Abstract: Disclosed is a thin film transistor including an active pattern including a first conductive region, a first channel region adjacent to the first conductive region, a second conductive region spaced apart from the first conductive region, a second channel region spaced apart from the first channel region, and a third conductive region spaced apart from the second conductive region, and a gate electrode positioned on the active pattern and including a first gate region crossing the first channel region, a second gate region crossing the second channel region, and a connection gate region connecting the first gate region. The connection gate region, the first gate region, and the second gate region together surround the second conductive region.
Abstract: It is an object of the present invention to provide a method for preventing a breaking and poor contact, without increasing the number of steps, thereby forming an integrated circuit with high driving performance and reliability. The present invention applies a photo mask or a reticle each of which is provided with a diffraction grating pattern or with an auxiliary pattern formed of a semi-translucent film having a light intensity reducing function to a photolithography step for forming wires in an overlapping portion of wires. And a conductive film to serve as a lower wire of a two-layer structure is formed, and then, a resist pattern is formed so that a first layer of the lower wire and a second layer narrower than the first layer are formed for relieving a steep step.
Type:
Grant
Filed:
September 14, 2009
Date of Patent:
August 12, 2014
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: Methods are provided for fabricating an integrated circuit that includes metal filled narrow openings. In accordance with one embodiment a method includes forming a dummy gate overlying a semiconductor substrate and subsequently removing the dummy gate to form a narrow opening. A layer of high dielectric constant insulator and a layer of work function-determining material are deposited overlying the semiconductor substrate. The layer of work function-determining material is exposed to a nitrogen ambient in a first chamber. A layer of titanium is deposited into the narrow opening in the first chamber in the presence of the nitrogen ambient to cause the first portion of the layer of titanium to be nitrided. The deposition of titanium continues, and the remaining portion of the layer of titanium is deposited as substantially pure titanium. Aluminum is deposited overlying the layer of titanium to fill the narrow opening and to form a gate electrode.
Type:
Grant
Filed:
February 29, 2012
Date of Patent:
February 18, 2014
Assignee:
GLOBALFOUNDRIES, Inc.
Inventors:
Sven Schmidbauer, Dina H. Triyoso, Elke Erben, Hao Zhang, Robert Binder
Abstract: Embodiments of a semiconductor device having increased channel mobility and methods of manufacturing thereof are disclosed. In one embodiment, the semiconductor device includes a substrate including a channel region and a gate stack on the substrate over the channel region. The gate stack includes an alkaline earth metal. In one embodiment, the alkaline earth metal is Barium (Ba). In another embodiment, the alkaline earth metal is Strontium (Sr). The alkaline earth metal results in a substantial improvement of the channel mobility of the semiconductor device.
Type:
Application
Filed:
September 9, 2011
Publication date:
December 27, 2012
Applicant:
CREE, INC.
Inventors:
Sarit Dhar, Lin Cheng, Sei-Hyung Ryu, Anant Agarwal, John Williams Palmour, Jason Gurganus
Abstract: A semiconductor device includes: an n-channel MIS transistor and a p-channel MIS transistor. An n-channel MIS transistor includes: a first gate insulating film having an amorphous layer or an epitaxial layer formed on a p-type semiconductor region between a first source/drain regions; and a first gate electrode having a stack structure formed with a first metal layer and a first compound layer. The first metal layer is formed on the first gate insulating film and made of a first metal having a work function of 4.3 eV or smaller, and the first compound layer is formed on the first metal layer and contains a compound of a second metal and a IV-group semiconductor. The second metal is different from the first metal. A p-channel MIS transistor includes a second gate electrode having a second compound layer containing a compound of the same composition as the first compound layer.
Abstract: In an array R of field-effect transistors for detecting analytes, each transistor of the array comprises a gate G, a semiconductor nanotube or nanowire element NT connected at one end to a source electrode S and at another end to a drain electrode D, in order to form, at each end, a junction J1, J2 with the channel. At least transistors FET1,1, FET1,2 of the array are differentiated by a different conducting material (m1, m2) of the source electrode S and/or drain electrode D.
Type:
Grant
Filed:
May 24, 2006
Date of Patent:
February 14, 2012
Assignee:
Thales and Ecole Polytechnique
Inventors:
Paolo Bondavalli, Pierre Legagneux, Pierre Le Barny, Didier Pribat, Julien Nagle
Abstract: A semiconductor device and a method for fabricating the same are described. A polysilicon layer is formed on a substrate. The polysilicon layer is doped with an N-type dopant. A portion of the polysilicon layer is then removed to form a plurality of dummy patterns. Each dummy pattern has a top, a bottom, and a neck arranged between the top and the bottom, where the width of the neck is narrower than that of the top. A dielectric layer is formed on the substrate to cover the substrate disposed between adjacent dummy patterns, and the top of each dummy pattern is exposed. Thereafter, the dummy patterns are removed to form a plurality of trenches in the dielectric layer. A plurality of gate structures is formed in the trenches, respectively.
Abstract: A trenched power semiconductor structure with reduced gate impedance and a fabrication method thereof is provided. The trenched power semiconductor structure has a silicon base, a gate trench, a gate oxide layer, and a gate polysilicon structure. The gate trench is formed in the silicon base and extended to an upper surface of the silicon base. The gate oxide layer is formed at least on the inner surface of the gate trench. The gate polysilicon structure is formed in the gate trench with a protruding portion extended form the upper surface of the semiconductor substrate upward. A concave is formed on a sidewall of the protruding portion to expose the upper surface of the silicon base adjacent to the gate trench.
Abstract: The metal gate structure of the present invention can include a TiN complex, and the N/Ti proportion of the TiN complex is decreased from bottom to top. In one embodiment, the TiN complex can include a single TiN layer, which has an N/Ti proportion gradually decreasing from bottom to top. In another embodiment, the TiN complex can include a plurality of TiN layers stacking together. In such a case, the lowest TiN layer has a higher N/Ti proportion than the adjusted TiN layer.
Abstract: A semiconductor device includes a substrate having shallow trench isolation and source/drain regions located therein, a gate stack located on the substrate between the source/drain regions, a first gate spacer on the sidewall of the gate stack, and a second gate spacer on the sidewall of the first gate spacer.
Abstract: A semiconductor device structure, for improving the metal gate leakage within the semiconductor device. A structure for a metal gate electrode for a n-type Field Effect Transistor includes a capping layer; a first metal layer comprising Ti and Al over the capping layer; a metal oxide layer over the first metal layer; a barrier layer over the metal oxide layer; and a second metal layer over the barrier layer.
Abstract: An integrated circuit device includes an integrated circuit substrate and a first gate pattern on the substrate. A non-conductive barrier layer pattern is on the first gate pattern. The barrier layer pattern has openings at selected locations therein extending to the first gate pattern. A second gate pattern is on the barrier layer pattern and extends into the opening in the barrier layer pattern to electrically connect the second gate pattern to the first gate pattern.
Abstract: There is provided a method of manufacturing a semiconductor device, including forming a structure including a first layer containing Si and a metal oxide layer in contact with the first layer, the metal oxide layer having a dielectric constant higher than that of silicon oxide, and heating the structure in an atmosphere containing He and/or Ne.
Abstract: A semiconductor device is provided. The semiconductor device includes a first gate line, a second gate line, a first contact electrode, first dummy gates, a second gate pad, and a second contact electrode. The first gate line is formed on a semiconductor substrate and the second gate line of a spacer shape is formed on the sidewalls of the first gate line with a thin insulating layer interposed therebetween. The first contact electrode is vertically connected with the first gate line. The first dummy gates are formed in array spaced a predetermined interval from the first gate line on the semiconductor substrate. The second gate pad of a spacer shape is formed on the sidewalls of the first dummy gates with a thin insulating layer interposed therebetween. The second gate pad is connected to the second gate line and is also gap-filled between the first dummy gates. The second contact electrode is vertically connected with the second gate pad.
Abstract: The use of strained gate electrodes in integrated circuits results in a transistor having improved carrier mobility, improved drive characteristics, and reduced source drain junction leakage. The gate electrode strain is obtained through non symmetric placement of stress inducing structures as part of the gate electrode. Silicon nitride layers may be placed on one side of the gate electrode in a compressive mode, or on the other side of the gate electrode in a tensile mode to obtain similar results.
Abstract: In one embodiment, the present invention provides a method of fabricating a semiconducting device that includes providing a substrate including at least one semiconducting region and at least one oxygen source region; forming an oxygen barrier material atop portions of an upper surface of the at least one oxygen region; forming a high-k gate dielectric on the substrate including the at least one semiconducting region, wherein oxygen barrier material separates the high-k gate dielectric from the at least one oxygen source material; and forming a gate conductor atop the high-k gate dielectric.
Type:
Application
Filed:
March 26, 2008
Publication date:
October 1, 2009
Applicant:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Wesley C. Natzle, Renee T. Mo, Rashmi Jha, Kathryn T. Schonenberg, Richard A. Conti
Abstract: A high-k dielectric and metal gate stack with minimal overlap with an adjacent oxide isolation region and related methods are disclosed. One embodiment of the gate stack includes a high dielectric constant (high-k) dielectric layer, a tuning layer and a metal layer positioned over an active region defined by an oxide isolation region in a substrate, wherein an outer edge of the high-k dielectric layer, the tuning layer and the metal layer overlaps the oxide isolation region by less than approximately 200 nanometers. The gate stack and related methods eliminate the regrowth effect in short channel devices by restricting the amount of overlap area between the gate stack and adjacent oxide isolation regions.
Type:
Application
Filed:
December 12, 2007
Publication date:
June 18, 2009
Applicant:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Michael P. Chudzik, William K. Henson, Renee T. Mo, Jeffrey W Sleight
Abstract: Disclosed is a semiconductor device capable of improving a control ability of a gate and enhancing operation characteristics of the gate. The semiconductor device comprises a semiconductor substrate having a recessed active region. An isolation structure is formed to define the recessed active region in the semiconductor substrate and the isolation structure includes a trench, a side wall insulation layer formed over the surface of the trench, and an insulation layer formed over the side wall insulation layer to fill the trench. A portion of the side wall insulation layer adjoining a gate forming area of the recessed active region is removed to form a moat, and a gate is formed over the semiconductor substrate including the moat.
Abstract: The present invention provides a method for depositing a dielectric stack comprising forming a dielectric layer atop a substrate, the dielectric layer comprising at least oxygen and silicon atoms; forming a layer of metal atoms atop the dielectric layer within a non-oxidizing atmosphere, wherein the layer of metal atoms has a thickness of less than about 15 ?; forming an oxygen diffusion barrier atop the layer of metal atoms, wherein the non-oxidizing atmosphere is maintained; forming a gate conductor atop the oxygen diffusion barrier; and annealing the layer of metal atoms and the dielectric layer, wherein the layer of metal atoms reacts with the dielectric layer to provide a continuous metal oxide layer having a dielectric constant ranging from about 25 to about 30 and a thickness less than about 15 ?.
Type:
Application
Filed:
November 25, 2008
Publication date:
April 23, 2009
Applicant:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Dae-Gyu Park, Oleg G. Gluschenkov, Michael A. Gribelyuk, Kwong Hon Wong
Abstract: A semiconductor structure includes a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode over the gate dielectric; a deep source/drain region adjacent the gate electrode; a silicide region over the deep source/drain region; and an elevated metallized source/drain region between the silicide region and the gate electrode. The elevated metallized source/drain region adjoins the silicide region.
Abstract: A field effect transistor having a T- or ?-shaped fine gate electrode of which a head portion is wider than a foot portion, and a method for manufacturing the field effect transistor, are provided. A void is formed between the head portion of the gate electrode and a semiconductor substrate using an insulating layer having a multi-layer structure with different etch rates. Since parasitic capacitance between the gate electrode and the semiconductor substrate is reduced by the void, the head portion of the gate electrode can be made large so that gate resistance can be reduced. In addition, since the height of the gate electrode can be adjusted by adjusting the thickness of the insulating layer, device performance as well as process uniformity and repeatability can be improved.
Type:
Application
Filed:
May 19, 2008
Publication date:
October 16, 2008
Inventors:
Ho Kyun AHN, Jong Won LIM, Jae Kyoung MUN, Hong Gu JI, Woo Jin CHANG, Hea Cheon KIM
Abstract: There is provided a method of manufacturing a semiconductor device, including forming a structure including a first layer containing Si and a metal oxide layer in contact with the first layer, the metal oxide layer having a dielectric constant higher than that of silicon oxide, and heating the structure in an atmosphere containing He and/or Ne.
Abstract: A multilayered gate stack having improved reliability (i.e., low charge trapping and gate leakage degradation) is provided. The inventive multilayered gate stack includes, from bottom to top, a metal nitrogen-containing layer located on a surface of a high-k gate dielectric and Si-containing conductor located directly on a surface of the metal nitrogen-containing layer. The improved reliability is achieved by utilizing a metal nitrogen-containing layer having a compositional ratio of metal to nitrogen of less than 1.1. The inventive gate stack can be useful as an element of a complementary metal oxide semiconductor (CMOS). The present invention also provides a method of fabricating such a gate stack in which the process conditions of a sputtering process are varied to control the ratio of metal and nitrogen within the sputter deposited layer.
Type:
Application
Filed:
February 12, 2007
Publication date:
August 14, 2008
Applicant:
INTERNATIONAL BUSINESS MACHINES CORPORATION
Inventors:
Alessandro C. Callegari, Michael P. Chudzik, Barry P. Linder, Renee T. Mo, Vijay Narayanan, Dae-Gyu Park, Vamsi K. Paruchuri, Sufi Zafar
Abstract: The present invention is directed to electronic devices comprising high-purity molybdenum oxide in at least a part of the devices. The devices according to the present such a bipolar transistor, a field effect transistor and a thyristor have a high withstand voltage. The present invention is directed also hostile-environment electron devices formed using high-purity molybdenum oxide. The devices according the present invention can be fabricated at a relatively lower temperature such as 700° C. than that at which GaN or SiC devices are fabricated, the at is a temperature higher than 1000° C.