a plurality of mutually spaced-apart islands.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: August 4, 2009
    Assignee: Panasonic Corporation
    Inventor: Tetsuzo Ueda
  • Patent number: 7560739
    Abstract: A heteostructure having a first and a second layer, in micrometer or smaller (e.g. nanometer) scale, arranged in a configuration defining at least one undercut at one side of the second layer, underneath the first layer, is described herein. In various embodiments, the undercut is filled with passivation materials to protect the layers underneath the first layer. Further, in various embodiments, a large metal contact layer including coverage of the first layer sidewall may be employed to provide significant increase in contact area, and to reduce the device contact resist value.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: July 14, 2009
    Assignee: Intel Corporation
    Inventor: Jun-Fei Zheng
  • Patent number: 7556974
    Abstract: An optical semiconductor device with a multiple quantum well structure, in which well layers and barrier layers comprising various types of semiconductor layers are alternately layered, in which device well layers (6a) of a first composition based on a nitride semiconductor material with a first electron energy and barrier layers (6b) of a second composition of a nitride semiconductor material with electron energy which is higher in comparison with the first electron energy are provided, followed, seen in the direction of growth, by a radiation-active quantum well layer (6c), for which the essentially non-radiating well layers (6a) and the barrier layers (6b) arranged in front form a superlattice.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: July 7, 2009
    Assignee: Osram Opto Semiconductors GmbH
    Inventors: Volker Harle, Berthold Hahn, Hans-Jurgen Lugauer, Helmut Bolay, Stefan Bader, Dominik Eisert, Uwe Strauss, Johannes Volkl, Ulrich Zehnder, Alfred Lell, Andreas Weimar
  • Patent number: 7544971
    Abstract: A lateral current blocking light-emitting diode and a method for manufacturing the same are disclosed. The light-emitting diode comprises an insulating substrate, a semiconductor epitaxial structure and electrodes of different conductivity types. The semiconductor epitaxial structure has at least one trench and comprises a first conductivity type semiconductor layer deposed on a portion of the insulating substrate, in which a bottom of the trench is beneath the first conductivity type semiconductor layer, an active layer located on a portion of the first conductivity type semiconductor layer, and a second conductivity type semiconductor layer deposed on the active layer.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: June 9, 2009
    Assignee: Epistar Corporation
    Inventor: Shi-Ming Chen
  • Patent number: 7541610
    Abstract: A light source is provided including an LED component having an emitting surface, which may include: i) an LED capable of emitting light at a first wavelength; and ii) a re-emitting semiconductor construction which includes a second potential well not located within a pn junction having an emitting surface; or which may alternately include a first potential well located within a pn junction and a second potential well not located within a pn junction; and which additionally includes a converging optical element.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: June 2, 2009
    Assignee: 3M Innovative Properties Company
    Inventor: Michael A. Haase
  • Patent number: 7531247
    Abstract: An organic electroluminescence (EL) device capable of digital driving, and a method for manufacturing the same are disclosed herein. The organic EL device comprises a substrate, an anode formed on the substrate, an organic EL layer formed on the anode and constructed as a multilayer structure including a hole injection layer and a hole transport layer, a cathode formed on the organic EL layer, and an interface deterioration preventing layer formed between the anode and the organic EL layer.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: May 12, 2009
    Assignee: LG Display Co., Ltd.
    Inventors: Myung Seop Kim, Hyoung Yun Oh, Jae Man Lee, Sung Gap Kim, Jong Geun Yoon, Seong Joong Kim, Hong Gyu Kim, Joong Hwan Yang
  • Patent number: 7531843
    Abstract: A structure of light-emitting diode (LED) dies having an AC loop (a structure of AC LED dies), which is formed with at least one unit of AC LED micro-dies disposed on a chip. The unit of AC LED micro-dies comprises two LED micro-dies arranged in mutually reverse orientations and connected with each other in parallel, to which an AC power supply may be applied so that the LED unit may continuously emit light in response to a positive-half wave voltage and a negative-half wave voltage in the AC power supply. Since each AC LED micro-die is operated forwardly, the structure of AC LED dies also provides protection from electrical static charge (ESD) and may operate under a high voltage.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: May 12, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Te Lin, Fei-Chang Hwang, Chia-Tai Kuo
  • Patent number: 7524691
    Abstract: The present invention provides a manufacturing method that makes it possible to manufacture a substrate that is formed of high-quality Group III nitride crystals alone and has less warping. A Group III nitride layer (a seed layer and a selective growth layer) including gaps is formed on a substrate (a sapphire substrate). In an atmosphere containing nitrogen, the surface of the Group III nitride layer is brought into contact with a melt containing alkali metal and at least one Group III element selected from gallium, aluminum, and indium, and thereby the at least one Group III element and the nitrogen are made to react with each other to grow Group III nitride crystals (GaN crystals) on the Group III nitride layer. Thereafter, a part including the substrate and a part including the Group III nitride crystals are separated from each other in the vicinities of the gaps.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: April 28, 2009
    Assignee: Panasonic Corporation
    Inventors: Yasuo Kitaoka, Hisashi Minemoto, Isao Kidoguchi, Akihiko Ishibashi
  • Patent number: 7518150
    Abstract: A light emitting device including a blue-system semiconductor light emitting element, a green-system semiconductor light emitting element, a yellow fluorescent member which absorbs a part of blue light from the blue-system semiconductor light emitting element and emits yellow-system light as excitation light, and a red fluorescent member which absorbs a part of green light from the green-system semiconductor light emitting element and emits red-system light as excitation light.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: April 14, 2009
    Assignee: Citizen Electronics Co., Ltd.
    Inventor: Kenshi Aihara
  • Patent number: 7514720
    Abstract: The invention relates to a monolithic white light emitting device using wafer bonding or metal bonding. In the invention, a conductive submount substrate is provided. A first light emitter is bonded onto the conductive submount substrate by a metal layer. In the first light emitter, a p-type nitride semiconductor layer, a first active layer, an n-type nitride semiconductor layer and a conductive substrate are stacked sequentially from bottom to top. In addition, a second light emitter is formed on a partial area of the conductive substrate. In the second light emitter, a p-type AlGaInP-based semiconductor layer, an active layer and an n-type AlGaInP-based semiconductor layer are stacked sequentially from bottom to top. Further, a p-electrode is formed on an underside of the conductive submount substrate and an n-electrode is formed on a top surface of the n-type AlGaInP-based semiconductor layer.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 7, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Min Ho Kim, Masayoshi Koike, Kyeong Ik Min, Myong Soo Cho
  • Patent number: 7473935
    Abstract: A white-light emitting semiconductor device includes a first light-emitting die, a second light-emitting die, a photostimulable luminescent substance, and a holding assembly. The first light-emitting die emits a first radiation having a first wavelength range. The second light-emitting die emits a second radiation having a second wavelength range, and a third radiation having a third wavelength range different from the second wavelength range. The photostimulable luminescent substance is excitable to emit a fourth radiation having a fourth wavelength range. The fourth radiation is mixed with the first, second, and third radiations to result in white light. The holding assembly holds the first and second light-emitting dies, and the photostimulable luminescent substance.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: January 6, 2009
    Assignee: Genesis Photonics Inc.
    Inventor: Cheng-Chuan Chen
  • Patent number: 7473939
    Abstract: A light-emitting diode structure with transparent window covering layer of multiple films includes one (or several) first transparent covering layer(s) and one (or several) second covering layer(s), which are formed on the outside of the light-emitting diode chip. The light-emitting diode chip can emit light in more than two wavelengths to increase the transmission of the different wavelengths and the taking out efficiency of the light-emitting diode. The first transparent covering layer(s) and the second covering layer(s) are deposited each on the other on the outside of the light-emitting diode chip. The surface of the light-emitting diode with the covering layers is smooth. The contacting parts of the first transparent covering layer(s) and the second covering layer(s) are connected by a strong adhesive force and the contacting parts of the covering layer and light-emitting diode chip also are connected by a strong adhesive force.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: January 6, 2009
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Liang-Wen Wu, Ya-Ping Tsai, Fen-Ren Chien
  • Patent number: 7470938
    Abstract: In a nitride semiconductor light emitting device having patterns formed on the upper and lower surfaces of a substrate from which light is emitted in a flip chip bonding structure, the patterns are capable of changing light inclination at the upper and lower surfaces of the substrate to decrease total reflection at the interfaces, thereby improving light emitting efficiency.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: December 30, 2008
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jae Hoon Lee, Jeong Wook Lee, Hyun Kyung Kim, Yong Chun Kim
  • Publication number: 20080290354
    Abstract: A light emitting diode (LED) assembly, comprising a metal substrate (1) which is partly covered on one side with a dielectric layer (2) on which an electric circuit (3) is present, and a multitude of LED units (5, 6, 7) each comprising a LED chip, wherein each LED unit is mounted in a gap in said dielectric layer on the metal substrate by a heat conducting adhesive layer (8), wherein electrical conductors (9) connect each LED unit with the electric circuit on the adjacent dielectric layer, and wherein at least two LED units are mounted together in one gap in the dielectric layer.
    Type: Application
    Filed: July 19, 2005
    Publication date: November 27, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Christoph Gerard August Hoelen, Koen Van Os, Theodoor Cornelis Treurniet, Edwin Van Lier, Johannes Petrus Maria Ansems
  • Patent number: 7435994
    Abstract: A spacer layer is formed on a single-crystal substrate and an epitaxially grown layer composed of a group III-V compound semiconductor layer containing a nitride or the like is further formed on the spacer layer. The epitaxially grown layer is adhered to a recipient substrate. The back surface of the single-crystal substrate is irradiated with a light beam such as a laser beam or a bright line spectrum from a mercury vapor lamp such that the epitaxially grown layer and the single-crystal substrate are separated from each other. Since the forbidden band of the spacer layer is smaller than that of the single-crystal substrate, it is possible to separate the thin semiconductor layer from the substrate by decomposing or fusing the spacer layer, while suppressing the occurrence of a crystal defect or a crack in the epitaxially grown layer.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: October 14, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Tetsuzo Ueda
  • Patent number: 7420204
    Abstract: An organic transistor is capable of emitting light at high luminescence efficiency, operating at high speed, handling large electric power, and can be manufactured at low cost. The organic transistor includes an organic semiconductor layer between a source electrode and a drain electrode, and gate electrodes shaped like a comb or a mesh, which are provided at intervals approximately in the central part of the organic semiconductor layer approximately parallel to the source electrode and the drain electrode. The organic semiconductor layer consists of an electric field luminescent organic semiconductor material such as compounds of naphthalene, anthracene, tetracene, pentacene, hexacene, a phthalocyanine system compound, an azo system compound, a perylene system compound, a triphenylmethane compound, a stilbene compound, poly N-vinyl carbazole, and poly vinyl pyrene.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: September 2, 2008
    Assignee: Ricoh Company, Ltd.
    Inventors: Hiroyuki Iechi, Yoshikazu Akiyama, Hiroshi Kondoh, Takanori Tano
  • Publication number: 20080149950
    Abstract: An optical communication semiconductor device including: a first light emitting layer composed of a semiconductor; and a second light emitting layer which is laid on or above the first light emitting layer and composed of a semiconductor capable of emitting light having a emission peak at a wavelength different from that of light emitted by the first light emitting layer.
    Type: Application
    Filed: November 26, 2007
    Publication date: June 26, 2008
    Applicant: ROHM CO., LTD.
    Inventors: Kazuhiko Senda, Shunji Nakata