Bulk-effect Radiation Detector (e.g., Ge-li Compensated Pin Gamma-ray Detector) (epo) Patents (Class 257/E31.087)
  • Patent number: 8823124
    Abstract: A semiconductor structure for a radiation detector, comprising a substrate composed of a semiconductor material of a first conductivity type, a semiconductor substrate, wherein the semiconductor substrate is provided with a semiconductor layer provided on the substrate and having a higher resistance in comparison to the substrate, of the first conductivity type, and electrically doped with a doping concentration, a plurality of doped regions, wherein the plurality of doped regions are provided in the semiconductor substrate and separated from each other, of a second conductivity type that is opposite from the first conductivity type, and electrically doped with a doping concentration that is higher than the doping concentration in the semiconductor substrate, at least one further doping region, and a cover layer is provided.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: September 2, 2014
    Assignee: First Sensor AG
    Inventor: Michael Pierschel
  • Patent number: 8592881
    Abstract: An organic light emitting element includes an organic light emitting diode formed on a substrate, coupled to a transistor including a gate, a source and a drain and including a first electrode, an organic thin film layer and a second electrode; a photo diode formed on the substrate and having a semiconductor layer including a high-concentration P doping region, a low-concentration P doping region, an intrinsic region and a high-concentration N doping region; and a controller that controls luminance of light emitted from the organic light emitting diode, to a constant level by controlling a voltage applied to the first electrode and the second electrode according to the voltage outputted from the photo diode.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: November 26, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Yun-gyu Lee, Byoung-deog Choi, Hye-hyang Park, Ki-ju Im
  • Patent number: 8466534
    Abstract: The construction of this invention includes an active matrix substrate, an amorphous selenium layer, a high resistance layer, a gold electrode layer, an insulating layer and an auxiliary plate laminated in this order. In one aspect of the present invention, the insulating layer has an inorganic anion exchanger added thereto in order to provide a radiation detector which prevents void formation and pinhole formation in the amorphous semiconductor layer and carrier selective high resistance film, without accumulating electric charges on the auxiliary plate. The inorganic anion exchanger adsorbs chloride ions in the insulating layer, thereby preventing destruction of X-ray detector due to the chloride ions drawn to the gold electrode layer.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: June 18, 2013
    Assignee: Shimadzu Corporation
    Inventors: Shingo Furui, Toshinori Yoshimuta, Junichi Suzuki, Koji Watadani, Satoru Morita
  • Patent number: 8232617
    Abstract: Flexible lateral p-i-n (“PIN”) diodes, arrays of flexible PIN diodes and imaging devices incorporating arrays of PIN diodes are provided. The flexible lateral PIN diodes are fabricated from thin, flexible layers of single-crystalline semiconductor. A plurality of the PIN diodes can be patterned into a single semiconductor layer to provide a flexible photodetector array that can be formed into a three-dimensional imaging device.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: July 31, 2012
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Zhenqiang Ma, Max G. Lagally, Hao-Chih Yuan
  • Patent number: 8164150
    Abstract: The present disclosure relates to illumination devices and methods of generating light for extended periods of time without requiring an outside source of power, recharging, refueling or maintenance. The devices of the present disclosure comprise a plurality of quantum dots and a radioisotope, and may be used in numerous ways, for example, for the marking critical areas or paths, for the illumination of pathways in aircraft, ships, trains, buildings, and other facilities where these routes must be precisely delineated or identified for safety reasons, for the inclusion of signs or other indicia that must be illuminated at all times, as well as many military uses, such as for the demarcation of temporary airfields for fixed-wing aircraft or helicopters or for IFF (identification friend or foe).
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: April 24, 2012
    Assignee: The Boeing Company
    Inventors: Maurice P. Bianchi, Timothy R. Kilgore, Arthur F. Cooper, David A. Deamer
  • Publication number: 20110266643
    Abstract: A low-cost device for the detection of thermal neutrons. Thin layers of a material chosen for high absorption of neutrons with a corresponding release of ionizing particles are stacked in a multi-layer structure interleaved with thin layers of hydrogenated amorphous silicon PIN diodes. Some of the neutrons passing into the stack are absorbed in the neutron absorbing material producing neutron reactions with the release of high energy ionizing particles. These high-energy ionizing particles pass out of the neutron absorbing layers into the PIN diode layers creating electron-hole pairs in the intrinsic (I) layers of the diode layers; the electrons and holes are detected by the PIN diodes.
    Type: Application
    Filed: April 28, 2011
    Publication date: November 3, 2011
    Inventors: Michael G. Engelmann, Peter Martin
  • Patent number: 7732886
    Abstract: A PIN photodiode structure includes a substrate, a P-doped region disposed in the substrate, an N-doped region disposed in the substrate, and a first semiconductor material disposed in the substrate and between the P-doped region and the N-doped region.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: June 8, 2010
    Assignee: United Microelectronics Corp.
    Inventors: Hung-Lin Shih, Tsan-Chi Chu, Wen-Shiang Liao, Wen-Ching Tsai
  • Publication number: 20080265282
    Abstract: Disclosed is an improved semiconductor structure (e.g., a silicon germanium (SiGe) hetero-junction bipolar transistor) having a narrow essentially interstitial-free SIC pedestal with minimal overlap of the extrinsic base. Also, disclosed is a method of forming the transistor which uses laser annealing, as opposed to rapid thermal annealing, of the SIC pedestal to produce both a narrow SIC pedestal and an essentially interstitial-free collector. Thus, the resulting SiGe HBT transistor can be produced with narrower base and collector space-charge regions than can be achieved with conventional technology.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Oleg Gluschenkov, Rajendran Krishnasamy, Kathryn T. Schonenberg
  • Patent number: 7338829
    Abstract: The invention relates to a method for producing a detector for determining the energy of photons and charged particles; to be precise, a so-called ?E detector or transmission detector. The invention also relates to a detector that can be produced by using said method. The aim of the invention is to provide a method for producing a detector of the aforementioned type that is stable over a long period of time and in which dead zones are distinctly minimized. The invention also aims to provide a detector of this type. To these ends, the inventive method is used to produce a Si(Li) substrate having a p+ layer and an n layer. These can be layers produced according to the prior art. According to the inventive method, the n layer is partially removed, for example, by chemical etching, honing or by lapping. Lapping, in particular, has proven to be effective. This reduces the zone that is ineffective in a detector of the aforementioned type. The detector is produced from the substrate treated in this manner.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: March 4, 2008
    Assignee: Forschungszentrum Julich GmbH
    Inventors: Davor Protic, Thomas Krings