With Significant Slider/housing Shaping Or Treating Patents (Class 29/603.12)
  • Patent number: 6993826
    Abstract: An optical-pickup slider is characterized in that a light-transmitting-property substrate is bonded to a surface of a layer having a tapered through hole, on which surface a larger opening of the tapered through hole exists. Thereby, it is possible to prevent the layer having an aperture from being destroyed. A method of manufacturing the optical-pickup slider comprises the steps of a) making a tapered through hole in a layer layered on a first substrate and having a thickness smaller than that of the first substrate; and, after bonding a light-transmitting-property substrate to a surface of the layer, removing the first substrate so as to expose an aperture at a tip of the tapered through hole.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: February 7, 2006
    Assignees: Ricoh Company, Ltd., Kanagawa Academy of Science and Technology
    Inventors: Junichi Takahashi, Motonobu Kourogi, Takashi Yatsui, Motoichi Ohtsu
  • Patent number: 6949004
    Abstract: A manufacturing process for reducing magnetic spacing loss in a magnetic recording head. The recession of the transducer relative to the substrate at the air bearing surface is decreased by applying a coating of sacrificial material such as diamond-like carbon to the upper surfaces of the substrate, the transducer, and the encapsulation material such as alumina prior to final kiss lapping. The recession due to the alumina being softer than the substrate is greatly reduced since the DLC is kiss-lapped.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: September 27, 2005
    Assignee: Maxtor Corporation
    Inventors: Chris Broussalian, Kim Brandt
  • Patent number: 6944938
    Abstract: A method of forming a head comprises forming a write transducer on a wafer, cutting the wafer to produce a slider bar with a cut surface, and planarizing the cut surface of the slider bar. Forming the write transducer can include forming a first pole layer and forming a first pole pedestal layer over the first pole layer, where the first pole pedestal layer includes a tapered portion defined by a first end having a nose width less than a desired final nose width, and a second end having a zero throat width greater than the desired final nose width. Planarizing the cut surface of the slider bar exposes the first pole pedestal layer until a width thereof approximately equals the desired final nose width.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: September 20, 2005
    Assignee: Western Digital (Fremont), Inc.
    Inventors: Billy W. Crue, Jr., Mark David Thomas, Zhupei Shi, Renuka Apparao
  • Patent number: 6944936
    Abstract: A method for manufacturing an integrated lead suspension or component having an integrated circuit (IC) with an array of terminals. The suspension or component is formed from a laminated sheet of material including a spring metal layer and a conductive material layer separated by an insulating layer. The method includes forming an IC window in the spring metal layer, forming integrated conductive leads in the conductive material layer and forming holes in the insulating layer. The IC can then be mounted to the suspension or component in the IC window, and the array of terminals electrically interconnected to the integrated conductive leads through the insulating layer.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: September 20, 2005
    Assignee: Hutchinson Technology Incorporated
    Inventor: Todd A. Krinke
  • Patent number: 6937435
    Abstract: According to one aspect, an exemplary method of manufacturing a magnetic head assembly with a predetermined wrap angle is described. The method includes removing a portion of a magnetic head support surface to create a slot transverse to a direction the media advances and at least partially separating a major support surface having an active device region and a thin support surface. The method further includes removing a portion of the thin support surface such that the height of at least a portion of the thin support surface is reduced relative to the major support surface. The height may be reduced to achieve a predetermined wrap angle between the media and the major support surface of the head assembly.
    Type: Grant
    Filed: May 16, 2003
    Date of Patent: August 30, 2005
    Assignee: Quantum Corporation
    Inventor: George Saliba
  • Patent number: 6935013
    Abstract: A lapping method utilizing textured and conditioned lapping plates most suitable for finishing magnetic heads resulting in improved surface quality, less sensitivity to electrical shorts due to smears, and reduced surface height difference between the head elements exposed at the slider air bearing surface. A rough lapping phase is followed by a polishing phase that maintains the same mechanical motion between the work piece and lapping plate but utilizes only the lapping plate without abrasives of any kind to polish the work piece surface, and to clean up any deep textured marks resulting from the diamond slurry phase. A conductive liquid is utilized to provide lubrication and to minimize static charge.
    Type: Grant
    Filed: November 10, 2000
    Date of Patent: August 30, 2005
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Yuri Markevitch, Mark C. McMaster, Yu-En Percy Chang
  • Patent number: 6935014
    Abstract: An electrode film and a protective electrode film are formed on an insulating film and a first magnetic film in turn. Then, a first photoresist layer, an intermediate layer and a second photoresist layer are formed on the protective electrode film in turn. The intermediate layer is formed by a sputtering method so that the surface temperature of the intermediate layer is set to 140° C. or below. Then, the first photoresist layer is exposed and developed, to fabricate a photoresist pattern. Then, the intermediate layer is partially etched and removed via the photoresist pattern as a mask by a reactive ion etching method using a chlorine-based gas.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: August 30, 2005
    Assignee: TDK Corporation
    Inventors: Kazuya Maekawa, Akio Iijima, Junichi Sato, Hiroyuki Miyamoto
  • Patent number: 6928722
    Abstract: A recording/reproduction element is mounted on a magnetic head slider via a piezoelectric element so that a displacement of the piezoelectric element performs fine control of the position of the recording/reproduction, thus enabling fine spacing and high track positioning accuracy. This improves linear recording density and track density. A pair of electrodes are formed on both sides of a piezoelectric element to constitute a piezoelectric actuator. One electrode is arranged opposite the rear surface (air flow out end) of a magnetic head slider 11. A recording/reproduction element is arranged on and electrically insulated from the other electrode. The piezoelectric element includes a piezoelectric element displaced in a spacing direction, enabling fine spacing control, a piezoelectric element displaced in the track direction, enabling a fine track position control, and a piezoelectric element displaced in a magnetic disc rotation direction, enabling reduction of jitter of a reproduction signal.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: August 16, 2005
    Assignee: TDK Corporation
    Inventor: Masahiro Yanagisawa
  • Patent number: 6922884
    Abstract: A method is provided for preserving the transverse biasing of a GMR (or MR) read head during back-end processing. In a first preferred embodiment, the method comprises magnetizing the longitudinal biasing layers of the read head in a transverse direction, so that the resulting field at the position of the transverse biasing layer places it in a minimum of potential energy which stabilizes its direction. The field of the longitudinal biasing layer is then reset to the longitudinal direction in a manner which maintains the transverse biasing direction. In a second embodiment, a novel fixture for mounting the read head during processing includes a magnetic portion which stabilizes the transverse bias of the read head. The two methods may be used singly or in combination.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: August 2, 2005
    Assignee: Headway Technologies, Inc.
    Inventors: Yimin Guo, Li-Yan Zhu
  • Patent number: 6920685
    Abstract: A writing magnetic pole portion composed of a first magnetic film and a second magnetic film formed on the first magnetic film via a gap film is fabricated on a given wafer. Then, the writing magnetic pole portion is swung forward and backward around a rotation standard axis parallel to a center line of the writing magnetic pole portion in a direction parallel to a surface of the. Then, the writing magnetic pole portion is milled during the swing of the writing magnetic pole portion to define the width of the writing magnetic pole portion.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: July 26, 2005
    Assignee: TDK Corporation
    Inventors: Taro Oike, Makoto Yoshida, Tetsuo Miyazaki, Shin Narushima, Hiroyuki Miyamoto
  • Patent number: 6915559
    Abstract: A method of manufacturing an active element for use with a magnetic head includes depositing a magnetic material to form a magnetic member, and nitriding the magnetic member after the depositing step. Preferably, the depositing step comprises depositing nickel-iron alloy, and the nitriding step comprises plasma nitriding the magnetic member. Advantageously, plasma nitriding may be performed at a temperature below 300 degrees Celsius to avoid adverse effects to components of the active element, such as organic planars. Active elements manufactured according to the method of the invention are also disclosed.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: July 12, 2005
    Assignee: Storage Technology Corporation
    Inventors: Bradford C. Schwartz, Steven C. Herrera
  • Patent number: 6901651
    Abstract: A manufacturing method in which a second magnetic layer of a thin-film magnetic head includes the steps of: forming a pole portion layer; forming a protective layer so as to cover a part of the pole portion layer located near the medium facing surface ABS; forming an electrode layer to be used as an electrode when forming a yoke portion layer by electroplating; forming the yoke portion layer by electroplating on the electrode layer using the electrode layer as an electrode; and removing an unnecessary portion of the electrode layer.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: June 7, 2005
    Assignee: TDK Corporation
    Inventors: Yoshikazu Sato, Tetsuya Roppongi
  • Patent number: 6899456
    Abstract: Glide heads for the detection of asperities on a storage disc have a thermal transducer oriented along the air bearing surface. The thermal transducer generally is in electrical contact with a circuit to measure the electrical resistance of the thermal transducer. Preferred methods of depositing the thermal transducer involve the deposition of the thermal transducer on the smooth surface of a wafer prior to the slicing of individual sliders.
    Type: Grant
    Filed: October 21, 1998
    Date of Patent: May 31, 2005
    Assignee: Seagate Technology LLC
    Inventors: Ramesh Sundaram, Wei H. Yao
  • Patent number: 6895657
    Abstract: A method for producing a slider for an optical head includes a slider member adapted for floating and running over a recording medium during recording and/or reproduction of information signals for the recording medium. An optical lens is bonded to the slider member and a magnetic field generator provided on a surface of the slider member carrying the optical lens facing the recording medium. A first step is forming a groove presenting a bottom surface inclined in the depth-wise direction by ejecting a polishing agent dispersed in a compressed gas on a substrate. A second step is charging an electrically conductive material, which proves a terminal electrically connected to the magnetic field generator in the inside of the groove formed in the substrate. A third step is cutting the substrate in the vicinity of an end of the groove to form a plurality of individual slider members.
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: May 24, 2005
    Assignee: Sony Corporation
    Inventors: Akio Mishima, Toru Katakura
  • Patent number: 6886239
    Abstract: In the method of making a thin-film magnetic head in accordance with the present invention, an electron beam resist is irradiated with electron beams in a state where an electrically conductive member is in contact with a magnetoresistive film. Since the magnetoresistive film electrically connects individual forming positions to be formed with magnetoresistive devices, charges stored near the forming positions upon irradiation with the electron beams can be drawn to the outside by way of the electrically conductive member. As a consequence, the electron beams are less likely to lose their rectilinearity, whereby the writing precision for patterning the magnetoresistive film by electron beam lithography can be improved.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: May 3, 2005
    Assignee: TDK Corporation
    Inventors: Noriaki Kasahara, Tsuneo Kagotani, Hitoshi Hatate
  • Patent number: 6877213
    Abstract: A method for reducing feature size in a thin film magnetic write head includes plating a seed layer over a selected base layer, spinning a photoresist layer onto the seed layer, defining a trench in the photoresist layer, depositing an insulative spacer layer to cover the trench side walls using a low temperature chemical vapor deposition process, anisotropically etching to remove spacer layer material from the bottom of the trench and thereby expose the plating seed layer while leaving intact vertical portions of the spacer layer that cover the trench side walls and narrow its width, forming a structure of reduced feature size by electroplating metallic material into the narrowed trench, stripping away the photoresist layer and the spacer layer vertical portions, and milling or sputter etching the plating seed layer to leave a structure of reduced feature size.
    Type: Grant
    Filed: January 7, 2002
    Date of Patent: April 12, 2005
    Assignee: International Business Machines Corporation
    Inventor: Howard Gordon Zolla
  • Patent number: 6868600
    Abstract: A method of manufacturing a thin film magnetic head having superior overwrite characteristics as well as an extremely small pole width is disclosed. The thin film magnetic head has a thin film coil provided in a recess region of a bottom pole. This makes it possible to appropriately ensure a thickness of the thin film coil, as well as to reduce a thickness of a second pole tip portion, and therefore it is possible to ensure superior overwrite characteristics, as well as to form the second pole tip portion having an extremely small uniform width. The method of manufacturing a thin film magnetic head forms a recess region in a second magnetic layer close to a first magnetic layer, and forms a first thin film coil for constituting a part of the thin film coil in the recess region.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 22, 2005
    Assignee: TDK Corporation
    Inventor: Yoshitaka Sasaki
  • Patent number: 6865798
    Abstract: A method for shaping an ABS of a magnetic head slider including a step of holding at least one row bar with a plurality of aligned thin-film magnetic head elements by adhering a first surface of the at least one row bar to an adhesive or UV tape capable of passing a laser beam there through, the first surface being opposite an ABS of the at least one row bar, a step of shaping the ABS of the at least one row bar in a convex shape by radiating a laser beam to the first surface of the at least one row bar through the adhesive or UV tape, a step of cutting the at least one row bar into individual magnetic head sliders, and a step of then, removing the magnetic head sliders from the adhesive or UV tape after weakening adhesion properties of the adhesive or UV tape.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: March 15, 2005
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventor: Osamu Fukuroi
  • Patent number: 6859998
    Abstract: An article is formed as a substrate having a projection extending outwardly therefrom. The article may be a magnetic recording head and the projection a write pole. The projection has a width in a thinnest dimension measured parallel to a substrate surface of no more than about 0.3 micrometers and a height measured perpendicular to the substrate of not less than about 5 times the width. The article is fabricated by forming an overlying structure on the substrate with an edge thereon, depositing a replication layer lying on the edge, depositing a filler onto the edge and the substrate, so that the filler, the replication layer, and the overlying structure in combination comprise a continuous layer on the substrate, selectively removing at least a portion of the replication layer from a free surface of the continuous layer inwardly toward the substrate, to form a defined cavity, and depositing a projection material into the defined cavity to form the projection.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: March 1, 2005
    Assignee: International Business Machines Corporation
    Inventors: James Kruger, Benjamin L. Wang, Patrick R. Webb, Howard G. Zolla
  • Patent number: 6857937
    Abstract: A head is fabricated using photolithography, and the head is purposely powered up during a material removal process, such as lapping, so that the head's expansion (that would be formed on being powered up during normal usage in a drive) is planarized. Specifically, the head is energized in a manner identical (or similar) to energization of circuitry in the head during normal operation in a drive, even though fabrication of the head has not yet been completed. When energized, a shape that the head would have during normal operation is replicated (or approximated). Therefore, the head's shape includes a expansion of the pole tip region, although the head is only partially fabricated. Thereafter, a portion of the head in the expansion is partially or completely removed, by lapping while energized. The depth of material removal from the head is monitored e.g.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: February 22, 2005
    Assignee: Komag, Inc.
    Inventor: Christopher H. Bajorek
  • Patent number: 6857181
    Abstract: First, second and third pole tip components of a write head are formed with the second pole tip located between the first and third components and a write gap layer located between the first and second pole tip components. The second pole tip is formed with a width that defines a track width of the write head. The third pole tip component is formed with top and bottom surfaces wherein the bottom surface interfaces a top surface of the second pole tip component and has a width equal to the track width and wherein the top surface of the third pole tip has a width greater than the track width.
    Type: Grant
    Filed: August 12, 2002
    Date of Patent: February 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jyh-Shuey (Jerry) Lo, Timothy J. Moran
  • Patent number: 6854175
    Abstract: A method of manufacturing a thin film magnetic head capable of improving a yield while making a pole width extremely minute with high precision is provided. A write gap layer and a bottom pole are selectively etched in a region other than a portion corresponding to a front end part through the RIE with the front end part having an extremely minute uniform width as a mask in an atmosphere of gas including at least chlorine out of chlorine and boron trichloride and at an ambient temperature within a range of 30° C. to 300° C. The width (pole width) of a pole portion can be made uniform with high precision along a length direction so that the yield of the thin film magnetic head can be improved.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: February 15, 2005
    Assignee: TDK Corporation
    Inventor: Yoshitaka Sasaki
  • Patent number: 6836956
    Abstract: A method of manufacturing a thin film magnetic head in which a top pole is divided into a pole tip and a tope pole layer, and the pole tip is formed on the flat surface of a bottom pole with a write gap layer in between. An insulating layer is formed in a region adjacent to the pole tip. A first layer of thin film coil is formed in a region wherein the insulating layer is formed. The thin film coil is covered by the insulating layer whose surface is flattened. A surface of the top pole layer facing the recording medium can be formed recessed from a surface of the pole tip facing the recording medium.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: January 4, 2005
    Assignee: TDK Corporation
    Inventor: Yoshitaka Sasaki
  • Publication number: 20040261254
    Abstract: On a surface of a bottom pole, a write gap film and first magnetic material film having a high saturation magnetic flux density are formed, and the first magnetic material film is etched to remain a portion extending from an air bearing surface to a throat height zero reference position and a first non-magnetic film is formed in a removed portion. The first non-magnetic material film is polished to obtain a flat surface which is coplanar with a surface of the first magnetic material film. A second magnetic material film having a high saturation magnetic flux density is formed on the flat surface. The second magnetic material film, first magnetic material film, write gap film and bottom pole are partially removed by RIE using a mask formed on the flat surface in accordance with a given pattern to form a track pole having a double-layer structure consisting of bottom and to track poles and a trim structure in a self-aligned manner.
    Type: Application
    Filed: June 8, 2004
    Publication date: December 30, 2004
    Applicants: HEADWAY TECHNOLOGIES, INC., SAE MAGNETICS (H.K.), LTD.
    Inventors: Yoshitaka Sasaki, Takehiro Kamigama
  • Patent number: 6829819
    Abstract: A magnetoresistive device having a first pole, a second pole, and a first tapered pole pedestal therebetween and magnetically connected to the second pole. The first tapered pole has a width that increases with increasing distance away from the air bearing surface, ABS. The magnetoresistive device can also include a second tapered pole pedestal magnetically connected to the first pole, and separated from the first tapered pole pedestal by a write gap. The second tapered pole pedestal has a width that increases with increasing distance away from the air bearing surface. A method of the present invention includes defining the trackwidth of a write element by lapping a tapered pole pedestal. More specifically, the trackwidth is given by a known taper angle, a zero throat width, and a throat height, wherein the throat height is controlled precisely by lapping.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: December 14, 2004
    Assignee: Western Digital (Fremont), Inc.
    Inventors: Billy W. Crue, Jr., Mark David Thomas, Zhupei Shi, Renuka Apparao
  • Publication number: 20040226653
    Abstract: A table receives an object, subjected to the adhesion process, in an adhesive setting apparatus. An adhesive have been applied on the object on the table. An exposure mechanism is designed to expose the adhesive to a gaseous accelerator. The adhesive setting apparatus utilizes the gaseous accelerator to promote the setting or hardening of the adhesive. The gaseous accelerator uniformly contacts the adhesive as compared with the mist of the accelerator. Since the adhesive is uniformly exposed to the gaseous accelerator, an uneven progression can reliably be avoided in the setting of the adhesive. It is possible to reliably avoid heterogeneity or localization of the set adhesive.
    Type: Application
    Filed: June 22, 2004
    Publication date: November 18, 2004
    Applicant: FUJITSU LIMITED
    Inventors: Hirokazu Yamanishi, Tomokazu Sugiyama, Tsutomu Sooda, Yoshiaki Yanagida
  • Patent number: 6813824
    Abstract: A liquid resist is introduced between adjacent conductive lines of a coil pattern girdling around a magnetic core piece. When the liquid resist is cured, an insulating resin filler can be fixed between the adjacent conductive lines of the coil pattern. An insulating metallic layer is formed to extend over the insulting resin filler and the conductive lines of the coil pattern. Thereafter, the insulating metallic layer is subjected to a flattening grinding treatment until at least a part of the conductive line is exposed at a flattened surface. Of the resist, of a higher fluidity, penetrates in every hole and corner between the adjacent conductive lines, the gap defined between the adjacent conductive lines is fully filled with the insulating material. No voids remain in the gap. The conductive line of the coil can be reliably prevented from corrosion or oxidation. Moreover, a relatively brittle of fragile insulating resin filler is reliably prevented from being subjected to the flattening.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 9, 2004
    Assignee: Fujitsu Limited
    Inventors: Minoru Hasegawa, Yoshinori Ohtsuka, Yuji Uehara, Takashi Sekikawa, Hiroshi Maeda, Masahiro Kakehi, Ikuya Tagawa, Tomoko Kutsuzawa, Syuji Nishida
  • Patent number: 6807722
    Abstract: A manufacturing method is provided for manufacturing a head material including: a plurality of rows of head-to-be sections to be thin-film magnetic heads; an inter-row cutting section provided to be a position at which adjacent ones of the rows are to be separated; and an intra-row cutting section provided to be a position at which adjacent ones of the head-to-be sections in each of the rows are to be separated. The method includes the steps of: providing a detection element to be used for detecting an amount of processing when specific processing is performed on the head material; an electrode for electrically connecting the detection element to an external device; and a conductor for electrically connecting the electrode to the detection element; and forming the electrode in the inter-row section.
    Type: Grant
    Filed: May 29, 2001
    Date of Patent: October 26, 2004
    Assignee: TDK Corporation
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh
  • Publication number: 20040205958
    Abstract: A method for fabricating a magnetic memory element structure comprises providing a dielectric layer having a conducting via. A first magnetic layer is formed overlying the dielectric layer and is in electrical communication with the conducting via. A non-magnetic layer and a second magnetic layer are formed overlying the first magnetic layer. A first conductive layer is deposited overlying the second magnetic layer and is patterned. A portion of the second magnetic layer is exposed and is transformed to form an inactive portion and an active portion. The active portion comprises a portion of a memory element and the inactive portion comprises an insulator. A sidewall spacer is formed about at least one sidewall of the first conductive layer and a masking tab is formed that overlies a portion of the memory element and extends to overlie at least a portion of the conducting via.
    Type: Application
    Filed: April 16, 2003
    Publication date: October 21, 2004
    Inventors: Gregory W. Grynkewich, Brian R. Butcher, Mark A. Durlam, Kelly Kyler, Kenneth H. Smith, Clarence J. Tracy
  • Patent number: 6804878
    Abstract: A method is provided of smoothing the perturbations on a surface, in particular the surface of a magnetic head slider, the method comprising several steps. At least one air-bearing surface to be smoothed is exposed to an ion species generated from a defined source to form a beam of incident radiation. The beam has a linear axis emanating from the source and thus forms an angle of incident radiation with respect to the surface to be smoothed. The at least one surface is smoothed by exposing the surface(s) to be smoothed to the beam of incident radiation, where the angle of incident radiation is less than 90° relative to a vertical axis drawn perpendicular to the surface to be smoothed. To make a corrosion resistant magnetic head slider, the method further comprises coating the smoothed surface with a layer of amorphous carbon.
    Type: Grant
    Filed: December 21, 1999
    Date of Patent: October 19, 2004
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Richard Thomas Campbell, Richard Hsiao, Yiping Hsiao, Son Van Nguyen, Thao John Pham
  • Patent number: 6799365
    Abstract: A manufacturing process of a disc drive slider has one or more bars with dull ends as a protection feature to prevent contact between peripheral edges of an air bearing surface and a disc surface when the slider is misaligned with the disc surface. The dull ends can be formed by a process of undercutting a resist layer during etching.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: October 5, 2004
    Assignee: Seagate Technology LLC
    Inventor: Zine-Eddine Boutaghou
  • Patent number: 6785953
    Abstract: A method of making a magnetic head, which has an air bearing surface (ABS) and a back gap (BG), comprising the steps of: forming a second pole tip of a second pole piece with a top surface and a bottom surface at an ABS site for said ABS; the top surface of the second pole tip having a write region located at the ABS site and a stitch region which is recessed in its entirety from the ABS site toward said back gap; depositing a protective sacrificial layer on the write region of the second pole tip; removing said sacrificial layer from only the stitch region of the second pole tip; and forming a second pole piece yoke of a second pole piece magnetically connected to the stitch region of the second pole tip.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: September 7, 2004
    Assignee: International Business Machines Corporation
    Inventor: Hugo Alberto Emilio Santini
  • Patent number: 6785954
    Abstract: A method for fabricating a longitudinally hard biased, bottom spin valve GMR sensor with a lead overlay (LOL) conducting lead configuration and a narrow effective trackwidth. The advantageous properties of the sensor are obtained by providing two novel barrier layers, one of which prevents oxidation of and Au diffusion into the free layer during annealing and etching and the other of which prevents oxidation of the capping layer during annealing so as to allow good electrical contact between the lead and the sensor stack.
    Type: Grant
    Filed: April 17, 2002
    Date of Patent: September 7, 2004
    Assignee: Headway Technologies, Inc.
    Inventors: Cheng T. Horng, Mao-Min Chen, Chen-Jung Chien, Cherng-Chyi Han, Ru-Ying Tong, Chyu-Jiuh Torng, Hui-Chuan Wang
  • Patent number: 6785955
    Abstract: A method and system for providing a writer is disclosed. The method and system include providing a first pole, an insulator covering a portion of the first pole and a coil on the first insulator. The coil includes a plurality of turns. The method and system also include providing a second insulator covering the coil, providing a second pole on the second insulator and providing a write gap separating a portion of the first pole from a second portion of the second pole. A first portion of the second pole is coupled with the first pole. In one aspect, the method and system include providing a coil having a plurality of turns with a pitch of no more than 1.2 micrometers. In another aspect, the plurality of turns of the coil is provided using a hard mask layer on a photoresist layer. A portion of the hard mask layer and a portion of the photoresist layer define a plurality of spaces between the pluralities of turns of the coil. In another aspect, the writer is a pedestal defined zero throat writer.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: September 7, 2004
    Assignee: Western Digital (Fremont), Inc.
    Inventors: Yingjian Chen, Hugh Craig Hiner, Benjamin Chen, Xizeng Shi, Kyusik Sin
  • Patent number: 6779247
    Abstract: A method of producing suspended elements for electrical connection between two portions of a micro-mechanism that can move relative to one another provides for the formation of a layer of sacrificial material, the formation of the electrical connection elements on the layer of sacrificial material, and the selective removal of the layer of sacrificial material beneath the electrical connecting elements, the layer of sacrificial material being a thin film with at least one adhesive side that can be applied dry to the surface of the micro-mechanism.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: August 24, 2004
    Assignee: STMicroelectronics S.r.l.
    Inventors: Bruno Murari, Benedetto Vigna, Ubaldo Mastromatteo
  • Publication number: 20040160700
    Abstract: A resist pattern for lift-off is formed on a first film composed of one or more layers deposited on a substrate. The first film is patterned by dry-etching using the resist pattern as a mask. Subsequently, a second film is deposited with presence of the resist pattern on the first film. Then, the resist pattern for lift-off is removed for conducting lift-off. Subsequently, the resulting substrate is etched. In the etching, the substrate is dry-etched using etching particles which are oriented at an incident angle set in a range of 60° to 90° relative to the normal direction of the substrate.
    Type: Application
    Filed: February 9, 2004
    Publication date: August 19, 2004
    Applicant: TDK CORPORATION
    Inventors: Takeo Kagami, Kazuki Sato
  • Publication number: 20040143959
    Abstract: A system and method are disclosed for improving suspension-to-slider attachment in a hard disk drive. A slider having a number of bond pads on its leading edge and a number of bond pads on its trailing edge is to be coupled to a suspension flexure having a number of leading bond pads and a number of trailing bond pads. The slider is to be coupled to the suspension flexure at the leading bond pads and the trailing bond pads by a method such as gold ball, solder ball, or solder bump bonding.
    Type: Application
    Filed: January 27, 2003
    Publication date: July 29, 2004
    Inventor: Takehiro Kamigama
  • Patent number: 6757962
    Abstract: In a method for manufacturing a magnetic field sensing element including an electrode layer overlying a second antiferrogmagnetic layer and a first free magnetic layer where the electrode layer exposes a portion of the second magnetic layer, a portion of the second antiferromagnetic layer not covered with the electrode layer and a portion of the first free magnetic layer are removed using the electrode layer as a mask after laminating each layer to form a bottom type spin-valve thin film magnetic element, thereby enabling the first free magnetic layer to be endowed with a sufficient exchange coupling magnetic field by substantially eliminating the tapered portion of the remaining second antiferromagnetic layer thereby enabling the magnetization of the second free magnetic layer to be put into a single domain state.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: July 6, 2004
    Assignee: Alps Electric Co., Ltd.
    Inventors: Naoya Hasegawa, Eiji Umetsu, Masamichi Saito, Kenichi Tanaka, Yosuke Ide
  • Patent number: 6757964
    Abstract: An object of the invention is to manufacture sliders having excellent properties with accuracy and to improve the production efficiency and the cleaning property. In a method of the invention to manufacture a bar in which a row of slider sections are aligned, a wafer block is made from a wafer in which rows of slider sections are aligned. The wafer block is bonded to a dummy block on a support plate. Next, a processing step and a cutting step are repeated. The processing step is to perform a specific processing on the medium facing surfaces of a row of slider sections in the medium facing surface of the wafer block bonded to the support plate. The cutting step is to cut the wafer block together with the support plate such that the row of slider sections whose medium facing surfaces have received the specific processing are separated from the wafer block to be the bar. A tape is affixed to the medium facing surfaces to protect the medium facing surfaces in the cutting step.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: July 6, 2004
    Assignee: TDK Corporation
    Inventors: Yoshitaka Sasaki, Tatsuya Harada, Kunimasa Nakata
  • Patent number: 6754947
    Abstract: A process of forming a two-piece pole for an inductive write head involves first forming a first pole piece having a width between opposite side surfaces defining a gap width of a transducing gap at an air bearing surface of the head. The process next involves forming a second pole piece having a first region remote from the air bearing surface and a second region extending from the first region toward the air bearing surface. The first region is wider than the width of the first pole piece. The second pole piece is formed so that at least a portion of the second region is contiguous a portion of the first pole piece and so that no sharp external corners exist between the first pole tip piece and the second pole piece within a pole tip region of the head.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: June 29, 2004
    Assignee: Seagate Technology LLC
    Inventors: Frank E. Stageberg, Kenneth P. Ash, James K. Price, Feng Wang, Elzbieta J. Haftek, Allan E. Schultz, Richard P. Larson
  • Publication number: 20040107563
    Abstract: A first magnetic film is formed in a primary pattern which is larger than its definitive pattern and of which edges are located within frames to be used in a frame-plating method for the second magnetic film after forming the first pole portion and the gap film. Then, the second magnetic film is formed by the frame-plating method, and the first magnetic film is etched into the definitive pattern through the second magnetic film as a mask.
    Type: Application
    Filed: December 3, 2003
    Publication date: June 10, 2004
    Applicant: TDK CORPORATION
    Inventors: Koichi Terunuma, Tetsuya Mino, Katsuya Kanakubo, Noriyuki Ito
  • Publication number: 20040093719
    Abstract: A method is provided for planarization of structures which minimizes step heights, reduces process steps, improves cleanliness, and provides increased ease of debond. Structures are placed with working surfaces facing down onto an adhesive layer such that structures remain fixed during heating. A bi-layer encapsulating film is used to achieve planarization. A carrier is bi-laminated with a thermoplastic film layer followed by a chemically inert protective polymer film layer that can withstand etch and cleaning processes. The thermoplastic layer is laminated on top of the carrier; the polymer layer is laminated on top of the joined thermoplastic layer and carrier. The carrier with bi-layer film is then placed onto the backside of the structures to resist chemical attack from the front side during photostrip and enable planarization. When heat is applied, the bi-layer encapsulating film melts and pushes the polymer layer into the gaps between structures thereby achieving complete planarization.
    Type: Application
    Filed: November 15, 2002
    Publication date: May 20, 2004
    Inventors: Qing Dai, Jennifer Qing Lu, Dennis Richard McKean, Eun Row, Li Zheng
  • Patent number: 6735850
    Abstract: The present invention provides an improved bias magnet-to-magnetoresistive element interface and method of fabrication. In a preferred embodiment, the wall/walls of an MR element opposing a bias layer are formed by over etching to provide vertical side walls without taper. In the preferred embodiment, a protective element is formed over the MR element to protect it during etch processes. In some embodiments, a filler layer is deposited prior to bias layer formation. In CIP embodiments, any portion of the filler layer forming on vertical side walls of the MR element is etched to provide an exposed side wall surface for contiguous bias layer formation. In CPP embodiments, the filler layer forms on a vertical back wall and electrically insulates the MR element from the bias layer.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: May 18, 2004
    Assignee: Western Digital (Fremont), Inc.
    Inventors: Matthew Gibbons, Kenneth E. Knapp, Ronald A. Barr, Benjamin P. Law, James Spallas, Ming Zhao
  • Patent number: 6732421
    Abstract: A method for producing magnetoresistive heads includes the steps of placing a substrate having a plurality of transducers in an environment including a focused ion beam. The focused ion beam is directed onto the first MR element. A property level, generally the resistance associated with the MR stripe, of the first MR element is monitored until the resistance reaches a desired level. The focused ion beam is redirected onto a second area of the substrate which includes the second MR element. The electrical resistance of the second MR element is monitored as the focused ion beam acts on the second MR element until the resistance of the MR element reaches a desired level. Using this process, the resistivity of individual MR elements within the substrate can be tightly controlled.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: May 11, 2004
    Assignee: Seagate Technology LLC
    Inventors: Jane K. Gates, Jeffery K. Berkowitz, Lance E. Stover
  • Publication number: 20040085680
    Abstract: A magnetoresistive (MR) read head is disclosed including a shield layer with a recessed portion and a protruding portion defined by the recessed portion. Also included is an MR sensor located in vertical alignment with the protruding portion of the shield layer. Further provided is at least one gap layer situated above and below the MR sensor. At least one of such gap layers is positioned in the recessed portion of the shield layer. By this design, a combined thickness of the gap layers is thinner adjacent to the MR sensor and the protruding portion of the shield layer, while being thicker adjacent to the recessed portion of the shield layer. As such, optimum insulation is provided while maintaining planar gap layer surfaces to avoid the detrimental ramifications of reflective notching and the swing curve effect.
    Type: Application
    Filed: June 19, 2003
    Publication date: May 6, 2004
    Inventor: Douglas Werner
  • Patent number: 6725526
    Abstract: Embodiments include a method for forming a head suspension assembly. A spacer layer is formed in or on a silicon wafer. A transfer film including an opening defining the shape of a slider support membrane is provided, and the opening is filled with a resin material. The transfer film with the resin material therein is positioned over the silicon wafer so that at least a portion of the resin material is positioned adjacent to the spacer layer. The resin material is baked to form a glassy carbon material. The spacer layer is etched to form a trench in the silicon wafer adjacent to the glassy carbon material, and a slider is positioned on the glassy carbon material over the trench.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: April 27, 2004
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey S. Lille
  • Publication number: 20040075942
    Abstract: A head is fabricated using photolithography, and the head is purposely powered up during a material removal process, such as lapping, so that the head's expansion (that would be formed on being powered up during normal usage in a drive) is planarized. Specifically, the head is energized in a manner identical (or similar) to energization of circuitry in the head during normal operation in a drive, even though fabrication of the head has not yet been completed. When energized, a shape that the head would have during normal operation is replicated (or approximated). Therefore, the head's shape includes a expansion of the pole tip region, although the head is only partially fabricated. Thereafter, a portion of the head in the expansion is partially or completely removed, by lapping while energized. The depth of material removal from the head is monitored e.g.
    Type: Application
    Filed: May 30, 2002
    Publication date: April 22, 2004
    Inventor: Christopher H. Bajorek
  • Patent number: 6722018
    Abstract: A method of making a magnetic write head includes forming a strip of negative photoresist on a wafer at an ABS site with a width that defines a track width of the write head and which has a height above a desired height of a second pole tip. An alumina layer is formed on the wafer and on the strip with a thickness above the wafer that is equal to or greater than a desired height of the second pole tip. The alumina layer is then mechanically polished until the negative photoresist strip is exposed. The negative photoresist strip is then removed leaving an opening in the alumina layer after which the second pole tip is formed in the opening. In a first embodiment of the invention the second pole tip and the second pole piece yoke are one piece and are planar and in a second embodiment of the invention a P2 yoke is stitched to the second pole tip. In both embodiments the first pole piece of the write head can be notched without damaging the second pole tip.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: April 20, 2004
    Assignee: International Business Machines Corporation
    Inventor: Hugo Alberto Emilio Santini
  • Patent number: 6718622
    Abstract: In an assembly of layers, a first layer has a recess, a second layer is deposited over the first layer, and a third layer is deposited over the second layer and fills the recess. The material of the third layer is less wear resistant than the second layer. After forming the second layer, the assembly is polished to create a flat and smooth surface. The polishing is stopped upon reaching the second layer.
    Type: Grant
    Filed: December 1, 1999
    Date of Patent: April 13, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Joannes B. A. D. Van Zon, Gerardus S. A. M. Theunissen
  • Patent number: 6718621
    Abstract: In a production process of an MR head using the tunnel junction film basically consisting of a free layer, a barrier layer, and a pinned layer, the resistance between the free layer and the pined layer reduced beforehand and increased afterward up to a resistance value necessary when actually used. While the resistance between the free layer and the pinned layer is low, current can easily flow, suppressing charge up, thus preventing insulation destruction of the barrier layer. This significantly increases a production yield of a recording/reproduction head using a ferromagnetic tunnel junction element.
    Type: Grant
    Filed: May 9, 2000
    Date of Patent: April 13, 2004
    Assignee: NEC Corporation
    Inventors: Kazuhiko Hayashi, Keishi Ohashi, Nobuyuki Ishiwata, Masafumi Nakada, Eizo Fukami, Kiyokazu Nagahara, Hiroaki Honjo, Shinsaku Saitoh