Circuit For Characterizing Or Monitoring Manufacturing Process, E.g., Whole Test Die, Wafer Filled With Test Structures, Onboard Devices Incorporated On Each Die, Process/product Control Monitors Or Pcm, Devices In Scribe-line/kerf, Drop-in Devices (epo) Patents (Class 257/E21.524)
  • Patent number: 7935546
    Abstract: A method, structure, system of aligning a substrate to a photomask. The method includes: directing incident light through a pattern of clear regions transparent to the incident light in an opaque-to-the-incident-light region of a photomask, through a lens and onto a photodiode formed in a substrate, the photodiodes electrically connected to a light emitting diode formed in the substrate, the light emitting diode emitting light of different wavelength than a wavelength of the incident lights; measuring an intensity of emitted light from light emitting diode; and adjusting alignment of the photomask to the substrate based on the measured intensity of emitted light.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Axel Aguado Granados, Benjamin Aaron Fox, Nathaniel James Gibbs, Andrew Benson Maki, John Edward Sheets, II, Trevor Joseph Timpane
  • Patent number: 7935965
    Abstract: A test vehicle and method for electrical characterization of misalignment, for example resulting from double patterning processes, that enables characterization of patterns on wafers which have finished processing. It includes a structure and method for measurement of a space-sensitive electrical parameter to characterize gaps between features of different sub-patterns on a semiconductor wafer portion, and may further comprise a test structure for measuring feature dimensions.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: May 3, 2011
    Assignee: PDF Solutions, Inc.
    Inventor: Tomasz Brozek
  • Patent number: 7919775
    Abstract: A method of operating a semiconductor device, a semiconductor device and a digital micromirror system are presented. In an embodiment, the semiconductor device comprises a grounded substrate, a memory array, and a reset driver. The memory array may be isolated from the grounded substrate with a buried layer. The set of voltages of the memory array may be shifted with respect to a reset voltage. The reset driver may drive the reset voltage and the reset driver may have at least one extended drain transistor in the grounded substrate.
    Type: Grant
    Filed: May 27, 2009
    Date of Patent: April 5, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: James D. Huffman, James N. Hall
  • Patent number: 7915056
    Abstract: A semiconductor die including a semiconductor chip and a test structure, located in a scribe area, is designed and manufactured. The test structure includes an array of complementary metal oxide semiconductor (CMOS) image sensors that are of the same type as CMOS image sensors employed in another array in the semiconductor chip and having a larger array size. Such a test structure is provided in a design phase by providing a design structure in which the orientations of the CMOS image sensors match between the two arrays. The test structure provides effective and accurate monitoring of manufacturing processes through in-line testing before a final test on the semiconductor chip.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: March 29, 2011
    Assignee: International Business Machines Corporation
    Inventors: John J. Ellis-Monaghan, Mark D. Jaffe, Sambasivan Narayan, Anthony J. Perri, Richard J. Rassel, Tian Xia
  • Patent number: 7911038
    Abstract: A wiring board has an insulating layer, a plurality of wiring layers formed in such a way as to be insulated from each other by the insulating layer, and a plurality of vias formed in the insulating layer to connect the wiring layers. Of the wiring layers, a surface wiring layer formed in one surface of the insulating layer include a first metal film exposed from the one surface and a second metal film embedded in the insulating layer and stacked on the first metal film. Edges of the first metal film project from edges of the second metal film in the direction in which the second metal film spreads. By designing the shape of the wiring layers embedded in the insulating layer in this manner, it is possible to obtain a highly reliable wiring board that can be effectively prevented from side etching in the manufacturing process and can adapt to miniaturization and highly dense packaging of wires.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 22, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Katsumi Kikuchi, Shintaro Yamamichi, Hideya Murai, Takuo Funaya, Kentaro Mori, Takehiko Maeda, Hirokazu Honda, Kenta Ogawa, Jun Tsukano
  • Patent number: 7888672
    Abstract: A device and method are provided for detecting stress migration properties of a semiconductor module mounted in a housing. A stress migration test (SMT) structure is formed in the semiconductor module. An integrated heating (IH) device is formed within or in direct proximity to the SMT structure. The SMT structure includes a first interconnect region in a first interconnect layer, a second interconnect region in a second interconnect layer, and a connecting region electrically connecting the interconnect regions through a first insulating layer. The IH device includes a heating interconnect region through which a heating current flows. The heating interconnect region is within or outside the first or second interconnect region or connecting region. When the heating current is applied, a measurement voltage is applied to the SMT structure, and a current through the SMT structure is measured to detect stress migration properties of the semiconductor module.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: February 15, 2011
    Assignee: Infineon Technologies AG
    Inventors: Armin Fischer, Alexander von Glasow, Jochen von Hagen
  • Patent number: 7871832
    Abstract: The generation of a chip identifier supporting at least one integrated circuit, which includes providing a cutout of least one conductive path by cutting the chip, the position of the cutting line relative to the chip conditioning the identifier.
    Type: Grant
    Filed: September 23, 2005
    Date of Patent: January 18, 2011
    Assignee: STMicroelectronics S.A.
    Inventor: Fabrice Marinet
  • Patent number: 7855436
    Abstract: A semiconductor wafer includes an insulation substrate with transparency; a silicon semiconductor layer formed on the insulation substrate; a chip forming area defined on the silicon semiconductor layer; a scribe line area defined on the silicon semiconductor layer for dividing the chip forming area; and an opaque pattern layer formed in the scribe line area. A plurality of opaque pattern portions is arranged apart from each other in the opaque pattern layer.
    Type: Grant
    Filed: May 14, 2008
    Date of Patent: December 21, 2010
    Assignee: OKI Semiconductor Co., Ltd
    Inventor: Kiyotaka Yonekawa
  • Patent number: 7842949
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 30, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 7807481
    Abstract: A method for protecting a semiconductor device is disclosed that can improve reliability of a performance test for the semiconductor device and prevent damage to the semiconductor device during transportation or packaging for shipment. An IC cover is attached to the semiconductor device, which has height unevenness because it includes semiconductor chips and electric parts having different heights. The IC cover includes projecting portions and a base portion. After being attached to the semiconductor device, the projecting portions stand in a free area in the semiconductor device, and the base portion is supported by the projections to be separated from the semiconductor chips and electric parts in the semiconductor device. The IC cover is detachably attached to the semiconductor device.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: October 5, 2010
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Kazuhiro Tashiro, Keisuke Fukuda, Naohito Kohashi, Shigeyuki Maruyama
  • Patent number: 7800106
    Abstract: OPC results may be efficiently evaluated on the basis of a test structure containing a plurality of line features with opposing end portions. Thus, for different line parameters, the effect of OPC may be determined for a given critical tip-to-tip distance by determining the leakage behavior of the test assemblies, each having different design parameter values for line width and lateral distance between adjacent lines.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: September 21, 2010
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Frank Feustel, Thomas Werner, Kai Frohberg
  • Patent number: 7786563
    Abstract: An embodiment of the present invention is a technique to stack multiple devices using an interconnecting element. A board has a periphery and top and bottom surfaces. The top surface has top contact pads to attach to a first device. The bottom surface is milled down to form a cavity confined by vertical walls around the periphery. The cavity fits a second device. Bottom contact pads are formed on bottom side of the vertical walls. The bottom contact pads are raised with respect to the bottom side of the vertical walls. Traces internal to the board connect the bottom contact pads to the top contact pads.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 31, 2010
    Assignee: Virtium Technology, Inc.
    Inventors: Phan Hoang, Chinh Nguyen, Anthony Tran, Tung Dang
  • Patent number: 7785906
    Abstract: A test structure which can be used to detect residual conductive material such as polysilicon which can result from an under etch comprises a PMOS transistor and an OTP EPROM floating gate device. By testing the devices using different testing parameters, it can be determined whether residual conductive material remains subsequent to an etch, and where the residual conductive material is located on the device. A method for testing a semiconductor device using the test structure is also described.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: August 31, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Xiaoju Wu, Jozef Czeslaw Mitros
  • Patent number: 7781235
    Abstract: A method of forming a semiconductor structure includes providing a stack structure having a first side and a second side opposite the first side. The stack structure includes a bottom wafer comprising a substrate; a plurality of through-silicon vias in the substrate; and a plurality of under bump metallurgies (UBMs) connected to the plurality of through-silicon vias, wherein the UBMs are on the first side of the stack structure. The method further includes attaching a handling wafer on the second side of the stack structure; performing a chip probing process; and removing the handling wafer from the stack structure.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: August 24, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Liang Luo, Yung-Liang Kuo, Hsu Ming Cheng
  • Patent number: 7781237
    Abstract: An apparatus includes a first support structure configured to support an element that has an alignment marker provided with at least one height difference. The apparatus also includes an alignment sensor comprising a light source that is configured to provide a light beam that illuminates the alignment marker; and at least one detector configured to detect the at least one height difference of the alignment marker by analyzing the light beam reflected by the alignment marker. Such an apparatus may be used to align of the element with respect to the first support structure.
    Type: Grant
    Filed: June 8, 2005
    Date of Patent: August 24, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Gert-Jan Heerens, Anastasius Jacobus Anicetus Bruinsma, Jacob Fredrik Frisco Klinkhamer, Bastiaan Lambertus Wilhelmus Marinus Van De Ven, Hubert Adriaan Van Mierlo, Willem Arthur Vliegenthart
  • Patent number: 7755084
    Abstract: A semiconductor wafer is provided with a substrate having a semiconductor element formation layer, a lowermost metal layer formed on the semiconductor element formation layer and an uppermost layer formed on the lowermost metal layer, and the semiconductor wafer also has plural chip regions and an evaluation element region that is that is defined as a region between the plurality of chip regions and that has a cutaway region that is subjected to dicing when separating an individual chip and a remnant region that is not subjected to dicing when separating the chip, and a lowermost layer electrode pad and an uppermost layer electrode pad that are formed at the remnant region and at a pad region are configured by a combination of metals having a line width of less than or equal to a predetermined value.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: July 13, 2010
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Hiroshi Yamamoto
  • Patent number: 7745823
    Abstract: A thin film panel is provided, which includes a first signal line and a second signal line crossing the first signal line and formed on a different layer from the first signal line. The second signal line includes an expansion having an enlarged area and at least one cutout, and is disposed adjacent to a crossing region where the second signal line crosses the first signal line.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: June 29, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Hyeon Ki
  • Patent number: 7741195
    Abstract: A method includes providing a wafer having a first die and a scribe grid, where the first die has die circuitry and a bond pad electrically connected to the die circuitry, and where the scribe grid has a scribe grid pad electrically connected to the die circuitry. The method further includes accessing the scribe grid pad to stimulate the die circuitry. A wafer includes a first die. The first die includes die circuitry, a plurality of conductive layers, and a bond pad electrically connected to the die circuitry via at least one conductive layer of the plurality of conductive layers. The wafer includes a scribe grid having a scribe grid pad, and an interconnect electrically connecting the scribe grid pad to the die circuitry. The plurality of die of the wafer can then be singulated, and at least one of the singulated die can be packaged.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: June 22, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Mohammed K. Rashid, Mahbub M. Rashed, Scott S. Roth
  • Patent number: 7723724
    Abstract: A system is provided for using test structures to evaluate a fabrication of a wafer. The test structures include a combination of device and interconnect elements that are provided on an active region of a die, on the wafer prior to the fabrication of the wafer being completed. The combination of device and interconnect elements include one or more circuits that are activatable to produce an output corresponding to measurable electrical and/or optical characteristics. A power receiving element that is configured to receive activation energy sufficient to cause the output on a contactless medium, so that the activation energy is received without affecting a usability of the die or wafer. The one or more circuits are structured to generate a variation in either the output or in a parameter determined from output, as a result of a process variation in a specific fabrication step that provided elements for forming the one or more circuits.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: May 25, 2010
    Assignee: tau-Metrix, Inc.
    Inventors: Majid Aghababazadeh, Jose J. Estabil, Nader Pakdaman, Gary L. Steinbrueck, James S. Vickers
  • Patent number: 7718512
    Abstract: A metal interconnect structure formed over a substrate in an integrated circuit that traverses a scribe-line boundary between a first die and a second die includes at least one metal interconnect line that traverses the scribe-line boundary. A switch is coupled between the at least one metal interconnect line and the substrate, the switch having a control element coupled to a scribe-cut control line. The control line turns the switch on if the two dice are separated into individual dice and turns the switch off if the two dice are to remain physically connected so that the interconnect line may be used to make connections between circuits on the two dice.
    Type: Grant
    Filed: April 3, 2007
    Date of Patent: May 18, 2010
    Assignee: Actel Corporation
    Inventor: John McCollum
  • Patent number: 7701072
    Abstract: The semiconductor device according to an aspect of the invention includes: an internal circuit area having an internal circuit; an I/O circuit area positioned outside the internal circuit area; and an electrode pad placed across an outer edge of the I/O circuit area. In the electrode pad, an area outside the outer edge of the I/O circuit area is a bonding area, and an area inside the outer edge is a probe area.
    Type: Grant
    Filed: June 12, 2006
    Date of Patent: April 20, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Takayuki Nishida
  • Patent number: 7692273
    Abstract: There are provided an electronic component production method and an electronic component by which the number of scribing processes can be reduced and the productivity can be made higher while surely preventing short circuiting during the production. An electronic component including a short ring residue portion and a method of producing the electronic component are provided.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: April 6, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Naohiro Nakane, Kimio Takahashi
  • Patent number: 7687803
    Abstract: A semiconductor device includes a semiconductor chip and a wiring substrate. The wiring substrate is configured to be electrically connected to the semiconductor chip, and have a plurality of terminals arranged on an surface opposite to a surface on which the semiconductor chip is mounted. The plurality of terminals includes a plurality of first terminals configured to be arranged closely to each other, and a plurality of second terminals configured to be arranged so as to surround the plurality of first terminals. The plurality of second terminals is provided such that terminals of the semiconductor chip are connected to outer terminals through the plurality of second terminals. Each of the plurality of first terminals is not provided with a metal ball, while each of the plurality of second terminals is provided with a metal ball.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: March 30, 2010
    Assignee: NEC Electronics Corporation
    Inventors: Naohiro Takagi, Yasuhiro Suzuki, Kazuaki Satou
  • Patent number: 7678659
    Abstract: A method for reducing leakage current in a semiconductor capacitor. The method includes providing a top plate for collecting charge, providing a bottom plate for collecting an opposing charge to the top plate, providing a dielectric layer for insulation between the top plate and the bottom plate, providing a top contact, providing a bottom contact, providing a plurality of vias including top level vias for connecting the top plate to the top contact, and bottom level vias for connecting the bottom plate to the bottom contact; and separating a via and an adjacent structure such that their distance is greater than a minimum via spacing requirement of a foundry design rule for a semiconductor process producing the semiconductor capacitor.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 16, 2010
    Assignee: MediaTek Inc.
    Inventors: Chao-Chun Tu, Ming-Chieh Lin
  • Patent number: 7674635
    Abstract: The present invention supplies a manufacturing method of a semiconductor device, which includes a non-contact inspection process capable of confirming if a circuit or circuit element formed on an array substrate is normally performed and can decrease a manufacturing cost by eliminating wastes to keep a defective product forming. An electromotive force generated by electromagnetic induction is rectified and shaped by using primary coils formed on a check substrate and secondary coils formed on an array substrate, whereby a power source voltage and a driving signal are supplied to circuits or circuit elements on a TFT substrate so as to be driven.
    Type: Grant
    Filed: July 31, 2006
    Date of Patent: March 9, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Masaaki Hiroki, Shunpei Yamazaki
  • Patent number: 7655946
    Abstract: Test circuits located on semiconductor die enable a tester to test a plurality of die/ICs in parallel by inputting both stimulus and response patterns to the plurality of die/ICs. The response patterns from the tester are input to the test circuits along with the output response of the die/IC to be compared. Also disclosed is the use of a response signal encoding scheme whereby the tester transmits response test commands to the test circuits, using a single signal per test circuit, to perform: (1) a compare die/IC output against an expected logic high, (2) a compare die/IC output against an expected logic low, and (3) a mask compare operation. The use of the signal encoding scheme allows functional testing of die and ICs since all response test commands (i.e. 1-3 above) required at each die/IC output can be transmitted to each die/IC output using only a single tester signal connection per die/IC output. In addition to functional testing, scan testing of die and ICs is also possible.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: February 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Lee D. Whetsel, Alan Hales
  • Patent number: 7642625
    Abstract: A thermal stress resistance evaluating method of a semiconductor device includes: forming a test circuit on a corner of each of unit regions arranged on a wafer in an array arrangement; forming a TEG chip by dicing a TEG chip region which is determined by grouping at least two of the unit regions in a predetermined shape; assembling a packaged TEG chip from the TEG chip; and executing a temperature cycling test on the packaged TEG chip by using the test circuit on the TEG chip. According to such a configuration, by adjusting the predetermined shape, the packaged TEG chip of various sizes can be formed in accordance with the design of the product chip size.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: January 5, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Kazutaka Otsuki
  • Patent number: 7622735
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: November 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Patent number: 7618832
    Abstract: A semiconductor substrate having a reference semiconductor chip and a method of assembling semiconductor chips using the same are provided. According to the method, a semiconductor substrate having a plurality of semiconductor chips is provided. An identification mark is made on a reference semiconductor chip among the semiconductor chips. The semiconductor substrate is aligned with reference to the reference semiconductor chip, so that an electrical die sorting test can be performed on the semiconductor chips on the semiconductor substrate.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: November 17, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-moon Lee, Young-bu Kim, Jung-hye Kim
  • Patent number: 7598522
    Abstract: A semiconductor substrate includes a wafer, a first stepped structure formed of plural stepped parts formed on a surface of the wafer with a first area occupation ratio, a second stepped structure formed of plural stepped parts formed on the surface of the wafer with a second, different area occupation ratio, and an interlayer insulation film formed on the surface so as to cover the first and second stepped structures, the interlayer insulation film having a planarized top surface, wherein there are provided at least first and second film-thickness monitoring patterns for monitoring film thickness on the surface in a manner covered by the interlayer insulation film, a first pattern group is formed on the surface such that the first pattern group comprises plural patterns disposed so as to surround the first film-thickness monitoring pattern, a second pattern group is formed on the surface such that the second pattern group comprises plural patterns disposed so as to surround the second film-thickness monitori
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: October 6, 2009
    Assignee: Fujitsu Microelectronics Limited
    Inventors: Tetsuo Yaegashi, Kouichi Nagai
  • Patent number: 7576357
    Abstract: A method of detecting damage to at least one dielectric layer in an IC die by determining a capacitance factor. The capacitance factor can be used to determine damage in a low-k dielectric material. A system for detecting damage can include a conductive line structure for measuring capacitance and software or a device for determining the capacitance to determine the damage.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: August 18, 2009
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jianhong Zhu, David Wu
  • Patent number: 7566636
    Abstract: There is provided a method of scribing a stuck mother substrate for obtaining a plurality of stuck substrates formed by sticking a first square substrate and a second square substrate together so that one side of opposing two sides of the square substrates is aligned and the other side is not aligned so that the first substrate is set back to the second substrate from a stuck mother substrate in which a first mother substrate and a second mother substrate are stuck together. In the method of scribing a stuck mother substrate, the second mother substrate is strongly scribed for a full scribe line and the first mother substrate is strongly scribed for a half scribe line. On the other hand, the first mother substrate is weakly scribed for the full scribe line.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: July 28, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Makoto Nakadate, Norihiko Kato, Yoichi Miyasaka
  • Publication number: 20090152542
    Abstract: Test methods and components are disclosed for testing the quality of lift-off processes in wafer fabrication. A wafer is populated with one or more test components along with the functional components. These test components are fabricated with holes in an insulation layer that is deposited between conductive layers, where the holes were created by the same or similar lift-off process that is used to fabricate the functional components on the wafer. The test components may then be measured in order to determine the quality of the holes created by the lift-off process. The quality of the lift-off process used to fabricate the functional components may then be determined based on the quality of the holes in the test components.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 18, 2009
    Inventors: Edward Hin Pong Lee, Jennifer Ai-Ming Leung
  • Patent number: 7541613
    Abstract: A method of reducing parametric variation in an integrated circuit (IC) chip and an IC chip with reduced parametric variation. The method includes: on a first wafer having a first arrangement of chips, each IC chip divided into a second arrangement of regions, measuring a test device parameter of test devices distributed in different regions; and on a second wafer having the first arrangement of IC chips and the second arrangement of regions, adjusting a functional device parameter of identically designed field effect transistors within one or more regions of all IC chips of the second wafer based on a values of the test device parameter measured on test devices in regions of the IC chip of the first wafer by a non-uniform adjustment of physical or metallurgical polysilicon gate widths of the identically designed field effect transistors from region to region within each IC chip.
    Type: Grant
    Filed: May 8, 2008
    Date of Patent: June 2, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brent Alan Anderson, Shahid Ahmad Butt, Allen H. Gabor, Patrick Edward Lindo, Edward Joseph Nowak, Jed Hickory Rankin
  • Patent number: 7534657
    Abstract: A method of manufacturing a semiconductor device involves the steps of: forming a plurality of product formation areas each having a circuit and a plurality of first electrode pads over a main surface of a semiconductor wafer; arranging a plurality of second electrode pads with larger pitches than the first electrode pads in each of the product formation areas; segmenting the semiconductor wafer to separate the plural product formation areas and provide a plurality of semiconductor devices each having the circuit, the plural first electrode pads and the plural second electrode pads on a first surface; and cleaning foreign matter off the first surface of the semiconductor device after the step of segmenting the semiconductor devices.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: May 19, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Yoshihiko Yamaguchi, Atsushi Fujishima, Yusuke Ohta
  • Patent number: 7535082
    Abstract: Nitride semiconductor wafers which are produced by epitaxially grown nitride films on a foreign undersubstrate in vapor phase have strong inner stress due to misfit between the nitride and the undersubstrate material. A GaN wafer which has made by piling GaN films upon a GaAs undersubstrate in vapor phase and eliminating the GaAs undersubstrate bends upward due to the inner stress owing to the misfit of lattice constants between GaN and GaAs. Ordinary one-surface polishing having the steps of gluing a wafer with a surface on a flat disc, bringing another surface in contact with a lower turntable, pressing the disc, rotating the disc, revolving the turntable and whetting the lower surface, cannot remedy the inherent distortion. The Distortion worsens morphology of epitaxial wafers, lowers yield of via-mask exposure and invites cracks on surfaces. Nitride crystals are rigid but fragile. Chemical/mechanical polishing has been requested in vain.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: May 19, 2009
    Assignees: Sumitomo Electric Industries, Ltd., Sony Corporation
    Inventors: Masahiro Nakayama, Naoki Matsumoto, Koshi Tamamura, Masao Ikeda
  • Publication number: 20090014717
    Abstract: A test IC structure is described, which is disposed in a scribe line region of a wafer and includes first and second test keys, first and second conductive plugs, first and second test pads, and a passivation layer over the scribe line region. The first/second test key includes a first/second active device and a first/second interconnect structure electrically connected thereto, wherein the second test key is arranged substantially parallel with the first one. The first/second plug is disposed over the first/second interconnect structure and contacts with the upmost metal layer thereof. The first/second test pad is disposed over the first and the second test keys and contacts with the first/second conductive plug. The passivation layer has therein a first opening exposing a portion of the first test pad and a second opening exposing a portion of the second test pad.
    Type: Application
    Filed: July 11, 2007
    Publication date: January 15, 2009
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Li Kuo, Ping-Chang Wu
  • Patent number: 7473568
    Abstract: Reliable memory modules are assembled from partially-tested memory chips that are neither individually burned-in nor fully tested. Instead, individual memory chips are partially tested to screen out gross failures and then assembled into memory modules that are inserted into memory-module burn-in boards and placed into a burn-in oven. The memory modules are stressed during burn-in by high temperatures and applied voltages. After burn-in, the memory modules are removed from the memory-module burn-in boards and extensively tested. Functional tests include many test patterns to test all memory locations in the partially-tested memory chips on the memory modules. Tests are performed at corner conditions such as high temperature and voltage. Infant mortality and single-bit faults are detected by the functional tests after module burn-in. The number of insertions into burn-in boards is reduced by the number of memory chips per module minus one, so handling and test costs are reduced.
    Type: Grant
    Filed: May 17, 2006
    Date of Patent: January 6, 2009
    Assignee: Kingston Technology Corp.
    Inventors: Ramon S. Co, David Sun
  • Patent number: 7468525
    Abstract: In the present electronic test structure comprising, a conductor is provided, overlying a substrate. An electronic device overlies a portion of the conductor and includes a first electrode connected to the conductor, a second electrode, and an insulating layer between the first and second electrodes. A portion of the conductor is exposed for access thereto.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: December 23, 2008
    Assignee: Spansion LLC
    Inventors: Steven Avanzino, Suzette K. Pangrle, Manuj Rathor, An Chen, Sameer Haddad, Nicholas Tripsas, Matthew Buynoski
  • Patent number: 7468283
    Abstract: A method for fabricating test structures on a wafer for integrated circuits. The method includes providing a semiconductor substrate, e.g., silicon wafer. The method includes forming a plurality of integrated circuit chip structures on the semiconductor substrate and forming a plurality of MOS devices on a scribe line formed between a first group and a second group of integrated circuit chip structures concurrently using one or more similar processes during forming the plurality of integrated circuit chip structures. The method includes forming a first contact structure and a second contact structure. The first contact structure is coupled to a first MOS device in the plurality of MOS devices and the second contact structure is coupled to an Nth MOS device in the plurality of MOS devices, where N is an integer greater than 1.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: December 23, 2008
    Assignee: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Young Woo Kwon
  • Publication number: 20080246031
    Abstract: A semiconductor structure is provided. The semiconductor structure includes a semiconductor chip and a scribe line adjoining the semiconductor chip. A conductive feature is formed in the scribe line and exposed on the surface of the scribe lines, wherein the conductive feature has an edge facing the semiconductor chip. A kerf path is in the scribe line. A first cut is formed in the conductive feature, wherein the first cut extends from the first edge to the kerf path.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 9, 2008
    Inventors: Hao-Yi Tsai, Shih-Hsun Hsu, Hsien-Wei Chen, Benson Liu, Chia-Lun Tsai, Anbiarshy N.F. Wu
  • Publication number: 20080237588
    Abstract: By forming a trench-like test opening above a respective test metal region during the etch process for forming via openings in a dielectric layer stack of sophisticated metallization structures of semiconductor devices, the difference in etch rate in the respective openings may be used for generating a corresponding variation of electrical characteristics of the test metal region. Consequently, by means of the electrical characteristics, respective variations of the etch process may be identified.
    Type: Application
    Filed: October 19, 2007
    Publication date: October 2, 2008
    Inventor: Matthias Lehr
  • Publication number: 20080224134
    Abstract: A test structure for inspecting an allowable process margin in a manufacturing process for a semiconductor device is provided. The test structure includes a plurality of grounded conductive lines on a substrate and electrically grounded to the substrate. A plurality of floating conductive lines are provided, each of the plurality of conductive lines being spaced apart from the grounded conductive lines and electrically separated from the grounded conductive lines on the substrate. A plurality of supplementary patterns are provided for measuring the allowable process margin by a voltage contrast between the grounded conductive lines and the floating conductive lines. Related methods of testing are also provided.
    Type: Application
    Filed: March 11, 2008
    Publication date: September 18, 2008
    Inventors: Choel-Hwyi Bae, You-Seung Jin
  • Patent number: 7425458
    Abstract: Selectable capacitors are used to modify performance characteristics of functional circuit elements of an integrated circuit (IC). In an embodiment, the decoupling capacitors are implemented as additional or alternative mounting pads on a surface of the IC. At least one selectable capacitor is provided for each IC circuit element, such as a logic network, whose operational characteristic(s) is predicted to be and is actually identified as sub-optimal through IC testing, particularly following a process change, a mask shrink, operation of the IC at higher clock frequency, or the like. Expensive redesign is avoided by selectively coupling capacitors into the IC circuit element as needed, under control of selector logic that is responsive to control signals. Methods of operation, as well as application of the apparatus to an electronic assembly and an electronic system, are also described.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: September 16, 2008
    Assignee: Intel Corporation
    Inventor: Krishna Seshan
  • Patent number: 7423288
    Abstract: The fabrication of the wafer may be analyzed starting from when the wafer is in a partially fabricated state. The value of a specified performance parameter may be determined at a plurality of locations on an active area of a die of the wafer. The specified performance parameter is known to be indicative of a particular fabrication process in the fabrication. Evaluation information may then be obtained based on a variance of the value of the performance parameter of the plurality of locations. This may be done without affecting a usability of a chip that is created from the die. The evaluation information may be used to evaluate how one or more processes that include the particular fabrication process that was indicated by the performance parameter value was performed.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: September 9, 2008
    Assignee: tau-Metrix, Inc.
    Inventors: Majid Aghababazadeh, Jose J. Estabil, Nader Pakdaman, Gary L. Steinbrueck, James S. Vickers
  • Patent number: 7407822
    Abstract: The invention provides an inspection apparatus and an inspection method for detecting defects, a punching apparatus, and a method for controlling a punching apparatus, for the purpose of immediate detection of debris from being lifted toward the surface of an insulating film for film carrier tape, which debris tends to occur during punching of the insulating film for film carrier tape by use of a punching mold, whereby the number of pieces having defects on the film surface caused by attachment of debris from being lifted or foreign matter is reduced to a minimum possible number.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: August 5, 2008
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Kazuyoshi Kato, Naoaki Horiai
  • Publication number: 20080173868
    Abstract: A method for fabricating test structures on a wafer for integrated circuits. The method includes providing a semiconductor substrate, e.g., silicon wafer. The method includes forming a plurality of integrated circuit chip structures on the semiconductor substrate and forming a plurality of MOS devices on a scribe line formed between a first group and a second group of integrated circuit chip structures concurrently using one or more similar processes during forming the plurality of integrated circuit chip structures. The method includes forming a first contact structure and a second contact structure. The first contact structure is coupled to a first MOS device in the plurality of MOS devices and the second contact structure is coupled to an Nth MOS device in the plurality of MOS devices, where N is an integer greater than 1.
    Type: Application
    Filed: March 15, 2007
    Publication date: July 24, 2008
    Applicant: Semiconductor Manufacturing International (Shanghai) Corporation
    Inventor: Young Woo Kwon
  • Patent number: 7390682
    Abstract: A test methodology is provided for testing metal-insulator-metal (MIM) capacitor structures under high temperatures at the wafer level. A resistor is formed on a region of dielectric isolation material formed in a semiconductor substrate. The MIM capacitor is formed over the resistor and separated therefrom by dielectric material. A metal thermometer, formed from the same material as the plates of the MIM capacitor, is placed above the resistor and in close proximity to the capacitor. High current is forced through the resistor, causing both the metal thermometer and the MIM capacitor to heat up along with the resistor. The change in resistance of the metal thermometer is monitored. Using the known temperature coefficient of resistance (TCR) for the metal used to form both the capacitor and the thermometer, changes in the measured resistance of the metal thermometer are converted to temperature.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: June 24, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Prasad Chaparala, Barry O'Connell, Jonggook Kim
  • Patent number: 7372072
    Abstract: The invention relates to a semiconductor wafer (1) having a plurality of first sawing regions (201-211) running parallel to one another in a first direction (X) and a plurality of second sawing regions (301-311) running parallel to one another in a second direction (Y), having useful regions (10) which in each case contain an integrated circuit (100) and which are in each case arranged between respective adjacent first sawing regions (201-211) and respective adjacent second sawing regions (301-311), and at least one test structure region arranged in the first sawing regions (201-211) and the second sawing regions (301-311) with test structures formed therein for checking electrical parameters of semiconductor elements.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: May 13, 2008
    Assignee: Infineon Technologies AG
    Inventors: Ramona Winter, Susanne Lachenmann, Valentin Rosskopf, Sibina Sukman-Praehofer
  • Patent number: 7355201
    Abstract: A test structure includes first and second combs, at least a first pair of base nodes, and a second pair of finger nodes. The first comb includes a first base and a first plurality of fingers extending from the first base. The second comb includes a second base and a second plurality of fingers extending from the second base. At least a portion of the first and second pluralities of fingers are interleaved. The first pair of base nodes extend from the first base. The second pair of finger nodes extend from a first finger of the first plurality of fingers.
    Type: Grant
    Filed: June 27, 2006
    Date of Patent: April 8, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jianhong Zhu, David D. Wu, Mark W. Michael