Coating Or Filling In Grooves Made In Semiconductor Body (epo) Patents (Class 257/E23.131)
  • Patent number: 8999763
    Abstract: Embodiments include but are not limited to apparatuses and systems including semiconductor packages, e.g. memory packages, having an interposer including at least one topological feature, such as a depression in a surface of the interposer, a die coupled to the surface of the interposer, and an encapsulant material formed over the die and the interposer, and disposed in the at least one depression to resist movement of the encapsulant material relative to the interposer. Other embodiments may be described and claimed.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: April 7, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Steven Eskildsen, Aravind Ramamoorthy
  • Patent number: 8754508
    Abstract: A semiconductor device includes a recess in a polymer layer between two adjacent metal lines and over passivation layer or anti-electromigration layers on redistribution metal lines to increase the resistance to electromigration.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: June 17, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Hung-Jui Kuo
  • Patent number: 8710676
    Abstract: A stacked structure and a stacked method for a three-dimensional integrated circuit are provided. The provided stacked method includes separating a logic chip into a function chip and an I/O chip; stacking the function chip above the I/O chip; and stacking at least one memory chip between the function chip and the I/O chip.
    Type: Grant
    Filed: January 7, 2011
    Date of Patent: April 29, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Yung-Fa Chou, Ding-Ming Kwai
  • Patent number: 8647963
    Abstract: A wafer is provided having a chip side and a non-chip side, the chip side comprising a plurality of semiconductor chips. A plurality of dies are provided, each of the dies is bonded to one of the plurality of semiconductor chips. One or more trenches are formed on the chip side of the wafer. The chip side of the wafer and the plurality of dies are encapsulated with a protecting material, the protecting material substantially filling the one or more trenches. The wafer is diced to separate it into individual semiconductor packages.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: February 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Hui Lee, William Cheng
  • Patent number: 8426980
    Abstract: A chip-to-chip multi-signaling communication system with common conductive layer, which comprises a first chip, a second chip, and a common conductive layer, is disclosed. The first chip has at least a first metal pad and a second metal pad. The second chip has at least a first metal pad and a second metal pad. The common conductive layer is to a conductive material and glued directly to the first chip and the second chip. Wherein, the first metal pad of the second chip is aligned with the first metal pad of the first chip for receiving the signal from the first metal pad of the first chip through the common conductive layer. The interference generated by other pads of the first and the second chips is suppressed by the design of the pads and the common conductive layer.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: April 23, 2013
    Assignee: National Chiao Tung University
    Inventors: Chau-Chin Su, Ying-Chieh Ho, Po-Hsiang Huang
  • Patent number: 8318549
    Abstract: An integrated circuit is attached to a package substrate. The integrated circuit is electrically connected to the package substrate using a plurality of bond wires connected between a plurality of bond posts and a plurality of bond pads. A first plurality of the bond pads are along a first side of the integrated circuit and coupled to a first plurality of the bond posts with a first plurality of the bond wires. A second plurality of the bond pads are along a second side of the integrated circuit and coupled to a second plurality of the bond posts with a second plurality of the bond wires. Mold compound is injected through a plurality of openings in the package substrate. A first opening is between the first plurality of bond posts and the first side. A second opening is between the second plurality of bond posts and the second side.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: November 27, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Kevin J. Hess, Chu-Chung Lee
  • Patent number: 8242004
    Abstract: A method of forming a semiconductor device includes the following processes. A groove is formed in a semiconductor substrate. A first spin-on-dielectric layer is formed over a semiconductor substrate. An abnormal oxidation of the first spin-on-dielectric layer is carried out. A surface of the first spin-on-dielectric layer is removed. A second spin-on-dielectric layer is formed over the first spin-on-dielectric layer. A non-abnormal oxidation of the first and second spin-on-dielectric layers is carried out to modify the second spin-on-dielectric layer without modifying the first spin-on-dielectric layer.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: August 14, 2012
    Assignee: Elpida Memory, Inc.
    Inventor: Jiro Miyahara
  • Patent number: 8222101
    Abstract: A MOS transistor suppressing a short channel effect includes a substrate, a first diffusion region and a second diffusion region separated from each other by a channel region in an upper portion of the substrate, a gate insulating layer including a first gate insulating layer disposed on a surface of the substrate in the channel region and a second gate insulating layer having a specified depth from the surface of the substrate to be disposed between the first diffusion region and the channel region, and a gate electrode disposed on the first gate insulating layer.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: July 17, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyoung-Bong Rouh
  • Patent number: 8129741
    Abstract: The present invention provides a light emitting diode package including: a package mold having a first cavity and a second cavity with a smaller size than that of the first cavity; first and second electrode pads provided on the bottom surfaces of the first cavity and the second cavity, respectively; an LED chip mounted on the first electrode pad; a wire for providing electrical connection between the LED chip and the second electrode pad; and a molding material filled within the first cavity and the second cavity.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: March 6, 2012
    Assignee: Samsung LED Co., Ltd.
    Inventors: Jin Bock Lee, Hee Seok Park, Hyung Kun Kim, Young Jin Lee
  • Patent number: 8093156
    Abstract: To provide a method for manufacturing a semiconductor device, which the method is capable of efficient mass production of high-performance semiconductor devices by, upon manufacture of a semiconductor device, eliminating unwanted features (e.g., side lobes) created together with a resist pattern by thickening the resist pattern, to reduce the burden in designing photomasks and to increase depth of focus. The method of the present invention for manufacturing a semiconductor device includes at least: forming a resist pattern on a work surface and applying over a surface of the resist pattern a resist pattern thickening material to thereby thicken the resist pattern to eliminate an unwanted feature created together with the resist pattern.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: January 10, 2012
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Yuji Setta, Hajime Yamamoto
  • Patent number: 8049274
    Abstract: A semiconductor integrated circuit includes a semiconductor substrate, a plurality of trenches formed to extend in one direction in the semiconductor substrate, at least one connecting trench connecting at least two of the plurality of trenches to each other, a plurality of trench transistors including a plurality of gate electrodes, each gate electrode partially filling a corresponding trench, and a capping layer filling the at least one connecting trench.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: November 1, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-Ik Kim, Yong-Il Kim
  • Patent number: 8049292
    Abstract: A semiconductor device includes a plurality of semiconductor integrated circuits bonded to a structure body in which a fibrous body is impregnated with an organic resin. The plurality of semiconductor integrated circuits are provided at openings formed in the structure body and each include a photoelectric conversion element, a light-transmitting substrate which has stepped sides and in which the width of the projected section on a first surface side is smaller than that of a second surface, a semiconductor integrated circuit portion provided on the second surface of the light-transmitting substrate, and a chromatic color light-transmitting resin layer which covers the first surface and part of side surfaces of the light-transmitting substrate. The plurality of semiconductor integrated circuits include the chromatic color light-transmitting resin layers of different colors.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: November 1, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hidekazu Takahashi, Daiki Yamada, Yohei Monma, Takahiro Iguchi, Hiroki Adachi, Shunpei Yamazaki
  • Patent number: 7851342
    Abstract: The formation of electronic assemblies including a die having through vias is described. In one embodiment, a method includes providing Si die including a first surface and a second surface opposite the first surface, and forming a via extending through the Si die from the first surface to the second surface. The via is formed to have a larger width at the first surface than at the second surface, the larger width at the first surface being no less than 100 microns. The method also includes placing a plurality of particles in the via, wherein at least some of the particles comprise a polymer and at least some of the particles comprise a metal. The method also includes heating the die and the particles in the via to cross-link at least part of the polymer in the via, and cooling the die to solidify the polymer and form a electrically conductive composite including the cross-linked polymer and the metal in the via. Other embodiments are described and claimed.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: December 14, 2010
    Assignee: Intel Corporation
    Inventors: Dingying Xu, Amram Eitan
  • Patent number: 7705441
    Abstract: A semiconductor module is disclosed. One embodiment provides a first semiconductor chip, a second semiconductor chip and a spacer. The first semiconductor chip has a depression at a first main surface. The spacer applied to the first main surface and at least partly fills the depression. The second semiconductor chip is applied to the spacer.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: April 27, 2010
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Reimund Engl, Thomas Behrens
  • Patent number: 7700414
    Abstract: A method for the manufacture of a package to encapsulate at least one integrated circuit device includes the steps of: (1) providing a dielectric substrate having a first plurality of bond pads formed on a first side thereof and at least one aperture; (2) electrically interconnecting the integrated circuit device to the plurality of bond pads forming a substrate/integrated circuit device assembly; (3) gravitationally aligning the substrate/integrated circuit assembly such that the integrated circuit device is lower than said substrate; (4) introducing a volume of a low viscosity dielectric into the at least one aperture, wherein the volume is effective to coat a surface of the integrated circuit device and substantially fill the at least one aperture; and (5) encapsulating the integrated circuit device and the first side of said substrate with a dielectric polymer.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: April 20, 2010
    Assignee: Unisem (Mauritius) Holdings Limited
    Inventors: Romarico Santos San Antonio, Anang Subagio, Glenn Macaraeg, Mary Jean Bajacan Ramos
  • Patent number: 7674657
    Abstract: There is provided a method of making an encapsulated component package, including providing a support for supporting the components of the package during encapsulation, the support including legs extending beyond the perimeter of the final package, rupturing the support legs, and covering the exposed ends of the legs with an insulating material. There is also provided a package formed in accordance with the method.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: March 9, 2010
    Assignee: Infineon Technologies AG
    Inventors: Chai Wei Heng, Yang Hong Heng, Yong Chern Poh
  • Patent number: 7675186
    Abstract: An IC package mainly includes a substrate having slot(s), a chip, a protective encapsulant, a stiffening encapsulant, and a plurality of external terminals. The Young's modulus of the stiffening encapsulant is greater than the one of the protective encapsulant and the curing shrinkage of the stiffening encapsulant is smaller than the one of the protective encapsulant. The protective encapsulant is formed on one of the surfaces of the substrate for encapsulating the chip. The stiffening encapsulant protrudes from the other surface of the substrate where the external terminals are disposed. Moreover, the stiffening encapsulant is formed inside the slot and is contacted with the chip. Since the stiffening encapsulant is embedded and formed inside the slot, therefore, the contact area of the stiffening encapsulant with the substrate is increased to enhance the warpage resistance of the IC package.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: March 9, 2010
    Assignee: Powertech Technology Inc.
    Inventors: Cheng-Ping Chen, Wen-Jeng Fan
  • Patent number: 7651956
    Abstract: A process for forming a thin layer exhibiting a substantially uniform property on an active surface of a semiconductor substrate. The process includes varying the temperature within a reaction chamber while a layer of a material is formed upon the semiconductor substrate. Varying the temperature within the reaction chamber facilitates temperature uniformity across the semiconductor wafer. As a result, a layer forming reaction occurs at a substantially consistent rate over the entire active surface of the semiconductor substrate. The process may also include oscillating the temperature within the reaction chamber while a layer of a material is being formed upon a semiconductor substrate.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: January 26, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Garry Anthony Mercaldi, Don Carl Powell
  • Patent number: 7573061
    Abstract: Copper diffusion barrier films having low dielectric constants are suitable for a variety of copper/inter-metal dielectric integration schemes. Copper diffusion barrier films in accordance with the invention are composed of one or more layers of silicon carbide, at least one of the silicon carbide layers having a composition of at least 40% carbon (C), for example, between about 45 and 60% carbon (C). The films' high carbon-content layer will have a composition wherein the ratio of C to Si is greater than 2:1; or >3:1; or >4:1; or >5.1. The high carbon-content copper diffusion barrier films have a reduced effective k relative to conventional barrier materials.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: August 11, 2009
    Assignee: Novellus Systems, Inc.
    Inventors: Yongsik Yu, Karen Billington, Xingyuan Tang, Haiying Fu, Michael Carris, William Crew
  • Patent number: 7508083
    Abstract: The invention relates to an electronic component, which comprises a semiconductor chip. The semiconductor chip is embedded in a plastic housing in such a way that is rear side and its lateral sides are embedded in a plastic molding compound. The lateral sides and/or the rear side of the semiconductor chip have an anchoring region, by means of which the semiconductor chip is in positive engagement with the surrounding plastic molding compound. The invention also relates to a method for producing the component.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: March 24, 2009
    Assignee: Infineon Technologies AG
    Inventors: Robert-Christian Hagen, Simon Jerebic
  • Patent number: 7485964
    Abstract: A dielectric material formed by contacting a low dielectric constant polymer with liquid or supercritical carbon dioxide, under thermodynamic conditions which maintain the carbon dioxide in the liquid or supercritical state, wherein a porous product is formed. Thereupon, thermodynamic conditions are changed to ambient wherein carbon dioxide escapes from the pores and is replaced with air.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: John M. Cotte, Kenneth John McCullough, Wayne Martin Moreau, Kevin Petrarca, John P. Simons, Charles J. Taft, Richard Volant
  • Patent number: 7282394
    Abstract: A method of fabricating a printed circuit board (PCB) including embedded chips, composed of forming a hollow portion for chip insertion through a substrate, inserting the chip into the hollow portion, fixing the chip to the substrate by use of a plating process to form a central layer having an embedded chip, and then laminating a non-cured resin layer and a circuit layer having a circuit pattern on the central layer. Also, a PCB including embedded chips fabricated using the above method is provided.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: October 16, 2007
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Suk Hyeon Cho, Chang Sup Ryu, Doo Hwan Lee
  • Patent number: 7282438
    Abstract: Copper diffusion barrier films having low dielectric constants are suitable for a variety of copper/inter-metal dielectric integration schemes. Copper diffusion barrier films in accordance with the invention are composed of one or more layers of silicon carbide, at least one of the silicon carbide layers having a composition of at least 40% carbon (C), for example, between about 45 and 60% carbon (C). The films' high carbon-content layer will have a composition wherein the ratio of C to Si is greater than 2:1; or >3:1; or >4:1; or >5.1. The high carbon-content copper diffusion barrier films have a reduced effective k relative to conventional barrier materials.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: October 16, 2007
    Assignee: Novellus Systems, Inc.
    Inventors: Yongsik Yu, Karen Billington, Xingyuan Tang, Haiying Fu, Michael Carris, William Crew
  • Patent number: 7273770
    Abstract: A structure for a chip or chip package is disclosed, with final passivation and terminal metallurgy which are mechanically decoupled but electrically coupled to the multilayer on-chip interconnects. This decoupling allows the chip to survive packaging stresses in the final passivation region, with strain relief from the decoupling region and compliant leads therein, so that on-chip interconnect levels do not feel these external packaging or other stresses. This structure is particularly preferred for on-chip interconnects consisting of Cu and low-k dielectric, the latter having inferior mechanical properties relative to SiO2. The decoupled region extends over all chips on the wafer. It may also extend into the edgeseal or dicing channel region so as to allow chip dicing and retention of this mechanical decoupling all around every chip on the wafer.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: September 25, 2007
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Lee M. Nicholson
  • Patent number: 7098544
    Abstract: A structure for a chip or chip package is disclosed, with final passivation and terminal metallurgy which are mechanically decoupled but electrically coupled to the multilayer on-chip interconnects. This decoupling allows the chip to survive packaging stresses in the final passivation region, with strain relief from the decoupling region and compliant leads therein, so that on-chip interconnect levels do not feel these external packaging or other stresses. This structure is particularly preferred for on-chip interconnects consisting of Cu and low-k dielectric, the latter having inferior mechanical properties relative to SiO2. The decoupled region extends over all chips on the wafer. It may also extend into the edgeseal or dicing channel region so as to allow chip dicing and retention of this mechanical decoupling all around every chip on the wafer.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: August 29, 2006
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Lee M. Nicholson
  • Patent number: 7064452
    Abstract: An encapsulant easily flows into a space between a substrate and an electronic device and contacts with an active region of the electronic device to affect the characteristic of the electronic device in the conventional arts. The present invention provides a package structure with a retarding structure to efficiently avoid the problem. The package structure comprises an electronic device, a substrate, a retarding structure, and an encapsulant. The substrate has conductive contacts disposed on an upper surface. The electronic device has an active region and conductive pads disposed on a first surface. The electronic device is electrically coupled to the substrate by conductive bumps between the conductive contacts and the corresponding conductive pads. The encapsulant is formed around a periphery of the electronic device. The retarding structure is disposed outside the active region on the first surface of the electronic device for avoiding the encapsulant contacting the active region of the electronic device.
    Type: Grant
    Filed: November 4, 2003
    Date of Patent: June 20, 2006
    Assignee: Tai-Saw Technology Co., Ltd.
    Inventors: Chen-Tung Huang, Jim-Tren Tu, Hsang-Hsing You, Huang-An Lu, Ming-Lan Chang, Tai-Ying Lee