Device With Potential Or Surface Barrier (epo) Patents (Class 257/E31.1)
  • Patent number: 10283664
    Abstract: An avalanche diode includes a PN junction with a first deep trench structure adjacent to the PN junction. An area via which photons impinge is provided, the PN junction extending substantially vertically with respect to the area. An avalanche diode array can be formed to include a number of avalanche diodes.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: May 7, 2019
    Assignee: STMICROELECTRONICS (RESEARCH & DEVELOPMENT) LIMITED
    Inventor: Laurence Stark
  • Patent number: 9934926
    Abstract: The present disclosure provides a treatment device for lowering electron affinity. The treatment device is capable of performing an electron affinity (EA) surface treatment on a photocathode material or an EA surface retreatment on a photocathode. The present disclosure also provides an electron-beam device provided with the treatment device. An activation chamber is used in a treatment device for lowering electron affinity by vaporizing a surface-treatment material and uses the vaporized surface-treatment material to perform an electron-affinity lowering treatment on a photocathode material or an electron-affinity lowering retreatment on a photocathode. The activation chamber includes one or more holes through which electrons can pass.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: April 3, 2018
    Assignee: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY
    Inventor: Tomohiro Nishitani
  • Patent number: 8796699
    Abstract: Embodiments of the invention pertain to a method and apparatus for sensing infrared (IR) radiation. In a specific embodiment, a night vision device can be fabricated by depositing a few layers of organic thin films. Embodiments of the subject device can operate at voltages in the range of 10-15 Volts and have lower manufacturing costs compared to conventional night vision devices. Embodiments of the device can incorporate an organic phototransistor in series with an organic light emitting device. In a specific embodiment, all electrodes are transparent to infrared light. An IR sensing layer can be incorporated with an OLED to provide IR-to-visible color up-conversion. Improved dark current characteristics can be achieved by incorporating a poor hole transport layer material as part of the IR sensing layer.
    Type: Grant
    Filed: November 24, 2010
    Date of Patent: August 5, 2014
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Franky So, Do Young Kim
  • Publication number: 20120313113
    Abstract: A photovoltaic organic light emitting diodes (PV-OLED) device and manufacturing method thereof are introduced. The PV-OLED device includes a substrate, a solar cell module, and a plurality of organic light emitting diodes. The solar cell module is disposed on a surface of the substrate. The organic light emitting diodes are disposed on the same surface of the substrate that the solar cell module is disposed on. The organic light emitting diode is electrically isolated from the solar cell module. The solar cell module can apply power to the organic light emitting diodes for emitting light.
    Type: Application
    Filed: September 9, 2011
    Publication date: December 13, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chien-Chih Chen, Ching-Chiun Wang, Chih-Yung Huang, Szu-Hao Chen, Chan-Hsing Lo, Chung-Ping Chiang
  • Publication number: 20120286296
    Abstract: Embodiments of the invention pertain to a method and apparatus for sensing infrared (IR) radiation. In a specific embodiment, a night vision device can be fabricated by depositing a few layers of organic thin films. Embodiments of the subject device can operate at voltages in the range of 10-15 Volts and have lower manufacturing costs compared to conventional night vision devices. Embodiments of the device can incorporate an organic phototransistor in series with an organic light emitting device. In a specific embodiment, all electrodes are transparent to infrared light. An IR sensing layer can be incorporated with an OLED to provide IR-to-visible color up-conversion. Improved dark current characteristics can be achieved by incorporating a poor hole transport layer material as part of the IR sensing layer.
    Type: Application
    Filed: November 24, 2010
    Publication date: November 15, 2012
    Applicants: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC., UNIVERSITY OF FLORIDA RESEARCH FOUNDATION INC.
    Inventors: Franky So, Do Young Kim
  • Publication number: 20110198608
    Abstract: A semiconductor device includes a thin film transistor and a thin film diode on a same substrate. A semiconductor layer (109) of the thin film transistor and a semiconductor layer (110) of the thin film diode are crystalline semiconductor layers formed by crystallizing the same non-crystalline semiconductor film. The thickness of the semiconductor layer (110) of the thin film diode is greater than the thickness of the semiconductor layer (109) of the thin film transistor, and the surface of the semiconductor layer (110) of the thin film diode is rougher than the surface of the semiconductor layer (109) of the thin film transistor.
    Type: Application
    Filed: October 22, 2009
    Publication date: August 18, 2011
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Masaki Yamanaka, Hiroshi Nakatsuji, Naoki Makita
  • Publication number: 20110025872
    Abstract: Disclosed herein is a solid-state image pickup element, including: a semiconductor layer in which a photodiode for carrying out photoelectric conversion is formed; a first film containing negative fixed charges and formed on the semiconductor layer in a region in which at least the photodiode is formed by utilizing either an atomic layer deposition method or a metal organic chemical vapor deposition method; a second film containing the negative fixed charges and formed on the first film containing therein the negative fixed charges by utilizing a physical vapor deposition method; and a third film containing the negative fixed charges and formed on the second film containing therein the negative fixed charges by utilizing either the atomic layer deposition method or the metal organic chemical vapor deposition method.
    Type: Application
    Filed: June 22, 2010
    Publication date: February 3, 2011
    Applicant: SONY CORPORATION
    Inventors: Itaru OSHIYAMA, Eiji MIYATA
  • Publication number: 20100201861
    Abstract: A charge detection device includes: a substrate having a first conductive type of predetermined region; a second conductive type of drain region disposed in the predetermined region of the substrate; a second conductive type of source region disposed in the predetermined region of the substrate; a second conductive type of channel region disposed between the drain region and the source region; a gate formed via an insulating film on the channel region; a second conductive type of charge accumulation region disposed in the predetermined region of the substrate and changing a threshold voltage of a transistor having the drain region, the source region, and the gate by accumulating signal charges as a target to be measured; a first conductive type of channel barrier region disposed between the channel region and the charge accumulation region; and a charge sweep region sweeping away the signal charges accumulated in the charge accumulation region.
    Type: Application
    Filed: January 13, 2010
    Publication date: August 12, 2010
    Applicant: Sony Corporation
    Inventors: Shunsuke Kameda, Nobuhiro Karasawa
  • Publication number: 20080237665
    Abstract: The present invention relates to a semiconductor device which includes a photoelectric conversion layer; an amplifier circuit amplifying an output current of the photoelectric conversion layer and including two thin film transistors; a first terminal supplying a high-potential power supply voltage; a second terminal supplying a low-potential power supply voltage; an electrode electrically connecting the two thin film transistors and the photoelectric conversion layer; a first wiring electrically connecting the first terminal and a first thin film transistor which is one of the two thin film transistors; and a second wiring electrically connecting the second terminal and a second thin film transistor which is the other of the two thin film transistors. In the semiconductor device, the value of voltage drop of the first wiring and the second wiring are increased by bending the first wiring and the second wiring.
    Type: Application
    Filed: March 10, 2008
    Publication date: October 2, 2008
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hideaki Shishido