Including Barrier Layer Between Silicon And Non-si Electrode Patents (Class 257/E29.157)
  • Patent number: 9041007
    Abstract: A MOSFET cell of a semiconductor device includes a polysilicon gate electrode and an n+-source region formed in an upper portion of an n?-drift layer. An interlayer insulating film covers the gate electrode. An Al source electrode extends on the interlayer insulating film. An Al gate pad is connected to the gate electrode. A barrier metal layer that prevents diffusion of aluminum is interposed between the source electrode and the interlayer insulating film, and between the gate pad and the gate electrode.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: May 26, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Eisuke Suekawa, Yasunori Oritsuki, Yoichiro Tarui
  • Patent number: 8884341
    Abstract: An integrated circuit includes a gate electrode disposed over a substrate. A source/drain (S/D) region is disposed adjacent to the gate electrode. The S/D region includes a diffusion barrier structure disposed in a recess of the substrate. The diffusion barrier structure includes a first portion and a second portion. The first portion is adjacent to the gate electrode. The second portion is distant from the gate electrode. An N-type doped silicon-containing structure is disposed over the diffusion barrier structure. The first portion of the diffusion barrier structure is configured to partially prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate. The second portion of the diffusion barrier structure is configured to substantially completely prevent N-type dopants of the N-type doped silicon-containing structure from diffusing into the substrate.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Su-Hao Liu, Chien-Tai Chan, King-Yuen Wong, Chien-Chang Su
  • Patent number: 8847300
    Abstract: A semiconductor device including a conductive layer, a diffusion barrier layer formed over the conductive layer, including a refractory metal compound, and acquired after a surface treatment, and a metal silicide layer formed over the diffusion barrier layer. The adhesion between a diffusion barrier layer and a metal silicide layer may be improved by increasing the surface energy of the diffusion barrier layer through a surface treatment. Therefore, although the metal silicide layer is fused in a high-temperature process, it is possible to prevent a void from being caused at the interface between the diffusion barrier layer and the metal silicide layer. Moreover, it is possible to increase the adhesion between a conductive layer and the diffusion barrier layer by increasing the surface energy of the conductive layer through the surface treatment.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: September 30, 2014
    Assignee: SK Hynix Inc.
    Inventors: Sung-Jin Whang, Moon-Sig Joo, Kwon Hong, Jung-Yeon Lim, Won-Kyu Kim, Bo-Min Seo, Kyoung-Eun Chang
  • Patent number: 8829524
    Abstract: An exemplary thin film transistor array substrate (200) includes a substrate (210) and a gate electrode (220) formed on the substrate. The gate electrode includes an adhesive layer (226) formed on the substrate, a conductive layer (224) formed on the adhesive layer and a barrier layer (222) formed on the conductive layer, the adhesive layer and the barrier layer both have sandwich structures. A central core of the adhesive layer, the conductive layer, and a central core of the barrier layer are made of a same material.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: September 9, 2014
    Assignee: Innolux Corporation
    Inventor: Shuo-Ting Yan
  • Patent number: 8765558
    Abstract: A CMOS structure and a method for fabricating the CMOS structure include within a semiconductor substrate a first gate located over a first active region of a first polarity and a second gate located over a second active region of a second polarity different than the first polarity. The first active region and the second active region are separated by an isolation region. The first gate and the second gate are co-linear, with facing endwalls that terminate over the isolation region. The facing endwalls do not have a spacer located or formed adjacent or adjoining thereto, although sidewalls of the first gate and the second gate do. The CMOS structure may be fabricated using a sequential replacement gate method.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: July 1, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Haining S. Yang
  • Patent number: 8742475
    Abstract: In one aspect of the present invention, a field effect transistor (FET) device includes a first FET including a dielectric layer disposed on a substrate, a first portion of a first metal layer disposed on the dielectric layer, and a second metal layer disposed on the first metal layer, a second FET including a second portion of the first metal layer disposed on the dielectric layer, and a boundary region separating the first FET from the second FET.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: June 3, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin, Yanfeng Wang
  • Patent number: 8535997
    Abstract: Provided is a direct contact technology by which a barrier metal layer between a Cu alloy wiring composed of pure Cu or a Cu alloy and a semiconductor layer can be eliminated, and the Cu alloy wiring can be directly and surely connected to the semiconductor layer within a wide process margin. The wiring structure is provided with the semiconductor layer and the Cu alloy film composed of pure Cu or the Cu alloy on a substrate in this order from the substrate side. A laminated structure is included between the semiconductor layer and the Cu alloy film. The laminated structure is composed of an (N, C, F) layer, which contains at least one element selected from among a group composed of nitrogen, carbon and fluorine, and a Cu—Si diffusion layer, which contains Cu and Si, in this order from the substrate side. Furthermore, at least the one element selected from among the group composed of nitrogen, carbon and fluorine is bonded to Si contained in the semiconductor layer.
    Type: Grant
    Filed: July 3, 2009
    Date of Patent: September 17, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Nobuyuki Kawakami, Shinya Fukuma, Aya Miki, Mototaka Ochi, Shinya Morita, Yoshihiro Yokota, Hiroshi Goto
  • Patent number: 8461043
    Abstract: Plug contacts may be formed with barrier layers having thicknesses of less than 50 ? in some embodiments. In one embodiment, the barrier layer may be formed by the chemical vapor deposition of diborane, forming a boron layer between a metallic contact and the surrounding dielectric and between a metallic contact and the substrate and/or substrate contact. This boron layer may be substantially pure boron and boron silicide.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: June 11, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Avraham Rozenblat, Shai Haimson, Rotem Drori, Maor Rotlain, Dror Horvitz
  • Patent number: 8461683
    Abstract: Processes of forming an insulated wire into an interlayer dielectric layer (ILD) of a back-end metallization includes thermally treating a metallic barrier precursor under conditions to cause at least one alloying element in the barrier precursor to form a dielectric barrier between the wire and the ILD. The dielectric barrier is therefore a self-forming, self-aligned barrier. Thermal processing is done under conditions to cause the at least one alloying element to migrate from a zone of higher concentration thereof to a zone of lower concentration thereof to further form the dielectric barrier. Various apparatus are made by the process.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: June 11, 2013
    Assignee: Intel Corporation
    Inventors: Hui Jae Yoo, Jeffery D. Bielefeld, Sean W. King, Sridhar Balakrishnan
  • Patent number: 8435878
    Abstract: A method for forming a field effect transistor (FET) device includes forming a dielectric layer on a substrate, forming a first metal layer on the dielectric layer, removing a portion of the first metal layer to expose a portion of the dielectric layer, forming a second metal layer on the dielectric layer and the first metal layer, and removing a portion of the first metal layer and the second metal layer to define a boundary region between a first FET device and a second FET device.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: May 7, 2013
    Assignee: International Business Machines Corporation
    Inventors: Dechao Guo, Shu-Jen Han, Chung-Hsun Lin, Yanfeng Wang
  • Patent number: 8115264
    Abstract: Provided is a semiconductor device that comprises a metal gate having a low sheet resistance characteristic and a high diffusion barrier characteristic and a method of fabricating the metal gate of the semiconductor device. The semiconductor device includes a metal gate formed on a gate insulating film, wherein the metal gate is formed of a metal nitride that contains Al or Si and includes upper and lower portions where the content of Al or Si is relatively high and a central portion where the content of Al or Si is relatively low.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: February 14, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-ho Park, Jin-seo Noh, Joong S. Jeon
  • Publication number: 20120001267
    Abstract: An electrode structure is disclosed. The electrode structure includes a first polysilicon layer doped with resistance adjustment impurities; a second polysilicon layer for adjusting grains, formed in the first polysilicon layer and doped with grain adjustment impurities; an ohmic metal layer formed on the first and second polysilicon layers; a barrier metal layer formed on the ohmic metal layer; and a metal layer formed on the barrier metal layer.
    Type: Application
    Filed: June 27, 2011
    Publication date: January 5, 2012
    Inventors: Dong-kak Lee, Joon Kim, Bong-hyun Kim, Han-Jin Lim
  • Patent number: 8080453
    Abstract: A semiconductor structure includes a semiconductor substrate, a gate layer containing silicon on the semiconductor substrate, a metallic layer on the gate layer, and a nitride layer on the metallic layer. The gate layer contains a P+ region and an N+ region.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: December 20, 2011
    Assignee: Cypress Semiconductor Corporation
    Inventors: Alain Blosse, Krishnaswamy Ramkumar
  • Patent number: 7808102
    Abstract: A DC-DC boost converter in multi-die package is proposed having an output Schottky diode and a low-side vertical MOSFET controlled by a power regulating controller (PRC). The multi-die package includes a single die pad with the Schottky diode placed there on side by side with the vertical MOSFET. The PRC die is attached atop the single die pad via an insulating die bond. Alternatively, the single die pad is grounded. The vertical MOSFET is a top drain vertical N-channel FET, the substrate of Schottky diode die is its anode. The Schottky diode and the vertical MOSFET are stacked atop the single die pad. The PRC is attached atop the single die pad via a standard conductive die bond. The Schottky diode die can be supplied in a flip-chip configuration with cathode being its substrate. Alternatively, the Schottky diode is supplied with anode being its substrate without the flip-chip configuration.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: October 5, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: François Hébert, Ming Sun
  • Patent number: 7687389
    Abstract: A method for fabricating a semiconductor device includes forming a gate insulation layer over a substrate, forming a first gate conductive layer over the gate insulation layer, forming a barrier metal over the first gate conductive layer, sequentially forming a second gate conductive layer and a gate hard mask over the barrier metal, patterning the gate hard mask, the second gate conductive layer, the barrier metal, the first gate conductive layer, and the gate insulation layer to form a gate pattern, and performing a plasma selective gate re-oxidation process on the gate pattern.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: March 30, 2010
    Assignee: Hynix Semiconductor, Inc.
    Inventors: Kwan-Yong Lim, Min-Gyu Sung, Heung-Jae Cho, Hong-Seon Yang
  • Patent number: 7632744
    Abstract: Formation of an WNx film 24 constituting a barrier layer of a gate electrode 7A having a polymetal structure is effected in an atmosphere containing a high concentration nitrogen gas, whereby release of N (nitrogen) from the WNx film 24 is suppressed in the heat treatment step after the formation of the gate electrode 7A.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: December 15, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Naoki Yamamoto, Yoshikazu Tanabe, Hiroshige Kogayu, Takehiko Yoshida
  • Patent number: 7612421
    Abstract: A method of fabricating a semiconductive film stack for use as a polysilicon germanium gate electrode to address problems associated with implant and diffusion of dopants. Achieving a sufficiently high active dopant concentration at a gate-dielectric interface while avoiding gate penetration of dopants such as boron is problematic. A higher gate implant dosage or annealing temperature is needed, and boron penetration through the thin gate oxide is inevitably enhanced. Both problems are exacerbated as the gate dielectric becomes thinner. In order to achieve a high level of active dopant concentration next to the gate dielectric without experiencing problems associated with gate depletion and penetration, a method and procedures of applying a diffusion-blocking layer is described with respect to an exemplary MOSFET application. However, a diffusion-blocking concept is also presented, which is readily amenable to a variety of semiconductor related technologies.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: November 3, 2009
    Assignee: Atmel Corporation
    Inventor: Darwin G. Enicks
  • Patent number: 7563718
    Abstract: A semiconductor substrate is loaded into a reaction chamber to form a tungsten layer. A source gas including tungsten (W) is introduced into the reaction chamber to grow a crystal nucleus of the tungsten on the semiconductor substrate. A reduction gas containing boron (B) is introduced into the reaction chamber to form a tungsten layer on the semiconductor substrate by actions of the source gas and the reduction gas. A hydrogen (H2) gas is introduced into the reaction chamber to remove the boron (B) remaining in the tungsten layer.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: July 21, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventor: Choon Hwan Kim
  • Patent number: 7545009
    Abstract: Various embodiments of the invention described herein reduce contact resistance to a silicon-containing material using a first refractory metal material overlying the silicon-containing material and a second refractory metal material overlying the first refractory metal material. Each refractory metal material is a conductive material containing a refractory metal and an impurity. The first refractory metal material is a metal-rich material, containing a level of its impurity at less than a stoichiometric level. The second refractory metal material has a lower affinity for the impurities than does the first refractory metal material. The second refractory metal material can thus serve as an impurity donor during an anneal or other exposure to heat.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: June 9, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Ravi Iyer, Yongjun Jeff Hu, Luan Tran, Brent Gilgen
  • Patent number: 7388290
    Abstract: A high dielectric constant memory cell capacitor and method for producing the same, wherein the memory cell capacitor utilizes relatively large surface area conductive structures of thin spacer width pillars or having edges without sharp corners that lead to electric field breakdown of the high dielectric constant material. The combination of high dielectric constant material in a memory cell along with a relatively large surface area conductive structure is achieved through the use of a buffer material as caps on the thin edge surfaces of the relatively large surface area conductive structures to dampen or eliminate the intense electric field which would be generated at the corners of the structures during the operation of the memory cell capacitor had the caps not been present.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: June 17, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Darwin A. Clampitt
  • Patent number: 7154178
    Abstract: It is a general object of the present invention to provide an improved method of fabrication in the formation of an improved copper metal diffusion barrier layer having the structure, W/WSiN/WN, in single and dual damascene interconnect trench/contact via processing with 0.10 micron nodes for MOSFET and CMOS applications. The diffusion barrier is formed by depositing a tungsten nitride bottom layer, followed by an in situ SiH4/NH3 or SiH4/H2 soak forming a WSiN layer, and depositing a final top layer of tungsten. This invention is used to manufacture reliable metal interconnects and contact vias in the fabrication of MOSFET and CMOS devices for both logic and memory applications and the copper diffusion barrier formed, W/WSiN/WN, passes a stringent barrier thermal reliability test at 400° C. Pure single barrier layers, i.e., single layer WN, exhibit copper punch through or copper spiking during the stringent barrier thermal reliability test at 400° C.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: December 26, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jing-Cheng Lin
  • Publication number: 20060131676
    Abstract: A semiconductor device includes: a substrate having a silicon layer on at least a surface thereof; an insulating film formed on the silicon layer; a first electrode formed on the insulating film and including a first metal thin film and a film having silicon formed on the first metal thin film; and a second electrode formed on the insulating film and including a metal silicide which is an alloy of the first metal and silicon, and a film having silicon formed on the metal silicide, wherein the first electrode is formed on a surface of the first metal thin film, and further includes a compound which controls a reaction of the first metal and the silicon.
    Type: Application
    Filed: November 30, 2005
    Publication date: June 22, 2006
    Inventors: Tomohiro Saito, Kyoichi Suguro