Controllable By Plural Effects That Include Variations In Magnetic Field, Mechanical Force, Or Electric Current/potential Applied To Device Or One Or More Electrodes Of Device (epo) Patents (Class 257/E29.167)
  • Patent number: 11852547
    Abstract: A sensor configured to sense when a force is applied to a surface includes a capacitive structure having a first conductive layer, a dielectric layer, and a second conductive layer. The dielectric layer is overlain on the first conductive layer and the second conductive layer is overlain on the dielectric layer. A glass superstrate has a first side and a second side, with the first side overlain on the second conductive layer. The force is applied to the second side of the glass superstrate. The force results from an object attached to the second side of the glass superstrate. The force causes capacitance changes between the first and second conductive layers. The force can be compressive or tensile, depending on whether the object is attached by magnet or adhesive.
    Type: Grant
    Filed: February 7, 2023
    Date of Patent: December 26, 2023
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Zachary A. Sechrist, Ronald J. Tonucci
  • Patent number: 9041146
    Abstract: An embodiment integrates memory, such as spin-torque transfer magnetoresistive random access memory (STT-MRAM) within a logic chip. The STT-MRAM includes a magnetic tunnel junction (MTJ) with an upper MTJ layer, lower MTJ layer, and tunnel barrier directly contacting the upper MTJ layer and the lower MTJ layer; wherein the upper MTJ layer includes an upper MTJ layer sidewall and the lower MTJ layer includes a lower MTJ sidewall horizontally offset from the upper MTJ layer. Another embodiment includes a memory area, comprising a MTJ, and a logic area located on a substrate; wherein a horizontal plane intersects the MTJ, a first Inter-Layer Dielectric (ILD) material adjacent the MTJ, and a second ILD material included in the logic area, the first and second ILD materials being unequal to one another. In an embodiment the first and second ILDs directly contact one another. Other embodiments are described herein.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 26, 2015
    Assignee: Intel Corporation
    Inventors: Kevin J. Lee, Tahir Ghani, Joseph M. Steigerwald, John H. Epple, Yih Wang
  • Patent number: 8987848
    Abstract: A MTJ for a spintronic device that is a domain wall motion device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/X)n or (CoX)n composition where n is from 2 to 30, X is one of V, Rh, Ir, Os, Ru, Au, Cr, Mo, Cu, Ti, Re, Mg, or Si, and CoX is a disordered alloy. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof with a thickness from 10 to 100 Angstroms. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 24, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Guenole Jan, Ru-Ying Tong, Yu-Jen Wang
  • Patent number: 8987847
    Abstract: A MTJ for a spintronic device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/X)n or (CoX)n composition where n is from 2 to 30, X is one of V, Rh, Ir, Os, Ru, Au, Cr, Mo, Cu, Ti, Re, Mg, or Si, and CoX is a disordered alloy. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof with a thickness from 10 to 100 Angstroms. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
    Type: Grant
    Filed: April 4, 2014
    Date of Patent: March 24, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Guenole Jan, Ru-Ying Tong, Yu-Jen Wang
  • Patent number: 8987798
    Abstract: Provided is a magnetic tunneling junction device including a first structure including a magnetic layer; a second structure including at least two extrinsic perpendicular magnetization structures, each including a magnetic layer and; a perpendicular magnetization inducing layer on the magnetic layer; and a tunnel barrier between the first and second structures.
    Type: Grant
    Filed: June 17, 2014
    Date of Patent: March 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong Heon Park, Woo Chang Lim, Se Chung Oh, Young Hyun Kim, Sang Hwan Park, Jang Eun Lee
  • Patent number: 8975089
    Abstract: The present invention is directed to a method for forming a magnetic tunnel junction (MTJ) memory element comprising the steps of providing a substrate having a bottom electrode layer thereon; depositing an MTJ layer stack on top of the bottom electrode layer; forming a composite hard mask comprising a bottom conducting mask disposed on top of the MTJ layer stack and a top conducting mask with a dielectric mask interposed therebetween; etching the MTJ layer stack with the composite hard mask thereon to form a patterned MTJ while consuming the top conducting mask, thereby exposing the dielectric mask on top; and trimming the patterned MTJ with the bottom conducting mask and the dielectric mask thereon by ion beam etching to remove redeposited material and damaged material from surface of the patterned MTJ while consuming most of the dielectric mask.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: March 10, 2015
    Assignee: Avalanche Technology, Inc.
    Inventors: Dong Ha Jung, Kimihiro Satoh, Jing Zhang, Yiming Huai
  • Patent number: 8902123
    Abstract: To provide a semiconductor device in which wireless communication is performed between devices formed over different substrates and connection defects of wirings are reduced. A first device having a first antenna is provided over a first substrate, a second device having a second antenna which can communicate with the first antenna is provided over a second substrate, and the first substrate and the second substrate are bonded to each other to manufacture a semiconductor device. The first substrate and the second substrate are bonded to each other by bonding with a bonding layer interposed therebetween, anodic bonding, or surface activated bonding.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Konami Izumi
  • Patent number: 8878317
    Abstract: A magnetoresistive element according to an embodiment includes: a first to third ferromagnetic layers, and a first nonmagnetic layer, the first and second ferromagnetic layers each having an axis of easy magnetization in a direction perpendicular to a film plane, the third ferromagnetic layer including a plurality of ferromagnetic oscillators generating rotating magnetic fields of different oscillation frequencies from one another. Spin-polarized electrons are injected into the first ferromagnetic layer and induce precession movements in the plurality of ferromagnetic oscillators of the third ferromagnetic layer by flowing a current between the first and third ferromagnetic layers, the rotating magnetic fields are generated by the precession movements and are applied to the first ferromagnetic layer, and at least one of the rotating magnetic fields assists a magnetization switching in the first ferromagnetic layer.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 4, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tadaomi Daibou, Minoru Amano, Daisuke Saida, Junichi Ito, Yuichi Ohsawa, Chikayoshi Kamata, Saori Kashiwada, Hiroaki Yoda
  • Patent number: 8853802
    Abstract: A method that includes forming a first layer having a first dopant concentration, the first layer having an integrated circuit region and a micro-electromechanical region and doping the micro-electromechanical region of the first layer to have a second dopant concentration is presented. The method includes forming a second layer having a third dopant concentration overlying the first layer, doping the second layer that overlies the micro-electromechanical region to have a fourth dopant concentration, forming a micro-electromechanical structure in the micro-electromechanical region using the first and second layers, and forming active components in the integrated circuit region using the second layer.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: October 7, 2014
    Assignees: STMicroelectronics, Inc., STMicroelectronics Asia Pacific PTE, Ltd.
    Inventors: Venkatesh Mohanakrishnaswamy, Olivier Le Neel, Loi N. Nguyen
  • Patent number: 8809975
    Abstract: A semiconductor pressure sensor includes n-type semiconductor regions, which are formed in a diaphragm of a semiconductor substrate, piezoresistive elements, which are respectively formed in the n-type semiconductor regions, and conductive shielding thin film layers, which are respectively formed on the piezoresistive elements through an insulating thin film layer, and the piezoresistive elements form a Wheatstone bridge circuit. Further, the n-type semiconductor regions and the conductive shielding thin film layers are electrically connected to each other through contacts formed in the diaphragm.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: August 19, 2014
    Assignee: Panasonic Corporation
    Inventors: Yuichi Niimura, Hideo Nishikawa, Fumihito Kato
  • Patent number: 8803263
    Abstract: An object of the invention is to ensure the thermal stability of magnetization even when a magnetic memory element is miniaturized. A magnetic memory element includes a first magnetic layer (22), an insulating layer (21) that is formed on the first magnetic layer (22), and a second magnetic layer (20) that is formed on the insulating layer (21). At least one of the first magnetic layer (22) and the second magnetic layer (20) is strained and deformed so as to be elongated in an easy magnetization axis direction of the magnetic layer (22) or (20) or compressive strain (101) remains in any direction in the plane of at least one of the first magnetic layer and the second magnetic layer.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: August 12, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Michiya Yamada, Yasushi Ogimoto
  • Patent number: 8772846
    Abstract: Provided is a magnetic tunneling junction device including a first structure including a magnetic layer; a second structure including at least two extrinsic perpendicular magnetization structures, each including a magnetic layer and; a perpendicular magnetization inducing layer on the magnetic layer; and a tunnel barrier between the first and second structures.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: July 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong Heon Park, Woo Chang Lim, Sechung Oh, Young Hyun Kim, Sang Hwan Park, Jang Eun Lee
  • Patent number: 8766382
    Abstract: A free ferromagnetic data storage layer of an MRAM cell is coupled to a free ferromagnetic stabilization layer, which stabilization layer is directly electrically coupled to a contact electrode, on one side, and is separated from the free ferromagnetic data storage layer, on an opposite side, by a spacer layer. The spacer layer provides for the coupling between the two free layers, which coupling is one of: a ferromagnetic coupling and an antiferromagnetic coupling.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: July 1, 2014
    Assignee: Seagate Technology LLC
    Inventors: Haiwen Xi, Kaizhong Gao, Dimitar V. Dimitrov, Song S. Xue
  • Patent number: 8716815
    Abstract: A MEMS coupler and a method to form a MEMS structure having such a coupler are described. In an embodiment, a MEMS structure comprises a member and a substrate. A coupler extends through a portion of the member and connects the member with the substrate. The member is comprised of a first material and the coupler is comprised of a second material. In one embodiment, the first and second materials are substantially the same. In one embodiment, the second material is conductive and is different than the first material. In another embodiment, a method for fabricating a MEMS structure comprises first forming a member above a substrate. A coupler comprised of a conductive material is then formed to connect the member with the substrate.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: May 6, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Emmanuel P. Quevy, Roger T. Howe
  • Patent number: 8698261
    Abstract: A MTJ for a spintronic device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/X)n or (CoX)n composition where n is from 2 to 30, X is one of V, Rh, Ir, Os, Ru, Au, Cr, Mo, Cu, Ti, Re, Mg, or Si, and CoX is a disordered alloy. The seed layer is preferably NiCr, NiFeCr, Hf, or a composite thereof with a thickness from 10 to 100 Angstroms. Furthermore, a magnetic layer such as CoFeB may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: April 15, 2014
    Assignee: Headway Technologies, Inc.
    Inventors: Guenole Jan, Ru-Ying Tong, Yu-Jen Wang
  • Patent number: 8692342
    Abstract: Provided are magnetic memory devices, electronic systems and memory cards including the same, methods of manufacturing the same, and methods of controlling a magnetization direction of a magnetic pattern. In a magnetic memory device, atomic-magnetic moments non-parallel to one surface of a free pattern increase in the free pattern. Therefore, critical current density of the magnetic memory device may be reduced, such that power consumption of the magnetic memory device is reduced or minimized and/or the magnetic memory device is improved or optimized for a higher degree of integration.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: April 8, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sechung Oh, Jangeun Lee, Woojin Kim, Heeju Shin
  • Patent number: 8619003
    Abstract: To provide a semiconductor device in which wireless communication is performed between devices formed over different substrates and connection defects of wirings are reduced. A first device having a first antenna is provided over a first substrate, a second device having a second antenna which can communicate with the first antenna is provided over a second substrate, and the first substrate and the second substrate are bonded to each other to manufacture a semiconductor device. The first substrate and the second substrate are bonded to each other by bonding with a bonding layer interposed therebetween, anodic bonding, or surface activated bonding.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: December 31, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Koji Dairiki, Konami Izumi
  • Patent number: 8525185
    Abstract: A reliable long life RF-MEMS capacitive switch is provided with a dielectric layer comprising a “fast discharge diamond dielectric layer” and enabling rapid switch recovery, dielectric layer charging and discharging that is efficient and effective to enable RF-MEMS switch operation to greater than or equal to 100 billion cycles.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: September 3, 2013
    Assignee: UChicago Argonne, LLC
    Inventors: Charles L. Goldsmith, Orlando H. Auciello, John A. Carlisle, Suresh Sampath, Anirudha V. Sumant, Robert W. Carpick, James Hwang, Derrick C. Mancini, Chris Gudeman
  • Patent number: 8508006
    Abstract: A MTJ for a spintronic device is disclosed and includes a thin seed layer that enhances perpendicular magnetic anisotropy (PMA) in an overlying laminated layer with a (Co/X)n or (CoX)n composition where n is from 2 to 30, X is one of V, Rh, Ir, Os, Ru, Au, Cr, Mo, Cu, Ti, Re, Mg, or Si, and CoX is a disordered alloy. A CoFeB layer may be formed between the laminated layer and a tunnel barrier layer to serve as a transitional layer between a (111) laminate and (100) MgO tunnel barrier. The laminated layer may be used as a reference layer, dipole layer, or free layer in a MTJ. Annealing between 300° C. and 400° C. may be used to further enhance PMA in the laminated layer.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: August 13, 2013
    Assignee: MagIC Technologies, Inc.
    Inventors: Guenole Jan, Ru-Ying Tong, Yu-Jen Wang
  • Patent number: 8436437
    Abstract: A STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and a free layer that comprises an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness or an amorphous ferromagnetic layer of Co40Fe40B20 of approximately 15 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 7, 2013
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 8436464
    Abstract: A manufacturing method for a hollow sealing structure, includes, a process for filling a recessed portion in a principal surface of a substrate with a first sacrificial layer, a process for forming a functional element portion on the principal surface of the substrate, a process for forming a second sacrificial layer on the functional element portion so as to be connected to a part of the first sacrificial layer, a process for forming a covering portion over respective surfaces of the first and second sacrificial layers, a process for circulating a fluid for sacrificial layer removal through an opening in the covering portion in contact with the first sacrificial layer, thereby removing the first and second sacrificial layers, and a process for closing the opening.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: May 7, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Susumu Obata, Tatsuya Ohguro
  • Patent number: 8410563
    Abstract: Electrical energy generation apparatuses, in which a solar battery device and a piezoelectric device are combined in a single body by using a plurality of nano wires formed of a semiconductor material having piezoelectric properties.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: April 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-jun Park, Seung-nam Cha
  • Patent number: 8404568
    Abstract: System and methods offset mechanism elements during fabrication of Micro-Electro-Mechanical Systems (MEMS) devices. An exemplary embodiment applies a voltage across an offset mechanism element and a bonding layer of a MEMS device to generate an electrostatic charge between the offset mechanism element and the bonding layer, wherein the electrostatic charge draws the offset mechanism element to the bonding layer. The offset mechanism element and the bonding layer are then bonded.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: March 26, 2013
    Assignee: Honeywell International Inc.
    Inventors: Michael Foster, Shifang Zhou
  • Patent number: 8399941
    Abstract: A method and system for providing a magnetic junction usable in a magnetic device are described. The magnetic junction includes a pinned layer, a nonmagnetic spacer layer, and a free layer. The nonmagnetic spacer layer is between the pinned layer and the free layer. The free layer has an easy cone magnetic anisotropy. The magnetic junction is configured such that the free layer is switchable between a plurality of stable magnetic states when a write current is passed through the magnetic junction.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: March 19, 2013
    Assignee: Grandis, Inc.
    Inventors: Dmytro Apalkov, Mohamad Towfik Krounbi
  • Patent number: 8193595
    Abstract: A method that includes forming a first layer having a first dopant concentration, the first layer having an integrated circuit region and a micro-electromechanical region and doping the micro-electromechanical region of the first layer to have a second dopant concentration is presented. The method includes forming a second layer having a third dopant concentration overlying the first layer, doping the second layer that overlies the micro-electromechanical region to have a fourth dopant concentration, forming a micro-electromechanical structure in the micro-electromechanical region using the first and second layers, and forming active components in the integrated circuit region using the second layer.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: June 5, 2012
    Assignees: STMicroelectronics, Inc., STMicroelectronics Asia Pacific Pte Ltd.
    Inventors: Venkatesh Mohanakrishnaswamy, Olivier Le Neel, Loi N. Nguyen
  • Patent number: 8071412
    Abstract: A method of fabricating a micro-electromechanical system microphone structure is disclosed. First, a substrate defining a MEMS region and a logic region is provided, and a surface of the substrate has a dielectric layer thereon. Next, at least one metal interconnect layer is formed on the dielectric layer in the logic region, and at least one micro-machined metal mesh is simultaneously formed in the dielectric layer of the MEMS region. Therefore, the thickness of the MEMS microphone structure can be effectively reduced.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: December 6, 2011
    Assignee: United Microelectronics Corp.
    Inventor: Hui-Shen Shih
  • Patent number: 8072036
    Abstract: A method of fabricating a micro-electromechanical system microphone structure is disclosed. First, a substrate defining a MEMS region and a logic region is provided, and a surface of the substrate has a dielectric layer thereon. Next, at least one metal interconnect layer is formed on the dielectric layer in the logic region, and at least one micro-machined metal mesh is simultaneously formed in the dielectric layer of the MEMS region. Therefore, the thickness of the MEMS microphone structure can be effectively reduced.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: December 6, 2011
    Assignee: United Microelectronics Corp.
    Inventor: Hui-Shen Shih
  • Patent number: 8053851
    Abstract: A spin transistor conducive to the miniaturization and large scale integration of devices, because a magnetization direction of a source and a drain is determined by a direction of the epitaxial growth of a ferromagnet. The spin transistor includes a semiconductor substrate having a channel layer formed thereinside; ferromagnetic source and drain epitaxially grown on the semiconductor substrate and magnetized in a longitudinal direction of the channel layer due to magnetocrystalline anisotropy—the source and drain being disposed spaced apart from each other in a channel direction and magnetized in the same direction—; and a gate disposed between the source and the drain to be insulated with the semiconductor substrate and formed on the semiconductor substrate to control the spin of electrons that are passed through the channel layer.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 8, 2011
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyun Cheol Koo, Suk Hee Han, Joon Yeon Chang, Hyung Jun Kim, Kyung Ho Kim
  • Patent number: 8044750
    Abstract: A nano-resonator including a beam having a composite structure may include a silicon carbide beam and/or a metal conductor. The metal conductor may be vapor-deposited on the silicon carbide beam. The metal conductor may have a density lower than a density of the silicon carbide beam.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong Chan Jun, Sun Il Kim, Chan Wook Baik
  • Patent number: 8039922
    Abstract: When a positive voltage of V1 is applied to a drive capacitor with a braking voltage V2 at 0V, a moveable electrode moves toward the drive electrode, and a capacitance C of a tunable capacitor becomes smaller. When the braking voltage V2 is applied a lower portion brake electrode of the brake capacitor moves in a horizontal direction, such that the inter electrode separation distance between an upper portion brake electrode and the lower portion brake electrode becomes 0 ?m. The moveable electrode configured integrally formed with the lower portion brake electrode also moves in the horizontal direction, and the inter electrode separation distance between the moveable electrode and a fixed electrode becomes 0 ?m. Since the two electrodes make contact with each other with a dielectric layer interposed therebetween, the position of the moveable electrode can be stably maintained by frictional force between the electrodes.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: October 18, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Wei Ni
  • Patent number: 8008740
    Abstract: A high performance TMR sensor is fabricated by employing a composite inner pinned (AP1) layer in an AP2/Ru/AP1 pinned layer configuration. In one embodiment, there is a 10 to 80 Angstrom thick lower CoFeB or CoFeB alloy layer on the Ru coupling layer, a and 5 to 50 Angstrom thick Fe or Fe alloy layer on the CoFeB or CoFeB alloy, and a 5 to 30 Angstrom thick Co or Co rich alloy layer formed on the Fe or Fe alloy. A MR ratio of about 48% with a RA of <2 ohm-um2 is achieved when a CoFe AP2 layer, MgO (NOX) tunnel barrier, and CoFe/NiFe free layer are used in the TMR stack. Improved RA uniformity and less head noise are observed. Optionally, a CoFe layer may be inserted between the coupling layer and CoFeB or CoFeB alloy layer to improve pinning strength and enhance crystallization.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 30, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Tong Zhao, Hui-Chuan Wang, Kunliang Zhang, Yu-Hsia Chen, Min Li
  • Patent number: 7999360
    Abstract: An MRAM structure is disclosed in which the bottom electrode has an amorphous TaN capping layer to consistently provide smooth and dense growth for AFM, pinned, tunnel barrier, and free layers in an overlying MTJ. Unlike a conventional Ta capping layer, TaN is oxidation resistant and has high resistivity to avoid shunting of a sense current caused by redeposition of the capping layer on the sidewalls of the tunnel barrier layer. Alternatively, the ?-TaN layer is the seed layer in the MTJ. Furthermore, the seed layer may be a composite layer of NiCr, NiFe, or NiFeCr layer on the oc-TaN layer. An ?-TaN capping layer or seed layer can also be used in a TMR read head. An MTJ formed on an ?-TaN capping layer has a high MR ratio, high Vb, and a RA similar to results obtained from MTJs based on an optimized Ta capping layer.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: August 16, 2011
    Assignees: Headway Technologies, Inc., MagIC Technologies, Inc.
    Inventors: Liubo Hong, Cheng Horng, Mao-Min Chen, Ru-Yin Tong
  • Patent number: 7999335
    Abstract: A structure which prevents thinning and disconnection of a wiring is provided, in a micromachine (MEMS structure body) formed with a surface micromachining technology. A wiring (upper auxiliary wiring) over a sacrificial layer is electrically connected to a different wiring (upper connection wiring) over the sacrificial layer, so that thinning, disconnection, and the like of the wiring formed over the sacrificial layer at a step portion generated due to the thickness of the sacrificial layer can be prevented. The wiring over the sacrificial layer is formed of the same conductive film as an upper driving electrode which is a movable electrode and is thus thin. However, the different wiring is formed over a structural layer, which is formed by a CVD method and has a rounded step, and has a thickness of 200 nm to 1 ?m, whereby thinning, disconnection, and the like of the wiring can be further prevented.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: August 16, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Mayumi Mikami, Konami Izumi
  • Patent number: 7994555
    Abstract: A spin transistor useful for device miniaturization and high-density integration is provided. The spin transistor includes: a semiconductor substrate including a channel layer; ferromagnetic source and drain disposed on the semiconductor substrate to be separated from each other and to be magnetized in a direction perpendicular to a surface of the channel layer; a gate formed on the semiconductor substrate between the source and the drain to adjust spins of electrons passing through the channel layer, wherein spin-polarized electrons are injected from the source to the channel layer, and the electrons injected into the channel layer pass though the channel layer and are injected into the drain, and wherein the spins of the electrons passing through the channel layer undergo precession due to a spin-orbit coupling induced magnetic field according to a voltage of the gate.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: August 9, 2011
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyun-Cheol Koo, Suk-Hee Han, Joon-Yeon Chang, Hyung-Jun Kim, Jin-Seock Ma
  • Patent number: 7955886
    Abstract: A method and apparatus is provided for use in an integrated circuit or printed circuit board for reducing or minimizing interference. An inductance is formed using two or more inductors coupled together and configured such that current flows through the inductors in different directions, thus at least partially canceling magnetic fields. When designing a circuit, the configuration of the inductors, as well as the relative positions of portions of the circuit, can be tweaked to provide optimal interference or noise control.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: June 7, 2011
    Assignee: Silicon Laboratories Inc.
    Inventor: Augusto Manuel Marques
  • Patent number: 7932573
    Abstract: A magnetic memory element having a layer structure containing a fixing layer (pinned layer: PL) having a magnetization direction fixed unidirectionally, a nonmagnetic dielectric layer (TN1) in contact with the fixing layer (PL), and a memory layer (free layer: FL) having a first surface in contact with the nonmagnetic dielectric layer (TN1) and a second surface on the opposite to the first surface, the magnetization direction of the memory layer (FL) having a reversible magnetization direction in response to the current through the layer structure. The entire surface of the first surface of the memory layer (FL) is covered with the nonmagnetic dielectric layer (TN1) and in the joint surface of the nonmagnetic dielectric layer (TN1) and the fixing layer (PL), the first surface of the nonmagnetic dielectric layer (TN1) is exposed in a manner of surrounding the joint surface.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: April 26, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hiroshi Takada, Takashi Takenaga, Takeharu Kuroiwa, Taisuke Furukawa
  • Patent number: 7932116
    Abstract: A manufacturing method for a hollow sealing structure, includes, a process for filling a recessed portion in a principal surface of a substrate with a first sacrificial layer, a process for forming a functional element portion on the principal surface of the substrate, a process for forming a second sacrificial layer on the functional element portion so as to be connected to a part of the first sacrificial layer, a process for forming a covering portion over respective surfaces of the first and second sacrificial layers, a process for circulating a fluid for sacrificial layer removal through an opening in the covering portion in contact with the first sacrificial layer, thereby removing the first and second sacrificial layers, and a process for closing the opening.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: April 26, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Susumu Obata, Tatsuya Ohguro
  • Patent number: 7884429
    Abstract: An impact sensor comprises a silicon substrate; an insulating layer formed over the silicon substrate; a plurality of beams having flexibility that are formed of conductive silicon material; a fixing portion to fix a fixed end of each of the beams, the fixing portion being formed of conductive silicon material; a fixed end line at whose one end is formed the fixing portion, the fixed end line being formed of conductive silicon material on the insulating layer; and a free end line having a pressing portion that faces a free end of each of the beams via a space, the free end line being formed of conductive silicon material on the insulating layer. Respective beam widths, each measured in a direction orthogonal to a length direction joining the fixed end and the free end, of the plurality of beams are set different from each other, thus reducing the space occupied by the sensor.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: February 8, 2011
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Nobuo Ozawa
  • Patent number: 7880209
    Abstract: A free ferromagnetic data storage layer of an MRAM cell is coupled to a free ferromagnetic stabilization layer, which stabilization layer is directly electrically coupled to a contact electrode, on one side, and is separated from the free ferromagnetic data storage layer, on an opposite side, by a spacer layer. The spacer layer provides for the coupling between the two free layers, which coupling is one of: a ferromagnetic coupling and an antiferromagnetic coupling.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: February 1, 2011
    Assignee: Seagate Technology LLC
    Inventors: Haiwen Xi, Kaizhong Gao, Dimitar V. Dimitrov, Song S. Xue
  • Patent number: 7863697
    Abstract: A resonator includes a CMOS substrate having a first electrode and a second electrode. The CMOS substrate is configured to provide one or more control signals to the first electrode. The resonator also includes a resonator structure including a silicon material layer. The resonator structure is coupled to the CMOS substrate and configured to resonate in response to the one or more control signals.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: January 4, 2011
    Assignee: Miradia Inc.
    Inventors: Xiao Yang, Dongmin Chen, Ye Wang, Justin Payne, Yuxiang Wang, Wook Ji
  • Publication number: 20100327379
    Abstract: A capped integrated device includes a semiconductor chip, incorporating an integrated device and a protective cap, bonded to the semiconductor chip for protection of the integrated device by means of a bonding layer made of a bonding material. The bonding material forms anchorage elements within recesses, formed in at least one between the semiconductor chip and the protective cap.
    Type: Application
    Filed: June 28, 2010
    Publication date: December 30, 2010
    Applicant: STMICROELECTRONICS S.R.L.
    Inventors: Alessandro Freguglia, Luigi Esposito
  • Patent number: 7851840
    Abstract: Devices having magnetic or magnetoresistive tunnel junctions (MTJS) have a multilayer insulator barrier layer to produce balanced write switching currents in the device circuitry, or to produce the magnetic devices with balanced critical spin currents required for spin torque transfer induced switching of the magnetization, or both for the MTJs under both the forward and reversed bias directions.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: December 14, 2010
    Assignee: Grandis Inc.
    Inventors: Zhitao Diao, Yiming Huai
  • Patent number: 7820470
    Abstract: A method of forming a microstructure body and a semiconductor element for controlling the microstructure body over the same substrate to reduce manufacturing cost, for mass-production of micromachines having a microstructure. In manufacturing a micromachine, a sacrifice layer is formed using a mask material for forming a pattern of a film, and removal of the mask in a region for forming a semiconductor element and removal of the sacrifice layer and the mask in a region for forming a microstructure body are performed by the same step. Specifically, a manufacturing method of a micro-electro-mechanical device is provided wherein a sacrifice layer is selectively formed over an insulating substrate, a semiconductor layer is formed to cover the sacrifice layer, a mask is formed over the semiconductor layer, the semiconductor layer is etched using the mask, and the mask and the sacrifice layer are removed by the same step.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: October 26, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Fuminori Tateishi
  • Publication number: 20100258889
    Abstract: An STT-MTJ MRAM cell utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer. The cell includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a composite tri-layer free layer that comprises an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Application
    Filed: June 21, 2010
    Publication date: October 14, 2010
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula
  • Patent number: 7808027
    Abstract: An MTJ MRAM cell and its method of formation are described. The cell includes a composite free layer having the general form (Ni88Fe12)1-xCo100x—Ni92Fe8 with x between 0.05 and 0.1 that provides low magnetization and negative magnetostriction. The magnetostriction can be tuned to a low value by a multilayer capping layer that includes a positive magnetostriction layer of NiFeHf(15%). When this cell forms an MRAM array, it contributes to a TMR?26%, a TMR/Rp—cov?15.5 and a high AQF (array quality factor) for write operations.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: October 5, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong
  • Patent number: 7777222
    Abstract: Nanotube device structures and methods of fabrication. A method of making a nanotube switching element includes forming a first structure having at a first output electrode; forming second structure having a second output electrode; forming a conductive article having at least one nanotube, the article having first and second ends; positioning the conductive article between said first and second structures such that the first structure clamps the first and second ends of the article to the second structure, and such that the first and second output electrodes are opposite each other with the article positioned therebetween; providing at least one signal electrode in electrical communication with the conductive article; and providing at least one control electrode in spaced relation to the conductive article such that the control electrode may control the conductive article to form a conductive pathway between the signal electrode and the first output electrode.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: August 17, 2010
    Assignee: Nantero, Inc.
    Inventors: Claude L. Bertin, Thomas Rueckes, Brent M. Segal
  • Patent number: 7772630
    Abstract: A magnetic switching element includes a ferromagnetic layer which is substantially pinned in magnetization in one direction; and a magnetic semiconductor layer provided within a range where a magnetic field from the ferromagnetic layer reaches, where the magnetic semiconductor layer changes its state from a paramagnetic state to a ferromagnetic state by applying a voltage thereto, and a magnetization corresponding to the magnetization of the ferromagnetic layer is induced in the magnetic semiconductor layer by applying a voltage to the magnetic semiconductor layer.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: August 10, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshiaki Saito
  • Patent number: 7772659
    Abstract: The magnetic device comprises a least two layers made of a magnetic material that are separated by at least one interlayer made of a non-magnetic material. The layers made of a magnetic material each have magnetization oriented substantially perpendicular to the plane of the layers. The layer of non-magnetic material induces an antiferromagnetic coupling field between the layers made of a magnetic material, the direction and amplitude of this field attenuating the effects of the ferromagnetic coupling field of magnetostatic origin that occurs between the magnetic layers.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: August 10, 2010
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique
    Inventors: Bernard Rodmacq, Vincent Baltz, Alberto Bollero, Bernard Dieny
  • Patent number: 7750419
    Abstract: An RF MEMS tuneable arrangement, e.g. variable capacitor, having two or more tunable devices, e.g. variable capacitances, a coupling circuit arranged to couple the tunable devices together to provide a combined output, e.g. a combined capacitance, that is variable according to a tuning signal. The coupling circuit is reconfigurable to alter a response of the arrangement to changes in the tuning signal, to enable a broader range of applications, manufacturing cost reductions and more flexibility in design. The device can have a pivoted beam (30), actuable by a control signal, the beam having electrodes (40, 60) at either side of the pivot, and corresponding fixed electrodes (50, 70) facing the electrodes on the beam to provide a two or more variable devices such as switches or variable capacitors, arranged such that a given movement of the beam causes electrode separation in the same direction for the two or more switches or capacitors.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: July 6, 2010
    Assignee: EPCOS AG
    Inventor: Achim Hilgers
  • Patent number: 7750421
    Abstract: A STT-MTJ MRAM cell that utilizes transfer of spin angular momentum as a mechanism for changing the magnetic moment direction of a free layer includes an IrMn pinning layer, a SyAP pinned layer, a naturally oxidized, crystalline MgO tunneling barrier layer that is formed on an Ar-ion plasma smoothed surface of the pinned layer and, in one embodiment, a free layer that comprises an amorphous layer of Co60Fe20B20 of approximately 20 angstroms thickness formed between two crystalline layers of Fe of 3 and 6 angstroms thickness respectively or on a single such layer. The free layer is characterized by a low Gilbert damping factor and by very strong polarizing action on conduction electrons. The resulting cell has a low critical current, a high dR/R and a plurality of such cells will exhibit a low variation of both resistance and pinned layer magnetization angular dispersion.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: July 6, 2010
    Assignee: MagIC Technologies, Inc.
    Inventors: Cheng T. Horng, Ru-Ying Tong, Chyu-Jiuh Torng, Witold Kula