For Vertical Current Flow (epo) Patents (Class 257/E29.118)
  • Patent number: 7977738
    Abstract: A semiconductor memory device includes bodies electrically floating; sources; drains; gate electrodes, each of which is adjacent to one side surface of the one of the bodies via a gate dielectric film; plates, each of which is adjacent to the other side surface of the one of the bodies via a plate dielectric film; first bit lines on the drains, the first bit lines including a semiconductor with a same conductivity type as that of the drains; and emitters on the semiconductor of the first bit lines, the emitters including a semiconductor with an opposite conductivity type to that of the semiconductor of the first bit lines, wherein the emitters are stacked above the bodies and the drains.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: July 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiro Minami, Takashi Ohsawa, Tomoaki Shino, Takeshi Hamamoto, Akihiro Nitayama
  • Patent number: 7968938
    Abstract: The present invention provides a vertical tapered dielectric high-voltage device (10) in which the device drift region is depicted by action of MOS field plates (30) formed in vertical trenches. The high-voltage device comprises: a substrate (32); a silicon mesa (20) formed on the substrate and having a stripe geometry, wherein the silicon mesa provides a drift region having a constant doping profile; a recessed gate (22) and source (SN) formed on the silicon mesa; a trench (26) adjacent each side of the silicon mesa; and a metal-dielectric field plate structure (12) formed in each trench; wherein each metal-dielectric field plate structure comprises a dielectric (28) and a metal field plate (30) formed over the dielectric, and wherein a thickness of the dielectric increases linearly through a depth of the trench to provide a constant longitudinal electric field.
    Type: Grant
    Filed: June 10, 2005
    Date of Patent: June 28, 2011
    Assignee: NXP B.V.
    Inventors: Theodore Letavic, John Petruzzello
  • Patent number: 7968892
    Abstract: A silicon carbide semiconductor device includes: a semiconductor substrate having a principal surface and a backside surface; a drift layer disposed on the principal surface; a base region disposed on the drift layer; a source region disposed on the base region; a surface channel layer disposed on both of the drift layer and the base region for connecting between the source region and the drift layer; a gate insulation film disposed on the surface channel layer and including a high dielectric constant film; a gate electrode disposed on the gate insulation film; a source electrode disposed on the source region; and a backside electrode disposed on the backside surface.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: June 28, 2011
    Assignee: Denso Corporation
    Inventors: Jun Kojima, Takeshi Endo, Eiichi Okuno, Yoshihito Mitsuoka, Yoshiyuki Hisada, Hideo Matsuki
  • Patent number: 7960780
    Abstract: In a vertical-type semiconductor device, a method of manufacturing the same and a method of operating the same, the vertical-type semiconductor device includes a single-crystalline semiconductor pattern having a pillar shape provided on a substrate, a gate surrounding sidewalls of the single-crystalline semiconductor pattern and having an upper surface lower than an upper surface of the single-crystalline semiconductor pattern, a mask pattern formed on the upper surface of the gate, the mask pattern having an upper surface coplanar with the upper surface of the single-crystalline semiconductor pattern, a first impurity region in the substrate under the single-crystalline semiconductor pattern, and a second impurity region under the upper surface of the single-crystalline semiconductor pattern. The vertical-type pillar transistor formed in the single-crystalline semiconductor pattern may provide excellent electrical properties.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: June 14, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
  • Patent number: 7919811
    Abstract: A semiconductor device includes a second-conductivity-type base region provided on a first-conductivity-type semiconductor layer, a first-conductivity-type source region provided on the second-conductivity-type base region, a gate insulating film covering an inner wall of a trench which passes through the second-conductivity-type base region and reaching the first-conductivity-type semiconductor layer, a gate electrode buried in the trench via the gate insulating film, and a second-conductivity-type region being adjacent to the second-conductivity-type base region below the first-conductivity-type source region, spaced from the gate insulating film, and having a higher impurity concentration than the second-conductivity-type base region.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: April 5, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Miwako Akiyama, Yusuke Kawaguchi, Yoshihiro Yamaguchi
  • Patent number: 7910983
    Abstract: A MOS transistor having an increased gate-drain capacitance is described. One embodiment provides a drift zone of a first conduction type. At least one transistor cell has a body zone, a source zone separated from the drift zone by the body zone, and a gate electrode, which is arranged adjacent to the body zone and which is dielectrically insulated from the body zone by a gate dielectric. At least one compensation zone of the first conduction type is arranged in the drift zone. At least one feedback electrode is arranged at a distance from the body zone, which is dielectrically insulated from the drift zone by a feedback dielectric and which is electrically conductively connected to the gate electrode.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: March 22, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Armin Willmeroth, Michael Treu
  • Patent number: 7888732
    Abstract: An integrated circuit (200) includes one of more transistors (210) on or in a substrate (10) having semiconductor surface layer, the surface layer having a top surface. At least one of the transistors are drain extended metal-oxide-semiconductor (DEMOS) transistor (210). The DEMOS transistor includes a drift region (14) in the surface layer having a first dopant type, a field dielectric (23) in or on a portion of said surface layer, and a body region of a second dopant type (16) within the drift region (14). The body region (16) has a body wall extending from the top surface of the surface layer downwards along at least a portion of a dielectric wall of an adjacent field dielectric region. A gate dielectric (21) is on at least a portion of the body wall. An electrically conductive gate electrode (22) is on the gate dielectric (21) on the body wall.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Taylor Rice Efland
  • Patent number: 7875951
    Abstract: A semiconductor with active component and method for manufacture. One embodiment provides a semiconductor component arrangement having an active semiconductor component and a semiconductor body having a first semiconductor zone, a third semiconductor zone, and also a drift zone arranged between the first semiconductor zone and the third semiconductor zone. A patterned fourth semiconductor zone doped complementarily to the drift zone is arranged in the drift zone. A potential control structure is provided, which is connected to the patterned fourth semiconductor zone. The potential control structure is designed to connect the patterned fourth semiconductor zone, in the off state of the semiconductor component, to an electrical potential lying between the electrical potential of the first semiconductor zone and the electrical potential of the third semiconductor zone.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: January 25, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Walter Rieger, Franz Hirler
  • Patent number: 7851856
    Abstract: A semiconductor package may comprise a semiconductor substrate, a MOSFET device having a plurality cells formed on the substrate, and a source region common to all cells disposed on a bottom of the substrate. Each cell comprises a drain region on a top of the semiconductor device, a gate to control a flow of electrical current between the source and drain regions, a source contact proximate the gate; and an electrical connection between the source contact and source region. At least one drain connection is electrically coupled to the drain region. Source, drain and gate pads are electrically connected to the source region, drain region and gates of the devices. The drain, source and gate pads are formed on one surface of the semiconductor package. The cells are distributed across the substrate, whereby the electrical connections between the source contact of each device and the source region are distributed across the substrate.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: December 14, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd
    Inventor: François Hébert
  • Patent number: 7829941
    Abstract: A novel integration scheme for forming power MOSFET, particularly forming salicides for both gate and mesa contact regions, as well as using multiple energy contact implants through the salicided layer to form conductive body contacts which short to the source region by the salicides.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: November 9, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Yongzhong Hu, Sung-Shan Tai
  • Patent number: 7709889
    Abstract: The present invention provides a semiconductor device (20) comprising a trench (5) formed in a semiconductor substrate formed of a stack (4) of layers (1,2,3), a layer (6) of a first, grown dielectric material covering sidewalls and bottom of the trench (5), the layer (6) including one or more notches (13) at the bottom of the trench (5) and one or more spacers (14) formed of a second, deposited dielectric material to fill the one or more notches (13) in the layer (6) formed of the first, grown dielectric material. The semiconductor device (20) according to the present invention shows improved breakdown voltage and on-resistance. The present invention furthermore provides a method for the manufacturing of such semiconductor devices (20).
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: May 4, 2010
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Peter Moens, Filip Bauwens, Joris Baele, Marnix Tack
  • Patent number: 7709885
    Abstract: An access transistor for a resistance variable memory element and methods of forming the same are provided. The access transistor has first and second source/drain regions and a channel region vertically stacked over the substrate. The access transistor is associated with at least one resistance variable memory element.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: May 4, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Jon Daley, Kristy A. Campbell, Joseph F. Brooks
  • Patent number: 7704836
    Abstract: In a trench MOSFET, the lower portion of the trench contains a buried source electrode, which is insulated from the epitaxial layer and semiconductor substrate but in electrical contact with the source region. When the MOSFET is in an “off” condition, the bias of the buried source electrode causes the “drift” region of the mesa to become depleted, enhancing the ability of the MOSFET to block current. The doping concentration of the drift region can therefore be increased, reducing the on-resistance of the MOSFET. The buried source electrode also reduces the gate-to-drain capacitance of the MOSFET, improving the ability of the MOSFET to operate at high frequencies. The substrate may advantageously include a plurality of annular trenches separated by annular mesas and a gate metal layer that extends outward from a central region in a plurality of gate metal legs separated by source metal regions.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: April 27, 2010
    Assignee: Siliconix incorporated
    Inventors: Deva N. Pattanayak, Yuming Bai, Kyle Terrill, Christiana Yue, Robert Xu, Kam Hong Lui, Kuo-In Chen, Sharon Shi
  • Patent number: 7705396
    Abstract: In an embodiment of the present invention, a Trench MOSFET includes a trench region provided on a semiconductor substrate. The semiconductor substrate includes a P-type semiconductor substrate, a P-type semiconductor epitaxial layer, an N-type semiconductor body region, and a P-type semiconductor source diffusion. The substrate, the epitaxial layer, the body region, and the source diffusion are adjacently formed in this order. A P-type semiconductor channel region formed of a SiGe layer is provided on a bottom surface and a side wall of the trench region. This facilitates carrier movement in the channel region, reducing ON resistance of the Trench MOSFET. Thus, a Trench MOSFET allowing reduction in the ON resistance without reducing a breakdown voltage is realized.
    Type: Grant
    Filed: June 7, 2006
    Date of Patent: April 27, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Alberto O Adan
  • Patent number: 7691711
    Abstract: A method of forming a vertical MOSFET device includes forming a first trench within a semiconductor layer of a first polarity, the first trench generally defining a well region of a second polarity opposite the first polarity; growing a first epitaxial well layer of the second polarity over the original semiconductor layer; growing a second epitaxial source contact layer of the first polarity over the well layer; forming a second trench through the source contact layer and at least a portion of the well layer; growing a third epitaxial layer of the second polarity over the source contact layer; and planarizing at least the first and second epitaxial layers so as to expose an upper surface of the original semiconductor layer, wherein a top surface of the third epitaxial layer is substantially coplanar with a top surface of the source contact layer prior to ohmic contact formation.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: April 6, 2010
    Assignee: General Electric Company
    Inventors: Zachary Matthew Stum, Kevin Sean Matocha, Jody Alan Fronheiser, Ljubisa Dragoljub Stevanovic
  • Patent number: 7679133
    Abstract: In a semiconductor device, and a method of manufacturing thereof, the device includes a substrate of single-crystal semiconductor material extending in a horizontal direction and a plurality of interlayer dielectric layers on the substrate. A plurality of gate patterns are provided, each gate pattern being between a neighboring lower interlayer dielectric layer and a neighboring upper interlayer dielectric layer. A vertical channel of single-crystal semiconductor material extends in a vertical direction through the plurality of interlayer dielectric layers and the plurality of gate patterns, a gate insulating layer being between each gate pattern and the vertical channel that insulates the gate pattern from the vertical channel.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: March 16, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Hoon Son, Jong-Wook Lee
  • Patent number: 7671408
    Abstract: A vertical drain extended metal-oxide semiconductor field effect (MOSFET) transistor or a vertical double diffused metal-oxide semiconductor (VDMOS) transistor includes: a buried layer having a first conductivity type in a semiconductor backgate having a second conductivity type; an epitaxial (EPI) layer having the first conductivity type and formed above the buried layer; a deep well having the first conductivity type in the EPI layer extending down to the buried layer; at least one shallow well having the second conductivity type in the EPI layer; a shallow implant region having the first conductivity type and formed in the shallow well; a gate electrode having a lateral component extending over an edge of the shallow well and stopping at some spacing from an edge of the shallow implant and having a vertical trench field plate extending vertically into the EPI layer.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: March 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: Marie Denison
  • Patent number: 7646058
    Abstract: A vertical semiconductor power device includes a plurality of semiconductor power cells connected to a bottom electric terminal disposed on a bottom surface of a semiconductor substrate and at least a top electrical terminal disposed on a top surface of the substrate and connected to the semiconductor power cells. The top electrical terminal further includes a solderable front metal for soldering to a conductor for providing an electric connection therefrom. In an exemplary embodiment, the conductor soldering to the solderable front metal includes a conductor of a high-heat-conductivity metal plate. In another exemplary embodiment, the conductor soldering to the solderable front metal includes a copper plate. In another exemplary embodiment, the solderable front metal includes a Ti/Ni/Au front metal. In another exemplary embodiment, the solderable front metal includes a Ti/Ni/Ag front metal.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: January 12, 2010
    Assignee: Force-MOS Technology Corporation
    Inventor: Fwu-Iuan Hshieh
  • Patent number: 7635892
    Abstract: A semiconductor device has a semiconductor substrate having a first main surface, a second main surface opposite to the first main surface, and a recess defined in the second main surface by side surfaces and a bottom surface, a semiconductor region provided in the bottom surface of the recess of the semiconductor substrate, semiconductor regions provided in the surface of a peripheral region on the second main surface side, and insulating films provided on the side surfaces of the recess to electrically insulate the semiconductor regions.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: December 22, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Norifumi Tokuda, Shigeru Kusunoki
  • Patent number: 7632718
    Abstract: A semiconductor power component using flat conductor technology includes a vertical current path through a semiconductor power chip. The semiconductor power chip includes at least one large-area electrode on its top side and a large-area electrode on its rear side. The rear side electrode is surface-mounted on a flat conductor chip island of a flat conductor leadframe and the top side electrode is electrically connected to an internal flat conductor of the flat conductor leadframe via a connecting element. The connecting element includes a bonding strip extending from the top side electrode to the internal flat conductor and further includes, on the top side of the bonding strip, bonding wires extending from the top side electrode to the internal flat conductor.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: December 15, 2009
    Assignee: Infineon Technologies AG
    Inventor: Khalil Hosseini
  • Patent number: 7608510
    Abstract: Manufacturing a power transistor by forming a gate structure on a first layer, forming a trench in the first layer, self aligned with the gate structure, and forming part of the transistor in the trench. By forming a spacer next to the gate, the spacer and gate can be used as a mask when forming the trench, to allow space for a source region next to the gate. The self-aligning rather than forming the gate after the trench means the alignment is more accurate, allowing size reduction. Another aspect involves forming a trench in a first layer, filling the trench, forming a second layer on either side of the trench with lateral overgrowth over the trench, and forming a source region in the second layer to overlap the trench. This overlap can enable the chip area to be reduced.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: October 27, 2009
    Assignee: AMI Semiconductor Belgium BVBA
    Inventors: Peter Moens, Marnix Tack
  • Patent number: 7589377
    Abstract: In accordance with an embodiment of the present invention, a gate structure for a U-shape Metal-Oxide-Semiconductor (UMOS) device includes a dielectric layer formed into a U-shape having side walls and a floor to form a trench surrounding a dielectric layer interior region, a doped poly-silicon layer deposited adjacent to the dielectric layer within the dielectric layer interior region where the doped poly-silicon layer has side walls and a floor surrounding a doped poly-silicon layer interior region, a first metal layer deposited on the doped poly-silicon layer on a side opposite from the dielectric layer where the first metal layer has side walls and a floor surrounding a first metal layer interior region, and an undoped poly-silicon layer deposited to fill the first metal layer interior region.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: September 15, 2009
    Assignee: The Boeing Company
    Inventors: Mercedes P. Gomez, Emil M. Hanna, Wen-Ben Luo, Qingchun Zhang
  • Patent number: 7586130
    Abstract: A vertical field effect transistor includes: an active region with a bundle of linear structures functioning as a channel region; a lower electrode, functioning as one of source and drain regions; an upper electrode, functioning as the other of the source and drain regions; a gate electrode for controlling the electric conductivity of at least a portion of the bundle of linear structures included in the active region; and a gate insulating film arranged between the active region and the gate electrode to electrically isolate the gate electrode from the bundle of linear structures. The transistor further includes a dielectric portion between the upper and lower electrodes. The upper electrode is located over the lower electrode with the dielectric portion interposed and includes an overhanging portion sticking out laterally from over the dielectric portion. The active region is located right under the overhanging portion of the upper electrode.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: September 8, 2009
    Assignee: Panasonic Corporation
    Inventors: Takahiro Kawashima, Tohru Saitoh, Takeshi Takagi
  • Patent number: 7579652
    Abstract: To present a semiconductor device capable of operating stably even at large current, by lessening current concentration into the corners of contact opening after switching off and suppressing local heat generation without raising the ON voltage. In an insulated gate transistor divided by P field region 111 and gate electrode 106, having N+ emitter region 104 and P+ emitter region 100, and controlling conduction between emitter and collector by voltage applied to gate electrode 106, the shape of contact opening 108 contacting emitter (N+ emitter region 104 and P+ emitter region 100) and emitter electrode is formed of curved lines at four corners. Hence, eliminating right-angle apex, hole current from the field region into the emitter electrode after switching off is prevented from concentrating at one point.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: August 25, 2009
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Katsuhiko Nishiwaki
  • Patent number: 7564095
    Abstract: A semiconductor device includes: a semiconductor substrate; an element region having a semiconductor element including an impurity layer and a trench, wherein the impurity layer is disposed in the trench, and wherein the trench is disposed on a main surface of the substrate; and a field region disposed around the element region. The trench is an aggregation of a plurality of stripe line trenches so that the element region has a polygonal shape. The field region includes a dummy trench disposed along with one side of the polygonal shape on a periphery of the element region. The dummy trench has a width and a longitudinal direction, which are equal to those of the trench. The field region further includes an impurity layer disposed in the dummy trench.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: July 21, 2009
    Assignee: DENSO CORPORATION
    Inventors: Yasushi Urakami, Jun Sakakibara, Hitoshi Yamaguchi
  • Patent number: 7528439
    Abstract: A vertical transistor having a wrap-around-gate and a method of fabricating such a transistor. The wrap-around-gate (WAG) vertical transistors are fabricated by a process in which source, drain and channel regions of the transistor are automatically defined and aligned by the fabrication process, without photolithographic patterning.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Robert J. Burke, Anand Srinivasan
  • Patent number: 7518185
    Abstract: A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: April 14, 2009
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Peyman Hadizad, Jina Shumate, Ali Salih
  • Patent number: 7510955
    Abstract: A multi-fin field effect transistor includes a substrate, an oxide layer, a conductive layer, a gate oxide layer, and a doped region is provided. The substrate is surrounded by a trench, and there are at least two fin-type silicon layers formed in the substrate in a region prepared to form a gate thereon. The oxide layer is disposed in the trench and the top surface of the oxide layer is lower than that of the fin-type silicon layers. The conductive layer is disposed in the region prepared to form a gate. The top surface of the conductive layer is higher than that of the fin-type silicon layers. The gate oxide layer is disposed between the conductive layer and the fin-type silicon layers and disposed between the conductive layer and the substrate. The doped region is disposed in the substrate on both sides of the conductive layer.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: March 31, 2009
    Assignee: ProMOS Technologies Inc.
    Inventor: Hsiao-Che Wu
  • Patent number: 7439595
    Abstract: A first SiO2 thin film, a tungsten gate electrode, and a second SiO2 thin film are selectively formed on a first n+-type GaN contact semiconductor layer in that order and in a multilayer film structure having the three layers, a stripe-shaped opening is formed. Via the opening, an undoped GaN channel semiconductor layer and the second n+-type GaN contact semiconductor layer are formed so that both the layers are regrown by, for example, metal organic chemical vapor deposition. A source electrode and a drain electrode are formed so as to contact the corresponding second and first n+-type GaN contact semiconductor layers. The regrown undoped GaN channel semiconductor layer and the regrown second n+-type GaN contact semiconductor layer are horizontally grown portions and hence, the contact area of the electrode can be made larger than the area of the opening.
    Type: Grant
    Filed: November 28, 2005
    Date of Patent: October 21, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Tetsuzo Ueda
  • Publication number: 20080179664
    Abstract: A semiconductor device may include at least one vertical Metal Oxide Semiconductor Field Effect Transistor (MOSFET) on a substrate. The vertical MOSFET may include at least one superlattice including a plurality of laterally stacked groups of layers transverse to the substrate. The vertical MOSFET(s) may further include a gate laterally adjacent the superlattice, and regions vertically above and below the superlattice and cooperating with the gate for causing transport of charge carriers through the superlattice in the vertical direction. Each group of layers of the superlattice may include stacked base semiconductor monolayers defining a base semiconductor portion and at least one non-semiconductor monolayer constrained within a crystal lattice of adjacent base semiconductor portions. At least some atoms from opposing base semiconductor portions may be chemically bound together with the chemical bonds traversing the at least one intervening non-semiconductor monolayer.
    Type: Application
    Filed: January 23, 2008
    Publication date: July 31, 2008
    Applicant: MEARS Technologies, Inc.
    Inventor: Kalipatnam Vivek Rao
  • Patent number: 7397126
    Abstract: The present invention provides inhibiting an electrical leakage caused by anion migration. A trenched portion 15 is provided as ion migration-preventing zone between a source electrode 4 and a gate electrode 5. The trenched portion 15 is formed so as to surround a periphery of the source electrode 4.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: July 8, 2008
    Assignee: NEC Electronics Corporation
    Inventor: Tomoki Kato
  • Patent number: 7365363
    Abstract: A silicon carbide semiconductor device includes: a semiconductor substrate having a principal surface and a backside surface; a drift layer disposed on the principal surface; a base region disposed on the drift layer; a source region disposed on the base region; a surface channel layer disposed on both of the drift layer and the base region for connecting between the source region and the drift layer; a gate insulation film disposed on the surface channel layer and including a high dielectric constant film; a gate electrode disposed on the gate insulation film; a source electrode disposed on the source region; and a backside electrode disposed on the backside surface.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: April 29, 2008
    Assignee: DENSO CORPORATION
    Inventors: Jun Kojima, Takeshi Endo, Eiichi Okuno, Yoshihito Mitsuoka, Yoshiyuki Hisada, Hideo Matsuki
  • Patent number: 7323388
    Abstract: A trench (2) is fabricated in a silicon body (1). The walls (4) of the trench are provided with a nitrogen implantation (6). An oxide layer between the source/drain regions (5) and a word line applied on the top side grows to a greater thickness than a lower oxide layer of an ONO storage layer fabricated as gate dielectric at the trench wall. Instead of the nitrogen implantation into the trench walls, it is possible to fabricate a metal silicide layer on the top sides of the source/drain regions in order to accelerate the oxide growth there.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: January 29, 2008
    Assignees: Infineon Technologies AG, Infineon Technologies Flash GmbH & Co. KG
    Inventors: Joachim Deppe, Christoph Ludwig, Christoph Kleint, Josef Willer
  • Publication number: 20060267082
    Abstract: A semiconductor memory component comprises at least one memory cell. The memory cell comprises a semiconductor body comprised of a body region, a drain region and a source region, a gate dielectric, and a gate electrode. The body region comprises a first conductivity type and a depression between the source and drain regions, and the source and drain regions comprise a second conductivity type. The gate electrode is arranged at least partly in the depression and is insulated from the body, source, and drain regions by the gate dielectric. The body region further comprises a first continuous region with a first dopant concentration and a second continuous region with a second dopant concentration greater than the first dopant concentration. The first continuous region adjoins the drain region, the depression and the source region, and the second region is arranged below the first region and adjoins the first region.
    Type: Application
    Filed: May 23, 2006
    Publication date: November 30, 2006
    Inventors: Franz Hofmann, Richard Luyken, Wolfgang Roesner, Michael Specht, Martin Staedele