Changing Their Shape, E.g., Forming Recess (epo) Patents (Class 257/E21.044)
  • Patent number: 8569080
    Abstract: A method of packaging a light emitting diode comprising: providing a flexible substrate with a heat-conducting layer, an insulating layer covering on a surface of the heat-conducting layer and an electrically conductive layer positioned on the insulating layer; etching the conductive layer to form a gap in the conductive layer and expose a part of the insulating layer, the conductive layer being separated by the gap into a first electrode and a second electrode isolated from each other; stamping the flexible substrate with a mold at the position of the gap to form a recess in the flexible substrate; positioning a light emitting element on the conductive layer and electrically connecting the light emitting element to the conductive layer; and forming an encapsulation to cover the light emitting element.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: October 29, 2013
    Assignee: Advanced Optoelectronic Technology, Inc.
    Inventors: Li-Hsiang Chen, Hsin-Chiang Lin, Pin-Chuan Chen
  • Patent number: 8557655
    Abstract: A semiconductor device with first and second groups of transistors, the second group transistors each having a lower operating voltage than that of each of said transistors in said first group, the first group transistors have first gate electrodes formed from a silicon based material layer on a semiconductor substrate through a first gate insulating film, the second group transistors have second gate electrodes formed such that metal based gate materials are respectively filled in gate formation trenches formed in an interlayer insulating film on the semiconductor substrate through a second gate insulating film, and a resistor on the substrate has a resistor main body utilizing the silicon based material layer and is formed on the substrate through an insulating film.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: October 15, 2013
    Assignee: Sony Corporation
    Inventor: Harumi Ikeda
  • Patent number: 7485536
    Abstract: A method including forming a channel region between source and drain regions in a substrate, the channel region including a first dopant profile; and forming a barrier layer between the channel region and a well of the substrate, the barrier layer including a second dopant profile different from the first dopant profile. An apparatus including a gate electrode on a substrate; source and drain regions formed in the substrate and separated by a channel region; and a barrier layer between a well of the substrate and the channel region, the barrier layer including a dopant profile different than a dopant profile of the channel region and different than a dopant profile of the well.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: February 3, 2009
    Assignee: Intel Corporation
    Inventors: Been-Yih Jin, Brian S. Doyle, Robert S. Chau, Jack T. Kavalieros
  • Patent number: 7119416
    Abstract: The invention includes methods of fabricating a bipolar transistor that adds a silicon germanium (SiGe) layer or a third insulator layer of, e.g., high pressure oxide (HIPOX), atop an emitter cap adjacent the intrinsic base prior to forming a link-up layer. This addition allows for removal of the link-up layer using wet etch chemistries to remove the excess SiGe or third insulator layer formed atop the emitter cap without using oxidation. In this case, an oxide section (formed by deposition of an oxide or segregation of the above-mentioned HIPOX layer) and nitride spacer can be used to form the emitter-base isolation. The invention results in lower thermal cycle, lower stress levels, and more control over the emitter cap layer thickness, which are drawbacks of the first embodiment. The invention also includes the resulting bipolar transistor structure.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: October 10, 2006
    Assignee: International Business Machines Corporation
    Inventors: Thomas N. Adam, Kevin K. Chan, Alvin J. Joseph, Marwan H. Khater, Qizhi Liu, Beth Ann Rainey, Kathryn T. Schonenberg