Including Materials For Absorbing Or Reacting With Moisture Or Other Undesired Substances, E.g., Getters (epo) Patents (Class 257/E23.137)
  • Patent number: 12047053
    Abstract: Aspects of this disclosure relate to a surface acoustic wave resonator having a multi-layer substrate with heat dissipation. The multi-layer substrate includes a support substrate, a piezoelectric layer, and a thermally conductive layer configured to dissipate heat associated with the surface acoustic wave resonator. The thermally conductive layer is disposed between the support substrate and the piezoelectric layer. Related surface acoustic wave filters, radio frequency modules, and wireless communication devices are also disclosed.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: July 23, 2024
    Assignee: Skyworks Solutions, Inc.
    Inventors: Keiichi Maki, Rei Goto, Gong Bin Tang, Yosuke Hamaoka
  • Patent number: 11876007
    Abstract: A method is provided for producing a hermetically sealed housing having a semiconductor component. The method comprises introducing a housing having a housing body and a housing cover into a process chamber. The housing cover closes off a cavity of the housing body and is attached in a gas-tight manner to the housing body. At least one opening is formed in the housing. At least one semiconductor component is arranged in the cavity. The method furthermore comprises generating a vacuum in the cavity by evacuating the process chamber, and also generating a predetermined gas atmosphere in the cavity and the process chamber. The method moreover comprises applying sealing material to the at least one opening while the predetermined gas atmosphere prevails in the process chamber.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: January 16, 2024
    Assignee: Infineon Technologies AG
    Inventors: Rainer Markus Schaller, Horst Theuss
  • Patent number: 11529212
    Abstract: A medical device including a hybrid circuitry assembly, a core assembly housing having an inside surface, and a tag/getter assembly. The core assembly housing to enclose the hybrid circuitry assembly, and the tag/getter assembly to be situated adjacent the inside surface of the core assembly housing. The tag/getter assembly including an identification tag and a hydrogen getter.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: December 20, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Joseph Prescott, Jean M. Bobgan, David P. Stieper
  • Patent number: 10414647
    Abstract: A device having a microelectronic component housed in a hermetically sealed housing having a vacuum inner space, and including a getter that substantially traps only hydrogen, is inert to oxygen and/or to nitrogen, and is housed in said inner space. Each of the constituent parts of the device being likely to degas into the inner space is a mineral material.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: September 17, 2019
    Assignee: LYNRED
    Inventors: Jérôme Favier, David Bunel
  • Patent number: 9006877
    Abstract: A package for a micro-electromechanical device (MEMS package) includes an inner enclosure having an inner cavity defined therein, and a fill port channel communicating with the inner cavity and of sufficient length to allow a quantity of adhesive to enter the fill port channel while preventing the adhesive from entering the inner cavity.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: April 14, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Don Michael, Mari J. Rossman, Bradley Bower, Charles Craig Haluzak, John R. Sterner, Quan Qi, John Kane
  • Patent number: 8981332
    Abstract: A nonvolatile resistive memory element includes an oxygen-gettering layer. The oxygen-gettering layer is formed as part of an electrode stack, and is more thermodynamically favorable in gettering oxygen than other layers of the electrode stack. The Gibbs free energy of formation (?fG°) of an oxide of the oxygen-gettering layer is less (i.e., more negative) than the Gibbs free energy of formation of an oxide of the adjacent layers of the electrode stack. The oxygen-gettering layer reacts with oxygen present in the adjacent layers of the electrode stack, thereby preventing this oxygen from diffusing into nearby silicon layers to undesirably increase an SiO2 interfacial layer thickness in the memory element and may alternately be selected to decrease such thickness during subsequent processing.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: March 17, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Tony P. Chiang, Dipankar Pramanik, Milind Weling
  • Patent number: 8970022
    Abstract: The present invention relates to an organic light emitting device and a manufacturing method thereof. A manufacturing method of an organic light emitting device according to an exemplary embodiment of the present invention includes forming a thin film structure on a first substrate, forming a dehumidification buffer layer on a second substrate, combining the first substrate and the second substrate, and heat treating the dehumidification buffer layer to soften the dehumidification buffer layer.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: March 3, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jung-Mi Choi, Hoon Kim
  • Patent number: 8912620
    Abstract: Getter structure comprising at least one getter portion arranged on a support and including at least two adjacent getter material parts arranged on the support one beside the other, with different thicknesses and of which the surface grain densities are different from one another.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: December 16, 2014
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Christine Ferrandon, Xavier Baillin
  • Patent number: 8884405
    Abstract: An integrated circuit includes a substrate and passivation layers. The passivation layers include a bottom dielectric layer formed over the substrate for passivation, a doped dielectric layer formed over the bottom dielectric layer for passivation, and a top dielectric layer formed over the doped dielectric layer for passivation.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Cheng-Chi Chuang, Kun-Ming Huang, Hsuan-Hui Hung, Ming-Yi Lin
  • Patent number: 8846430
    Abstract: The present application is directed to a reservoir for use with a micro-electromechanical device having a first surface area to be lubricated. The reservoir comprises a solid component with a porous structure having a second surface area. The second surface area is greater than the first surface area. The reservoir also comprises a lubricant capable of reversibly reacting with either the solid component or the first surface area of the microelectromechanical device.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: September 30, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Simon J. Jacobs, Seth Miller
  • Patent number: 8846500
    Abstract: At least one exemplary embodiment is directed to a method of forming a multilayered gettering structure that can be used to control wafer warpage.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: September 30, 2014
    Assignee: Semiconductor Components Industries, LLC
    Inventors: David Lysacek, Jana Vojtechovska, Lubomir Dornak, Petr Kostelnik, Lukas Valek, Petr Panek
  • Patent number: 8829551
    Abstract: This invention relates to a light emitting diode device (100) including an outer casing (102), a light emitting diode element (114), which includes at least one light emitting diode (114a), arranged within the outer casing, a light outlet member (108) constituting a part of the outer casing, a sealed cavity (104) containing a controlled atmosphere, and a seal (110) arranged to seal the cavity. The light emitting diode device further comprises a remote organic phosphor element (116) arranged in the sealed cavity.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 9, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Rifat Ata Mustafa Hikmet, Jan Cornelis Kriege, Johannes Franciscus Maria Cillessen, René Theodorus Wegh, Pieter Joseph Clara Van Der Wel, Rene Maarten Arjan Driessens
  • Patent number: 8716852
    Abstract: A device includes a capping substrate bonded with a substrate structure. The substrate structure includes an integrated circuit structure. The integrated circuit structure includes a top metallic layer disposed on an outgasing prevention structure. At least one micro-electro mechanical system (MEMS) device is disposed over the top metallic layer and the outgasing prevention structure.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: May 6, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Pao Shu, Chia-Ming Hung, Wen-Chuan Tai, Hung-Sen Wang, Hsiang-Fu Chen, Alex Kalnitsky
  • Patent number: 8680664
    Abstract: A structure for encapsulating at least one electronic device, including at least one first cavity bounded by a support and at least one cap provided on the support and wherein the electronic device is encapsulated, at least one aperture passing through the cap and communicating the inside of the first cavity with at least one portion of getter material provided in at least one second cavity which is arranged on the support and adjacent to the first cavity, at least one part of said portion of getter material being provided on the support or against at least one outer side wall of the first cavity, the first cavity and the second cavity forming together a hermetically sealed volume.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: March 25, 2014
    Assignee: Commissariat à l′énergie atomique et aux énergies alternatives
    Inventors: Jean-Louis Pornin, Geoffroy Dumont
  • Patent number: 8546928
    Abstract: The present application relates to a multiple component which is to be subsequently individualized by forming components containing active structures, in addition to a corresponding component which can be used in microsystem technology systems. The multiple component and/or component comprises a flat substrate and also a flat cap structure which are bound to each other such that they surround at least one first and one second cavity per component, which are sealed against each other and towards the outside. The first of the two cavities is provided with getter material and due to the getter material has a different internal pressure and/or a different gas composition than the second cavity. The present application also relates to a method for producing the type of component and/or components for which gas mixtures of various types of gas have a different absorption ratio in relation to the getter material.
    Type: Grant
    Filed: April 4, 2007
    Date of Patent: October 1, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e. V.
    Inventors: Peter Merz, Wolfgang Reinert, Marten Oldsen, Oliver Schwarzelbach
  • Publication number: 20130214400
    Abstract: A device includes a capping substrate bonded with a substrate structure. The substrate structure includes an integrated circuit structure. The integrated circuit structure includes a top metallic layer disposed on an outgasing prevention structure. At least one micro-electro mechanical system (MEMS) device is disposed over the top metallic layer and the outgasing prevention structure.
    Type: Application
    Filed: February 17, 2012
    Publication date: August 22, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chia-Pao SHU, Chia-Ming HUNG, Wen-Chuan TAI, Hung-Sen WANG, Hsiang-Fu CHEN, Alex KALNITSKY
  • Patent number: 8486734
    Abstract: An alternating current light-emitting device includes a substrate, a plurality of microdie light-emitting elements formed on the substrate, a rectifying element-dedicated member formed on a surface of a portion of microdie light-emitting elements, a rectifying unit formed on the rectifying element-dedicated member and provided with at least four rectifying elements forming a Wheatstone bridge circuit, and an electrically conductive structure electrically connecting the rectifying elements and the microdie light-emitting elements. With the rectifying unit being formed on the rectifying element-dedicated member, the rectifying elements are highly tolerant of reverse bias and feature low starting forward bias. Also, the present invention provides a method for fabricating an alternating current light-emitting device.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: July 16, 2013
    Assignee: Epistar Corporation
    Inventors: His-Hsuan Yen, Wen-Yung Yeh
  • Patent number: 8436453
    Abstract: The present application is directed to a reservoir for use with a micro-electromechanical device having a first surface area to be lubricant. The reservoir comprises a solid component with a porous structure having a second surface area. The second surface area is greater than the first surface area. The reservoir also comprises a lubricant capable of reversibly reacting with either the solid component or the first surface area of the micro-electromechanical device.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: May 7, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Simon Joshua Jacobs, Seth A. Miller
  • Publication number: 20130105959
    Abstract: An encapsulation structure comprising at least one hermetically sealed cavity in which at least the following are encapsulated: a device, an electronic component produced on a first substrate, and a getter material layer covering the electronic component in order to block the gases capable of being degassed by the electronic component, and in which the device is not covered by the getter material layer.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: Commissariat a I'energie atomique et aux energies alternatives
    Inventor: Commissariat a I'energie atomique et aux energies alternatives
  • Publication number: 20130087933
    Abstract: A structure for encapsulating at least one electronic device, including at least one first cavity bounded by a support and at least one cap provided on the support and wherein the electronic device is encapsulated, at least one aperture passing through the cap and communicating the inside of the first cavity with at least one portion of getter material provided in at least one second cavity which is arranged on the support and adjacent to the first cavity, at least one part of said portion of getter material being provided on the support or against at least one outer side wall of the first cavity, the first cavity and the second cavity forming together a hermetically sealed volume.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 11, 2013
    Applicant: Commissariat A L'Energie Atomique ET Aux Energies Alternatives
    Inventor: Commissariat A L'Energie Atomique ET Aux Energies Alternatives
  • Patent number: 8399270
    Abstract: Disclosed is an organic light emitting device which includes a substrate; a encapsulation substrate, an organic light emitting unit interposed between the substrate and the encapsulation substrate. A water vapor absorption material-containing transparent sealant layer covers the organic light emitting unit. The sealant layer includes a transparent sealant having a water vapor transmission rate (WVTR) of about 20 g/m2·day or less and a water vapor absorption material having an average particle size of about 100 nm or less.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: March 19, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yoon-Hyeung Cho, Jong-Hyuk Lee, Won-Jong Kim, Min-Ho Oh, Byoung-Duk Lee, Jin-Baek Choi
  • Patent number: 8395229
    Abstract: A MEMS (micro-electro-mechanical system) getter microdevice for controlling the ambient pressure inside the hermetic packages that enclose various types of MEMS, photonic, or optoelectronic devices. The getter microdevice revolves around a platform suspended at a height above a substrate, and which is supported by supporting legs having low thermal conductance. Layers are deposited on the platform, such layers including a properly patterned resistor element, a heat-spreading layer and, finally, a thin-film getter material. When an electrical current flows through it, the resistor element heats the thin-film getter material until it reaches its activation temperature. The getter material then absorbs the gas species that could be present in the hermetic package, such gas species possibly impairing the operation of the devices housed in the packages while reducing their lifetime.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: March 12, 2013
    Assignee: Institut National D'Optique
    Inventors: Sonia Garcia-Blanco, Fraser Williamson, Jean François Viens
  • Publication number: 20130015568
    Abstract: Getter structure comprising at least one getter portion arranged on a support and including at least two adjacent getter material parts arranged on the support one beside the other, with different thicknesses and of which the surface grain densities are different from one another.
    Type: Application
    Filed: July 9, 2012
    Publication date: January 17, 2013
    Applicant: Commissariat a I'energie atomique et aux ene alt
    Inventors: Christine FERRANDON, Xavier BAILLIN
  • Patent number: 8193623
    Abstract: The specification teaches a device for use in the manufacturing of microelectronic, microoptoelectronic or micromechanical devices (microdevices) in which a contaminant absorption layer improves the life and operation of the microdevice. In a preferred embodiment the invention includes a mechanical supporting base, and a layer of a gas absorbing or purifier material is deposited on the base by a variety of techniques and a layer for temporary protection of the purification material is placed on top of the purification material. The temporary protection material is compatible for use in the microdevice and can be removed during the manufacture of the microdevice.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: June 5, 2012
    Assignee: SAES Getters S.p.A.
    Inventor: Marco Amiotti
  • Publication number: 20120112334
    Abstract: A packaging structure including at least one cavity wherein at least one micro-device is provided, the cavity being bounded by at least a first substrate and at least a second substrate integral with the first substrate through at least one bonding interface consisting of at least one metal or dielectric material, wherein at least one main face of the second substrate provided facing the first substrate is covered with at least one layer of at least one getter material, the bonding interface being provided between the first substrate and the layer of getter material.
    Type: Application
    Filed: October 31, 2011
    Publication date: May 10, 2012
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENE ALT
    Inventors: Xavier BAILLIN, Christine Ferrandon
  • Patent number: 8120155
    Abstract: A MEMS device is packaged in a process which hydrogen (H) deuterium (D) for reduced stiction. H is exchanged with D by exposing the MEMS device with a deuterium source, such as deuterium gas or heavy water vapor, optionally with the assistance of a direct or downstream plasma.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: February 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Earl V. Atnip, Simon Joshua Jacobs
  • Patent number: 8105860
    Abstract: The specification teaches a device for use in the manufacturing of microelectronic, microoptoelectronic or micromechanical devices (microdevices) in which a contaminant absorption layer improves the life and operation of the microdevice. In a preferred embodiment the invention includes a mechanical supporting base, and a layer of a gas absorbing or purifier material is deposited on the base by a variety of techniques and a layer for temporary protection of the purification material is placed on top of the purification material. The temporary protection material is compatible for use in the microdevice and can be removed during the manufacture of the microdevice.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: January 31, 2012
    Assignee: Saes Getters, S.p.A.
    Inventor: Marco Amiotti
  • Publication number: 20110285004
    Abstract: Methods for protecting circuit device materials, optoelectronic devices, and caps using a reflowable getter are described. The methods, devices and caps provide advantages because they enable modification of the shape and activity of the getter after sealing of the device. Some embodiments of the invention provide a solid composition comprising a reactive material and a phase changing material. The combination of the reactive material and phase changing material is placed in the cavity of an electronic device. After sealing the device by conventional means (epoxy seal for example), the device is subjected to thermal or electromagnetic energy so that the phase changing material becomes liquid, and consequently: exposes the reactive material to the atmosphere of the cavity, distributes the getter more equally within the cavity, and provides enhanced protection of sensitive parts of the device by flowing onto and covering these parts, with a thin layer of material.
    Type: Application
    Filed: July 28, 2011
    Publication date: November 24, 2011
    Inventor: Pierre-Marc Allemand
  • Patent number: 8039940
    Abstract: According to the present invention, a gettering layer is deposited both on the side surfaces and the bottom surface of a semiconductor chip. The semiconductor chip is then mounted on the board of a package so that a Schottky barrier is formed on the bottom surface. With this structure, metal ions that pass through the board of the package can be captured by the defect layer deposited on the side surfaces and/or the bottom surface of the semiconductor chip, and by the Schottky barrier.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: October 18, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Kohji Kanamori, Teiichirou Nishizaka, Noriaki Kodama, Isao Katayama, Yoshihiro Matsuura, Kaoru Ishihara, Yasushi Harada, Naruaki Minenaga, Chihiro Oshita
  • Patent number: 8003999
    Abstract: Disclosed is an organic light emitting device which includes a substrate; a encapsulation substrate, an organic light emitting unit interposed between the substrate and the encapsulation substrate. A water vapor absorption material-containing transparent sealant layer covers the organic light emitting unit. The sealant layer includes a transparent sealant having a water vapor transmission rate (WVTR) of about 20 g/m2·day or less and a water vapor absorption material having an average particle size of about 100 nm or less.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: August 23, 2011
    Assignee: Samsung Mobile Display Co., Ltd.
    Inventors: Yoon-Hyeung Cho, Jong-Hyuk Lee, Won-Jong Kim, Min-Ho Oh, Byoung-Duk Lee, Jin-Baek Choi
  • Patent number: 7972942
    Abstract: Metal impurities of an upgraded metallurgical grade (UMG) silicon (Si) wafer are reduced. The UMG Si wafer having a 5N (99.999%) purity is chosen to grow a high-quality epitaxial Si thin film through atmospheric pressure chemical vapor deposition (APCVD). Through heat treating diffusion, the epitaxial Si film is used to form sink positions for the metal impurities in the UMG Si wafer. By using concentration gradient, temperature gradient and interface defect, individual and comprehensive effects are built for enhancing purity of the UMG Si wafer from 5N to 6N. Thus, a low-cost Si wafer can be fabricated for Si-based solar cell through a simple, fast and effective method.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: July 5, 2011
    Assignee: Atomic Energy Council-Institute of Nuclear Energy Research
    Inventor: Tsun-Neng Yang
  • Publication number: 20110156190
    Abstract: An electronic component includes a base member comprising a main surface, a cap member on the base member, a first concave portion between the main surface and the cap member, a second concave portion on the main surface, an element on the main surface and above the second concave portion, and a getter member in the second concave portion and under the element. The second concave portion, when observed from a planar view, includes a first opening portion overlapping the element and a second opening portion not overlapping the element.
    Type: Application
    Filed: December 23, 2010
    Publication date: June 30, 2011
    Applicant: KYOCERA CORPORATION
    Inventor: Ryuji Mori
  • Patent number: 7968987
    Abstract: A chip module assembly includes a CO2 getter exposed through a gas-permeable membrane to a chip cavity of a chip module. One or more chips is/are enclosed within the cavity. The CO2 getter comprises a liquid composition including 1,8-diaza-bicyclo-[5,4,0]-undec-7-ene (DBU) in a solvent that includes an alcohol, preferably, 1-hexanol. In one embodiment, a sheet of gas-permeable membrane is heat-welded to form a pillow-shaped bag in which the liquid composition is sealed. The pillow-shaped bag containing the liquid composition is preferably disposed in a recess of a heat sink and exposed to the cavity through a passage between the recess and the cavity. The CO2 getter can remove a relatively large amount of carbon dioxide from the cavity, and thus effectively prevents solder joint corrosion. For example, based on the formula weights and densities of the DBU and 1-hexanol, 200 g of the liquid composition can remove over 34 g of carbon dioxide.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: June 28, 2011
    Assignee: International Business Machines Corporation
    Inventor: Joseph Kuczynski
  • Patent number: 7825424
    Abstract: Methods to manufacture contaminant-gettering materials in the surface of EUV optics are described herein. An optical element is patterned and a contaminant-gettering material is formed on a surface of the optical element. In one embodiment, a photoresist is deposited on an optical coating on the optical element. Trenches are formed in the optical coating. The gettering agent is formed into the trenches over the photoresist. Next, the photoresist is removed from the optical coating to expose the gettering agent in the trenches. For another embodiment, patches of a nanotube forest having a gettering agent are formed in designated areas of an optical element. The gettering agent of the patches may be a plurality of carbon nanotubes. The optical coating is formed on a substrate between patches of the gettering agent.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: November 2, 2010
    Assignee: Intel Corporation
    Inventors: Robert L. Bristol, Bruce H. Billett
  • Patent number: 7807547
    Abstract: A material for bonding a lid wafer to a device wafer, which includes an adhesive substance with rigid particles embedded in the adhesive substance. The rigid particles may be particles or spheres of alumina, silica, or diamond, for example. The adhesive substance may be glass frit, epoxy, glue, cement or solder, for example. When the adhesive is applied and melted, and pressure is applied between the lid wafer and the device wafer, the lid wafer approaches the device wafer until a minimum separation is reached, which is defined by the rigid particles.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 5, 2010
    Assignee: Innovative Micro Technology
    Inventor: Jeffery F. Summers
  • Patent number: 7800190
    Abstract: A microelectromechanical system (MEMS) hermetically sealed package device that is less labor intensive to construct and thus less expensive to manufacture. An example package device includes a package having a bottom section and a lid. A MEMS die includes upper and lower plates made in accordance with upper sense plate design. The MEMS die is mounted to the bottom section. The upper and lower plates form a cavity that receives a MEMS device. The upper and lower plates are bonded by one or more bond pads and a seal ring that surrounds the cavity. The seal ring includes grooves that allow exposure of the cavity to the space within the package. A getter material applied to a top surface of the MEMS die on the upper plate. The getter material is activated during or after the lid is mounted to the bottom section.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: September 21, 2010
    Assignee: Honeywell International Inc.
    Inventors: Bryan Seppala, Jon DCamp, Max Glenn
  • Patent number: 7759218
    Abstract: A method for providing improved gettering in a vacuum encapsulated device is described. The method includes forming a plurality of small indentation features in a device cavity formed in a lid wafer. The gettering material is then deposited over the indentation features. The indentation features increase the surface area of the getter material, thereby increasing the volume of gas that the getter material can absorb. This may improve the vacuum maintained within the vacuum cavity over the lifetime of the vacuum encapsulated device.
    Type: Grant
    Filed: October 15, 2008
    Date of Patent: July 20, 2010
    Assignee: Innovative Micro Technology
    Inventor: Jeffery F. Summers
  • Patent number: 7651890
    Abstract: Disclosed a multi-chip module with solder corrosion prevention including one or more chips connected to a substrate by soldering, the substrate disposed on a printed circuit board. The multi-chip module also includes a quantity of molecular sieve desiccant, and a first cover to contain the one or more chips, the substrate, and the molecular sieve desiccant, the first cover having a seal to the printed circuit board.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: January 26, 2010
    Assignee: International Business Machines Corporation
    Inventors: Gary F. Goth, William P. Kostenko, John J. Loparco, Prabjit Singh, John G. Torok
  • Publication number: 20100013071
    Abstract: The present invention relates to an organic light emitting device and a manufacturing method thereof. A manufacturing method of an organic light emitting device according to an exemplary embodiment of the present invention includes forming a thin film structure on a first substrate, forming a dehumidification buffer layer on a second substrate, combining the first substrate and the second substrate, and heat treating the dehumidification buffer layer to soften the dehumidification buffer layer.
    Type: Application
    Filed: January 13, 2009
    Publication date: January 21, 2010
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jung-Mi Chol, Hoon Kim
  • Patent number: 7541663
    Abstract: This p-type silicon wafer was subjected to heat treatment to have a resistivity of 10 ?·cm or more, a BMD density of 5×107 defects/cm3 or more, and an n-type impurity concentration of 1×1014 atoms/cm3 or less at a depth of within 5 ?m from a surface of the wafer. This method for heat-treating p-type silicon wafers, the method includes the steps of: loading p-type silicon wafers onto a wafer boat, inserting into a vertical furnace, and holding in an argon gas ambient atmosphere at a temperature of 1100 to 1300° C. for one hour; moving the wafer boat to a transfer chamber and discharging the silicon wafers; and transferring to the wafer boat silicon wafers to be heat treated next, wherein after the discharge of the heat-treated silicon wafers, the silicon wafers to be heat-treated next are transferred to the wafer boat within a waiting time of less than two hours.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: June 2, 2009
    Assignee: Sumco Corporation
    Inventors: Tatsumi Kusaba, Hidehiko Okuda
  • Patent number: 7538343
    Abstract: An Organic Light Emitting Display (OLED) includes: a substrate having defined pixel region and non-pixel regions and including an organic light emitting element arranged in the pixel region; a driver IC arranged in the non-pixel region of the substrate and adapted to supply a signal to the organic light emitting element; a sealant arranged on the non-pixel region of the substrate; a metal cap spaced away from the substrate and affixed with the sealant to a position corresponding to the substrate; a ground wire electrically connecting the driver IC to the metal cap; a conductive paste arranged between the metal cap and the ground wire; and a printed circuit board arranged to correspond to one side of the metal cap.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: May 26, 2009
    Assignee: Samsung Mobil Display Co., Ltd.
    Inventor: Wi-Jin Nam
  • Publication number: 20090079054
    Abstract: A semiconductor device includes a package defining an enclosed inner space, a semiconductor chip having a movable portion on one side and housed in the closed inner space of the package, and a catching member located in the closed inner space of the package to catch and hold a foreign matter suspended in an atmosphere in the closed inner space of the package.
    Type: Application
    Filed: September 23, 2008
    Publication date: March 26, 2009
    Applicant: DENSO CORPORATION
    Inventor: Nobuaki Asai
  • Publication number: 20090026598
    Abstract: A wafer-level package that employs one or more integrated hydrogen getters within the wafer-level package on a substrate wafer or a cover wafer. The hydrogen getters are provided between and among the integrated circuits on the substrate wafer or the cover wafer, and are deposited during the integrated circuit fabrication process. In one non-limiting embodiment, the substrate wafer is a group III-V semiconductor material, and the hydrogen getter includes a titanium layer, a nickel layer, and a palladium layer.
    Type: Application
    Filed: July 24, 2007
    Publication date: January 29, 2009
    Applicant: Northrop Grumman Space & Mission Systems Corp.
    Inventors: Kelly Jill Tornquist Hennig, Patty Pei-Ling Chang-Chien, Xianglin Zeng, Jeffrey Ming-Jer Yang
  • Publication number: 20090001537
    Abstract: A method for providing improved gettering in a vacuum encapsulated microdevice is described. The method includes designing a getter alloy to more closely approximate the coefficient of thermal expansion of a substrate upon which the getter alloy is deposited. Such a getter alloy may have a weight percentage of less than about 8% iron (Fe) and greater than about 50% zirconium, with the balance being vanadium and titanium, which may better match the coefficient of thermal expansion of a silicon substrate. In one exemplary embodiment, the improved getter alloy is deposited on a silicon substrate prepared with a plurality of indentation features, which increase the surface area of the substrate exposed to the vacuum. Such a getter alloy is less likely to delaminate from the indented surface of the substrate material during heat-activated steps, such as activating the getter material and bonding a lid wafer to the device wafer supporting the microdevice.
    Type: Application
    Filed: June 27, 2007
    Publication date: January 1, 2009
    Applicant: Innovative Micro Technology
    Inventor: Jeffery F. Summers
  • Publication number: 20080283989
    Abstract: Provided are a wafer level package and a wafer level packaging method, which are capable of performing an attaching process at a low temperature and preventing contamination of internal devices. In the wafer level package, a device substrate includes a device region, where a device is formed, and internal pads on the top surface. The internal pads are electrically connected to the device. A cap substrate includes a getter corresponding to the device on the bottom surface. A plurality of sealing/attaching members are provided between the device substrate and the cap substrate to attach the device substrate and the cap substrate and seal the device region and the getter. The sealing/attaching members are formed of polymer. A plurality of vias penetrate the cap substrate and are connected to the internal pads.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 20, 2008
    Applicant: SAMSUNG ELECTRO-MECANICS CO., LTD.
    Inventors: Won Kyu Jeung, Seog Moon Choi, Job Ha, Sang Hee Park, Tae Hoon Kim
  • Patent number: 7452742
    Abstract: To provide a back-illuminated solid-state imaging device able to suppress a crystal defect caused by a metal contamination in a process and to suppress a dark current to improve quantum efficiency, a camera including the same and a method of producing the same, having the steps of forming a structure including a substrate, a first conductive type epitaxial layer and a first conductive type impurity layer, the first conductive type epitaxial layer being formed on the substrate to have a first impurity concentration, and the first conductive type impurity layer being formed in a boundary region to have a second impurity concentration higher than the first impurity concentration of the epitaxial layer; forming a second conductive type region storing a charge generated by a photoelectric conversion in the epitaxial layer; forming an interconnection layer on the epitaxial layer; and removing the substrate.
    Type: Grant
    Filed: June 29, 2005
    Date of Patent: November 18, 2008
    Assignee: Sony Corporation
    Inventor: Hideo Kanbe
  • Patent number: 7443017
    Abstract: A package for containing microelectromechanical devices includes a first substrate wafer, and a second substrate wafer made of an optical quality material. An underbump is interposed between the first and second substrate wafers. The underbump is composed of a standoff region and a localized bond region. The first and second substrate wafers and the underbump define a chamber that contains at least one microelectronic device.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: October 28, 2008
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Charles C. Haluzak, Martha A. Truninger, Donald L. Michael
  • Publication number: 20080128878
    Abstract: A chip module assembly includes a CO2 getter exposed through a gas-permeable membrane to a chip cavity of a chip module. One or more chips is/are enclosed within the cavity. The CO2 getter comprises a liquid composition including 1,8-diaza-bicyclo-[5,4,0]-undec-7-ene (DBU) in a solvent that includes an alcohol, preferably, 1-hexanol. In one embodiment, a sheet of gas-permeable membrane is heat-welded to form a pillow-shaped bag in which the liquid composition is sealed. The pillow-shaped bag containing the liquid composition is preferably disposed in a recess of a heat sink and exposed to the cavity through a passage between the recess and the cavity. The CO2 getter can remove a relatively large amount of carbon dioxide from the cavity, and thus effectively prevents solder joint corrosion. For example, based on the formula weights and densities of the DBU and 1-hexanol, 200 g of the liquid composition can remove over 34 g of carbon dioxide.
    Type: Application
    Filed: January 3, 2008
    Publication date: June 5, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Joseph Kuczynski
  • Patent number: 7342290
    Abstract: A bilayer dielectric structure for substantially reducing or eliminating metal contaminants formed during subsequent polysilicon deposition is provided. The bilayer dielectric structure includes an upper surface region that is rich in chlorine located atop a bottom surface region. The upper surface region that is rich in chlorine removes metal contaminates that are present atop the structure during subsequent formation of a polysilicon layer. A method of forming the bilayer structure is also provided.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Jay S. Burnham, James R. Elliott, Kenneth R. Gault, Mousa H. Ishaq, Steven M. Shank, Mary A. St. Lawrence
  • Patent number: 7309865
    Abstract: An electronic device according to the present invention includes: a cavity, which is surrounded with a cavity wall portion and which has a reduced pressure; a gettering thin film, which is arranged in the cavity and has the function of adsorbing a surrounding substance; and an activating portion, at least a part of which is arranged in the cavity and which has the function of activating the gettering thin film by generating heat.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: December 18, 2007
    Assignee: Matsushita Electric industrial Co., Ltd.
    Inventors: Kimiya Ikushima, Hiroyoshi Komobuchi, Asako Baba