Data Storage Inductor Or Core Patents (Class 29/604)
  • Patent number: 8205324
    Abstract: A damascene process is utilized to fabricate the segmented magnetic core elements of an integrated circuit inductor structure. The magnetic core is electroplated from a seed layer that is conformal with a permanent dielectric mold that results in sidewall plating defining an easy magnetic axis. The hard axis runs parallel to the longitudinal axis of the core and the inductor coils are orthogonal to the core's longitudinal axis. The magnetic field generated by the inductor coils is, therefore, parallel and self-aligned to the hard magnetic axis. The easy axis is enhanced by electroplating in an applied magnetic field parallel to the easy axis.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: June 26, 2012
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson, Andrei Papou
  • Publication number: 20120145796
    Abstract: A data storage device, a stacking method thereof, and a data storage device assembly are provided. The data storage device assembly includes a first data storage device and a second data storage device respectively having a body, a magnetic element, and a storage device. Each body has a first containing space and a second containing space. Each magnetic element is disposed in the corresponding first containing space. At least one of the magnetic elements of the first and the second data storage device is a magnet. Each storage device is disposed in the corresponding second containing space and includes an electrical connector terminal, a memory chip, and a memory controller with no crystal oscillator. The magnetic elements of the first and the second data storage device attract each other so that the body of the first data storage device is stacked on the body of the second data storage device.
    Type: Application
    Filed: February 11, 2011
    Publication date: June 14, 2012
    Applicant: PHISON ELECTRONICS CORP.
    Inventor: Cheng-Chieh Hsieh
  • Patent number: 8191240
    Abstract: A method for winding a lead wire on a multi-winding electronic component is provided. The method can prevent winding slack of the lead wire, a break of the lead wire, and/or a terminal disconnection failure. A lead wire is wound around a winding core by a certain number of turns to form at least one first layer. Next, the lead wire is folded back toward an electrode, is pulled toward the electrode at an end-of-winding side so as to be across the second layer. Then, the lead wire is caught at a bottom part of the collar to form a final terminal part for boding to the electrode.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: June 5, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoshimitsu Ishido, Ryo Watanabe
  • Patent number: 8151439
    Abstract: The present invention provides a method for mounting at least one magnetic pole of a rotor of a motor of a synchronous electrical rotating machine from elementary elements, the rotor including a hub. The method includes the following successive steps: forming the set of elementary elements of rectangular parallelepipedal shape by fixing at least two elementary elements to each other with an electrical insulator being interposed therebetween; the set of elementary elements being magnetizable; machining a main face of the set of elementary elements in order to form a cylindrical face having a radius substantially equal to the predefined radius of the hub; magnetizing the set of elementary elements; and fixing the set of elementary elements to the hub, the set of elementary elements forming at least a portion of the magnetic pole.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: April 10, 2012
    Assignee: Alstom Transport SA
    Inventor: Andry Randria
  • Publication number: 20120075920
    Abstract: A memory base cell stores a bit of information implemented from a regular and compact structure made up of multiple identical and replicated base elements, on the “sea of gates” Model, in which the base element of the structure is a cell able to be configured with a minimum width in relation to the particular technology used. Such a cell includes a bistable element with an input node operatively connected to a writing data line of the memory base cell, and an output node operatively connected to a reading data line of the memory base cell. The bistable element also has a first inverter and a second inverter arranged in a feedback configuration with respect to one another between the input node and the output node of the bistable element.
    Type: Application
    Filed: April 29, 2011
    Publication date: March 29, 2012
    Applicant: STMicroelectronics S.r.I.
    Inventors: Valentina NARDONE, Stefano Pucillo, Roberto Canegallo, Claudio Mucci, Massimiliano Innocenti, Luca Perugini
  • Patent number: 8136222
    Abstract: A method of forming an encapsulated coupled coil arrangement. The method includes coupling a first lead of a first coil to a second lead of an electrical circuit device, by soldering or infusion, using a superconductive jointing alloy; and encapsulating the first coil, the electrical circuit device and the jointed leads of the first coil and the electrical circuit device in an encapsulation material. The jointing alloy has a melting point higher than a highest temperature experienced by the encapsulation material during the encapsulation process.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: March 20, 2012
    Assignee: Siemens Plc
    Inventors: Graham Hutton, M'Hamed Lakrimi, Adrian Mark Thomas
  • Patent number: 7882614
    Abstract: A method for providing a power inductor comprises forming a first magnetic core material having first and second ends and an inner cavity that extends from the first end to the second end; forming a first notch in the first magnetic core material that projects inwardly towards the inner cavity from one of the first and second ends; and passing a first conductor through the inner cavity that is received by the first notch.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: February 8, 2011
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 7877861
    Abstract: The present invention is directed to a method of making a transformer having a stacked core, which includes top and bottom yokes and first and second outer legs. The core also includes an inner leg that is formed from a pair of stacked plates, which abut each along a seam that extends in the longitudinal direction of the inner leg. Each of the upper and lower yokes may be formed from a single stack of plates, or a plurality of stacks of plates. Each of the inner and outer legs may also be formed from a single stack of plates, or a plurality of stacks of plates. The cross-section of the core may be rectangular or cruciform.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: February 1, 2011
    Assignee: ABB Technology AG
    Inventors: William E. Pauley, Jr., Charlie H. Sarver, Rush B. Horton, Jr.
  • Patent number: 7849586
    Abstract: A method for making a power inductor comprises providing a first magnetic core comprising a ferrite bead core material, cutting a first cavity and a first air gap in said first magnetic core, and attaching a second magnetic core to said first magnetic core at least one of in and adjacent to said air gap.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: December 14, 2010
    Assignee: Marvell World Trade Ltd.
    Inventor: Sehat Sutardja
  • Patent number: 7841070
    Abstract: A planar transformer or balun device, having small trace spacing and high mutual coupling coefficient, and a method of fabricating the same is disclosed. The method may comprise providing a first and a second inductor on a primary and a second substrate respectively, interleaving at least partially the first inductor with the second inductor, coupling the primary and the secondary substrates to form a unitary structure, and providing electrical contacts to couple the first and second inductors with another device or circuit.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: November 30, 2010
    Assignee: Intel Corporation
    Inventor: Telesphor Kamgaing
  • Publication number: 20100218365
    Abstract: A process of manufacturing segments, an anisotropic direction of which is continuously changed in a plane vertically by a uniform magnetic field maintained in a constant direction and a process of arranging a plurality of segments on a circumference, extruding the segments in a ring shape by rheology based on the viscous deformation of the segments, from one thrust-direction end surface of the segments, and subsequently compressing the segments from both thrust-direction end surfaces of the segments are necessarily included. A ring magnet, anisotropy of which is controlled in a continuous direction, is provided, and a source for generating a static magnetic field has energy density (BH) max?160 to 180 kJ/m3.
    Type: Application
    Filed: May 20, 2009
    Publication date: September 2, 2010
    Applicant: Panasonic Corporation
    Inventors: Fumitoshi Yamashita, Kiyomi Kawamura, Yukihiro Okada, Hiroshi Murakami
  • Publication number: 20100172169
    Abstract: A magnetic structure includes a first portion and a plurality of second portions. The first portion extends in a first direction. The plurality of second portions extend from ends of the first portion in a second direction. The first and second directions are perpendicular to one another. Two magnetic domains magnetized in directions opposite to each other and a magnetic domain wall between the magnetic domains are formed in the magnetic structure.
    Type: Application
    Filed: July 7, 2009
    Publication date: July 8, 2010
    Inventors: Sung-chul Lee, Sun-ae Seo, Young-jin Cho, Ung-hwan Pi, Ji-young Bae
  • Patent number: 7743482
    Abstract: A semiconductor device and fabricating method thereof are provided. A first substrate with an inductor cell and a through-electrode is connected to a second substrate having an RF device circuit unit. The first substrate can be stacked on the second substrate, and a connecting electrode can electrically connect the inductor cell to the RF device circuit unit.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: June 29, 2010
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Jae Won Han
  • Patent number: 7726008
    Abstract: A magnetic-field sensor device comprises at least two electrodes; an insulating layer separating the at least two electrodes; at least one layer of chemically-synthesized magnetic nanoparticles disposed at or above a level with the insulating layer, and disposed between the at least two electrodes; and an organic spacer surrounding each of the chemically-synthesized magnetic nanoparticles. A deviation between diameters of different ones of the nanoparticles is less than 15%. Moreover, the chemically-synthesized magnetic nanoparticles range in size between 2 nm and 20 nm in diameter.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Charles T. Black, Stephen M. Gates, Christopher B. Murray, Robert L. Sandstrom
  • Publication number: 20100118432
    Abstract: According to one embodiment, a magnetic storage apparatus includes a magnetic storage medium that includes a servo pattern in which magnetic bodies magnetized to one of an S-pole and an N-pole are discretely arranged in a non-magnetic substance at least in a recording track line direction, an electromagnetic conversion element configured to output a reproduction signal according to a magnetic field leaking from the magnetic bodies; a rectifier circuit configured to receive the reproduction signal swinging from positive to negative and vice versa corresponding to a magnetic pole, and generate a reproduction signal swinging to either a positive or negative direction according to the reproduction signal; and a control circuit configured to cause the electromagnetic conversion element to be positioned to a single recording track on the magnetic storage medium according to the reproduction signal generated in the rectifier circuit.
    Type: Application
    Filed: September 29, 2009
    Publication date: May 13, 2010
    Applicant: Fujitsu Limited
    Inventor: Motomichi Shibano
  • Publication number: 20100101075
    Abstract: A substrate transport apparatus comprises chambers connected to each other through a gate valve, a transport mechanism configured to open the gate valve and to transport a carrier between the chambers along a transport path, a sensor configured to detect the carrier before the carrier reaches a stop position in the chamber, and a controller configured to cause the gate valve to start closing based on the detection signal from the sensor.
    Type: Application
    Filed: October 22, 2009
    Publication date: April 29, 2010
    Applicant: CANON ANELVA CORPORATION
    Inventors: Itaru HAGIWARA, Naoyuki Nozawa
  • Patent number: 7676922
    Abstract: A micro-electromechanical system (MEMS) inductor is formed in a saucer shape that completely surrounds a magnetic core structure which is formed from a ferromagnetic material. In addition, an array of MEMS inductors can be formed by dividing up the saucer-shaped MEMS inductor into a number of electrically-isolated MEMS inductor wedges.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: March 16, 2010
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Peter Johnson, Kyuwoon Hwang, Philipp Lindorfer
  • Patent number: 7640648
    Abstract: Methods of fabricating a magnetic flux channel for a transverse wound electric motor by forming a ring of plural adjacent molded magnetic flux channel pole pieces and a second ring of opposite pole pieces. The two rings are mated such that each pole piece mates with an opposite pole piece to form magnetic flux channels and a c-shaped recess forms a winding channel for a transverse phase winding. After mating, the rings are bonded together to form a stator assembly of the transversely wound electric motor. The two rings may be approximately identical, or the two rings may be different as long as they mate to form the plural molded magnetic flux channels and the transverse phase winding channel. The molds may be designed to form the outer surface of a stator assembly. Molds of adjacent phases may be combined back-to-back to reduce part count and increase mechanical strength.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: January 5, 2010
    Inventor: Norman Rittenhouse
  • Publication number: 20090290409
    Abstract: A Spin Transfer Torque Magnetoresistive Random Access Memory (STT-MRAM) bit cell array is provided. The STT-MRAM array includes a STT-MRAM bit cell and an input net coupled to the STT-MRAM bit cell. The STT-MRAM array includes a pulse signal input pad and a buffer coupled between the pulse signal input pad and the input net. In an aspect, the input net is one of a bit line, a word line, and a source line.
    Type: Application
    Filed: February 2, 2009
    Publication date: November 26, 2009
    Applicant: QUALCOMM INCORPORATED
    Inventors: William Xia, Seung H. Kang
  • Patent number: 7617590
    Abstract: A manufacturing method of an embedded inductor includes the steps of providing a magnetic plastic material, disposing at least one coil into a mold, and injecting or pressing the magnetic plastic material into the mold to form a magnetic body encapsulating the coil. An embedded inductor includes at least one magnetic body encapsulating the coil by injecting molding or pressing molding.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: November 17, 2009
    Assignee: Delta Electronics, Inc.
    Inventors: Cheng-Hong Lee, Yu-Lin Hsueh, Yi-Hong Huang
  • Patent number: 7607216
    Abstract: A multilayer composite including a core made of a magnetic ceramic sintered compact disposed therein, and shrinkage restraining layers including an inorganic powder that is not substantially sintered at the sintering temperature of the green ceramic layers are sintered in order to reduce the difference in shrinkage behavior during firing between the core and the green ceramic layers.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: October 27, 2009
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Ryuichiro Wada, Tetsuya Ikeda
  • Patent number: 7584533
    Abstract: A damascene process is utilized to fabricate the segmented magnetic core elements of an integrated circuit inductor structure. The magnetic core is electroplated from a seed layer that is conformal with a permanent dielectric mold that results in sidewall plating defining an easy magnetic axis. The hard axis runs parallel to the longitudinal axis of the core and the inductor coils are orthogonal to the core's longitudinal axis. The magnetic field generated by the inductor coils is, therefore, parallel and self-aligned to the hard magnetic axis. The easy axis can be enhanced by electroplating in an applied magnetic field parallel to the easy axis.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: September 8, 2009
    Assignee: National Semiconductor Corporation
    Inventors: Peter Smeys, Peter Johnson, Andrei Papou
  • Patent number: 7574792
    Abstract: In the disclosed method of manufacturing an implantable wireless sensor, a cavity is etched in one side of a first substrate. A conductive structure are formed on the base of the cavity. A second conductive structureare formed on a surface of a second substrate, and the two substrates are mutually imposed such that the two conductive plates and coils are disposed in opposed, spaced-apart relation. A laser is then used to cut away perimeter portions of the imposed substrates and simultaneously to heat bond the two substrates together such that the cavity in the first substrate is hermetically sealed.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: August 18, 2009
    Assignee: CardioMEMS, Inc.
    Inventors: David O'Brien, Jason White, Michael Fonseca, Jason Kroh, Mark Allen, David Stern
  • Patent number: 7568278
    Abstract: A method for manufacturing an inductor using a system-in-package (SIP) includes forming a first penetration electrode in a silicon substrate; depositing an insulating film on a first surface of the silicon substrate, and patterning the insulating film to form an inductor hole and a second penetration hole aligned with the first penetration hole; forming an inductor in the inductor hole and a second penetration electrode in the second penetration hole; and depositing a protective film on the insulating film and performing a back grind process such that the first penetration electrode is exposed from a second surface of the silicon substrate, the second surface being opposed to the first surface.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: August 4, 2009
    Assignee: Dongbu Hitek Co., Ltd.
    Inventor: Jae-Won Han
  • Publication number: 20090151152
    Abstract: A method of forming an actuating mechanism for a probe storage system includes providing a scanner chip having a main body including first and second outer surfaces and first and second coil mounting cavities. First and second coils are positioned in respective ones of the first and second coil mounting cavities. First and second magnet receiving pockets are formed in a first plate with first and second magnets being positioned in corresponding ones of the first and second magnet receiving pockets. The first plate is arranged relative to one of the first and second outer surfaces of the scanner chip with the first and second magnets registering with respective ones of the first and second coils. The first plate is spaced from the one of the first and second outer surfaces by a gap of less than about 10 microns.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mark A. Lantz, Hugo E. Rothuizen
  • Publication number: 20090144967
    Abstract: [Problem] Manufacturing work of a coil is simplified and miniaturization of a reactor is achieved by reducing occupied space as much as possible.
    Type: Application
    Filed: May 11, 2007
    Publication date: June 11, 2009
    Applicant: TAMURA CORPORATION
    Inventors: Masatoshi Hasu, Kaoru Hattori, Ryo Nakatsu, Sei Urano, Kensuke Maeno
  • Patent number: 7536779
    Abstract: A magnetic core portion 16, a residual base material portion 42, and a connecting portion 43 are formed by pressing from a base material 40. Notches 18A are formed at a peripheral edge of the magnetic core portion 16, which is bent in the direction of the plate thickness to form a temporary fixing portion 18. When base materials 40 are overlapped to cut the magnetic core portions 16 from the connecting portion 43, the magnetic core portions 16 are pressed in directions toward one another so that the temporary fixing portion 18 is filled between notches 18A in the other magnetic core portion 16, to fix temporarily the other magnetic core portions 16. Since the magnetic core portions 16 are temporarily and simultaneously fixed by pressing in a cutting step normally carried out, the magnetic core portions can be temporarily fixed with ease.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: May 26, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Tatsuo Hara, Toshiaki Yanagisawa, Hiroyuki Kojima, Eiichi Nagasaka, Kenichi Michibata, Yoshiaki Oguchi
  • Patent number: 7513031
    Abstract: A method for making an embedded toroidal inductor (118) includes forming in a ceramic substrate (100) a first plurality of conductive vias (102) radially spaced a first distance from a central axis (101) so as to define an inner circumference. A second plurality of conductive vias (104) is formed radially spaced a second distance about the central axis so as to define an outer circumference. A first plurality of conductive traces (110) forming an electrical connection between substantially adjacent ones of the first and second plurality of conductive vias is formed on a first surface (106) of the ceramic substrate. Further, a second plurality of conductive traces (110) forming an electrical connection between circumferentially offset ones of the first and second plurality of conductive vias is formed on a second surface of the ceramic substrate opposed from the first surface to define a three dimensional toroidal coil.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: April 7, 2009
    Assignee: Harris Corporation
    Inventors: Michael D. Pleskach, Andrew J. Thomson
  • Patent number: 7509727
    Abstract: A transformer and method of making includes first half primary and secondary windings as metallic circuits that are etched on a metallic cladding of a first liquid crystal polymer (LCP) sheet. Secondary windings are positioned in spaced relation to the primary windings. A second LCP sheet is applied over the first LCP sheet. Second half primary and secondary windings are etched as metallic circuits on a metallic cladding of a second LCP sheet. Respective first and second half primary windings are interconnected to each other and the first and second half secondary windings are connected to each other by conductive vias.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: March 31, 2009
    Assignee: Harris Corporation
    Inventor: Steven R. Snyder
  • Patent number: 7497005
    Abstract: A method of fabricating an inductor includes selecting a substrate, depositing a layer of magnetic material on the substrate, depositing an insulating layer on the magnetic material layer, forming a inductor pattern from gold on the insulating layer, depositing a second insulating layer on the inductor pattern, and depositing a second magnetic material layer on the second insulating layer.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: March 3, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Leonard Forbes, Kie Y. Ahn
  • Publication number: 20090009908
    Abstract: The invention relates to a read only magnetic information carrier (1b, 1c, 1d) comprising a substrate (2), an information layer (3) and a stabilizing layer (15a, 15b). The information layer (3) comprises a pattern of magnetic bits (4) of magnetic material wherein the pattern of magnetic bits (4) constitutes an array of bit locations. The presence or absence of the magnetic material at a bit location represents a value of the bit location by a magnetic field (5) having a predetermined magnetization direction (6). The stabilizing layer (15a, 15b) is arranged between the substrate (2) and the information layer (3) and comprises hard magnetic material (8, 9) which is magnetically coupled to the magnetic material of the magnetic bit (4). The magnetically coupled hard magnetic material (8, 9) provides the predetermined magnetization direction (6) of the magnetic field (5).
    Type: Application
    Filed: January 19, 2006
    Publication date: January 8, 2009
    Applicant: NXP B.V.
    Inventor: Jaap Ruigrok
  • Patent number: 7469469
    Abstract: The present invention provides a coil component and a method for making the coil component that includes: a coil section having a through hole and composed of a plurality of ring sections formed of a metallic flat plate disposed in a plane, connected to each other at ring connecting sections, having slits formed by cutting part of the ring sections, and bent at the ring connecting sections and placed one on top of another, terminals connected to the coiled section, and a package member covering the coil section and projecting the terminals therefrom. With this structure, the coil component operates in a high-frequency region, ensuring an inductance and infinitesimal direct-current resistance while being adaptable to a large current, and can be miniaturized.
    Type: Grant
    Filed: October 27, 2005
    Date of Patent: December 30, 2008
    Assignee: Panasonic Corporation
    Inventors: Toshiyuki Nakata, Tsunetsugu Imanishi, Hidetoshi Hiwatashi, Hiroyuki Hamamoto
  • Publication number: 20080301929
    Abstract: A method of manufacturing a power module on a substrate. In one embodiment, the method includes providing power conversion circuitry including providing a magnetic device having a magnetic core and at least one switch on the substrate. The method also includes placing a shielding structure over the magnetic core to create a chamber thereabout. The method also includes depositing an encapsulant about the power conversion circuitry. The shielding structure limits the encapsulant entering the chamber thereby allowing the encapsulant to surround a portion of the magnetic core within the chamber.
    Type: Application
    Filed: August 21, 2008
    Publication date: December 11, 2008
    Inventors: Ashraf W. Lotfi, Mathew Wilkowski, John D. Weld
  • Publication number: 20080276449
    Abstract: A method for manufacturing of a permanent magnet pole piece comprising at least one magnet which is fixed to a base plate, a protective cover and a filling mass is provided, comprising the steps of fixing of the protective cover to the base plate so that it covers the magnet and so that the protective cover and the base plate are hermetically sealed jointed, evacuating of the interior cavity between the protective cover and the base plate through an opening, injecting of the filling mass through an opening into the interior cavity between the protective cover and the base plate and curing of the filling mass.
    Type: Application
    Filed: May 8, 2008
    Publication date: November 13, 2008
    Inventors: Erik Groendahl, Henrik Stiesdal
  • Patent number: 7426780
    Abstract: A method of manufacturing a power module on a substrate. In one embodiment, the method includes providing power conversion circuitry including providing a magnetic device having a magnetic core and at least one switch on the substrate. The method also includes placing a shielding structure over the magnetic core to create a chamber thereabout. The method also includes depositing an encapsulant about the power conversion circuitry. The shielding structure limits the encapsulant entering the chamber thereby allowing the encapsulant to surround a portion of the magnetic core within the chamber.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: September 23, 2008
    Assignee: Enpirion, Inc.
    Inventors: Ashraf W. Lotfi, Mathew Wilkowski, John D. Weld
  • Publication number: 20080212233
    Abstract: A method of manufacturing a storage medium apparatus having a storage medium that stores data. The method includes disposing the storage medium onto a first unit having an insertion section to be inserted into a through hole of the storage medium and an abutment face made of a soft-metal material and spreading around the insertion section, such that the abutment face abuts a surface of the storage medium. The method further includes: abutting an abutment face of a second unit, made of a soft-metal material, on a surface of the storage medium opposite to the surface abutting the abutment face of the first unit; and while holding the storage medium between the first unit and the second unit, fixing the storage medium and at least one of the first unit and the second unit by rotating the storage medium and the one relatively to each other about the through hole.
    Type: Application
    Filed: January 4, 2008
    Publication date: September 4, 2008
    Applicant: Fujitsu Limited
    Inventor: Yoshiyuki Nanba
  • Publication number: 20080201937
    Abstract: Methods for forming data storage media and the media formed thereby are disclosed herein. In one embodiment, the method for forming a data storage media, comprises: injection molding a substrate comprising surface features, wherein said surface features have greater than about 90% of a surface feature replication of an original master; and disposing a data layer over at least one surface of said substrate; wherein said data storage media has an axial displacement peak of less than about 500? under shock or vibration excitation when excited by a 1 G sinusoidal loading.
    Type: Application
    Filed: October 17, 2007
    Publication date: August 28, 2008
    Applicant: General Electric Company
    Inventors: Thomas P. Feist, Wit C. Bushko, Herbert S. Cole, John E. Davis, Thomas B. Gorczyca, Joseph T. Woods
  • Patent number: 7409759
    Abstract: Provided is a method and system for manufacturing a hard drive platen. The method includes depositing two or more types of film around a central core to form a plurality of film layers, each film layer being of a different type than its adjacent layers. Next, the deposited film layers are sectioned to expose a patterned surface. The patterned surface is then planarized and selectively etched to expose patterns comprised of one of the types of film to a predetermined depth to produce a selectively etched surface. Magnetic material it deposited within etches of the surface and the surface is then planarized to form separated magnetic tracks therein.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: August 12, 2008
    Assignee: ASML Holding N.V.
    Inventor: Harry Sewell
  • Publication number: 20080180856
    Abstract: An apparatus and method for a microactuator having a bonding pad having a solder ball retainer to decrease instances of solder ball movement. The method provides a substrate for the microactuator. A conductive layer above the substrate is provided. A bonding pad having a solder ball retainer is provided and disposed above the conductive layer. The bonding pad having a solder ball retainer provides reduced instances of movement of a solder ball disposed therewithin prior to and during a reflow process performed on the solder ball.
    Type: Application
    Filed: January 31, 2007
    Publication date: July 31, 2008
    Inventors: Toshiki Hirano, Haruhide Takahashi, Tatsumi Tsuchiya
  • Patent number: 7380328
    Abstract: The invention includes a stacked open pattern inductor fabricated above a semiconductor substrate. The stacked open pattern inductor includes a plurality of parallel open conducting patterns embedded in a magnetic oxide or in an insulator and a magnetic material. Embedding the stacked open pattern inductor in a magnetic oxide or in an insulator and a magnetic material increases the inductance of the inductor and allows the magnetic flux to be confined to the area of the inductor. A layer of magnetic material may be located above the inductor and below the inductor to confine electronic noise generated in the stacked open pattern inductor to the area occupied by the inductor. The stacked open pattern inductor may be fabricated using conventional integrated circuit manufacturing processes, and the inductor may be used in connection with computer systems.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: June 3, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes
  • Patent number: 7369023
    Abstract: A method for manufacturing magnet armatures which are used mainly in brake-pressure modulators of electronically controlled brake systems and which are provided on their entire surface with a plastic coating, for reasons of dimensional stability and sliding properties. Magnet armatures of this type are constructed as cylindrical members and are usually provided in the region of one of the two end faces with an elastomeric sealing element, which according to the prior art is bonded to the magnet armature by vulcanization, an adhesive elastomer-to-metal bond being formed between the magnet armature and the elastomeric sealing element during vulcanization. Since bonds of this type are not possible for a completely coated magnet armature, the elastomer for the elastomeric sealing element is, according to the invention, vulcanized onto the armature without using an adhesion promoter.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: May 6, 2008
    Assignee: WABCO GmbH & Co., OHG
    Inventors: Dieter Frank, Siegfried Höfler, Armin Sieker
  • Patent number: 7322098
    Abstract: Various methods and apparatus for simultaneously processing two single-sided hard memory disks is provided. Disks are positioned in pairs, with one surface of one disk positioned adjacent one surface of the second disk, with the disk surfaces touching or with a slight separation between them. In this back-to-back orientation, the disk pairs may be processed using conventional double-sided disk processing equipment and techniques. However, each disk will not have two active surfaces. Because of the positioning of the disks during processing, only one surface of each disk will be subjected to full processing. Therefore, each disk will only have one active side.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: January 29, 2008
    Assignee: Maxtor Corporation
    Inventors: Gerardo Buitron, Clarence Gapay, John Grow, Bruce Hachtmann, Kwang Kon Kim, Huan Nguyen, Tom O'Hare
  • Patent number: 7318269
    Abstract: The invention relates to a method of manufacturing a coil component uses as a major part of a common mode choke coil or a transformer, and there is provided a method of manufacturing a compact and low height coil component in which deterioration of impedance characteristics is low and reliability is high. An insulating film is formed on a magnetic substrate, and open regions are formed in the insulating film. A lead terminal portion is formed on the insulating film, and a planarizing film is formed on the open regions. An insulating film is formed and openings are formed in the insulating film at the open regions. A coil conductor is formed on the insulating film, and a planarizing film is further formed on the planarizing film. After a coil conductor is further formed on the coil conductor through the insulating film, the planarizing films are removed.
    Type: Grant
    Filed: August 13, 2004
    Date of Patent: January 15, 2008
    Assignee: TDK Corporation
    Inventors: Makoto Yoshida, Nobuyuki Okuzawa
  • Patent number: 7299535
    Abstract: Methods for forming data storage media and the media formed thereby are disclosed herein. In one embodiment, the method for forming a data storage media, comprises: injection molding a substrate comprising surface features, wherein said surface features have greater than about 90% of a surface feature replication of an original master; and disposing a data layer over at least one surface of said substrate; wherein said data storage media has an axial displacement peak of less than about 500? under shock or vibration excitation.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: November 27, 2007
    Assignee: General Electric Company
    Inventors: Thomas P. Feist, Wit C. Bushko, Herbert S. Cole, John E. Davis, Thomas B. Gorczyca, Joseph T. Woods
  • Patent number: 7293347
    Abstract: A manufacturing method of an HAA includes a step of fixing a first lead conductor member onto a suspension, a step of attaching a second lead conductor member to at least one actuator arm, a step of fixing the suspension onto the at least one actuator arm, a step of electrically connecting the first lead conductor member fixed on the suspension with the second lead conductor member attached on the at least one actuator arm, a step of, thereafter, fixing a head slider provided with at least one head element onto the suspension, and a step of electrically connecting the at least one head element with the first lead conductor member.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: November 13, 2007
    Assignee: TDK Corporation
    Inventors: Takehiro Kamigama, Masashi Shiraishi
  • Patent number: 7210218
    Abstract: A method of fabricating electrical core sheet assemblies such as transformer limbs, transformer yokes, and transformer cores, includes the steps of first cutting electrical core sheets, whose main surfaces have been provided with an anti-corrosion layer, into a desired shape. The side surfaces of the cut core sheets are first provided with an anti-corrosion layer, before the cut core sheets are assembled into the desired core sheet assembly.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: May 1, 2007
    Assignee: ABB T&D Technologies Ltd.
    Inventors: Benjamin Weber, Thomas J. Lanoue
  • Patent number: 7178220
    Abstract: Methods for manufacturing slot core inductors and transformers includes using large scale flex circuitry manufacturing methods and machinery for providing two mating halves of a transformer winding. One winding is inserted into the slot of a slot core and one winding is located proximate to the exterior wall of the slot core. These respective halves are joined together using solder pads or the like to form continuous windings through the slot and around the slotted core.
    Type: Grant
    Filed: September 27, 2004
    Date of Patent: February 20, 2007
    Assignee: Multi-Fineline Electronix, Inc.
    Inventor: Philip A. Harding
  • Patent number: 7174775
    Abstract: In a method of evaluating surface tension of a solid body surface, selection is made of at least three liquid samples having different surface tensions, and contact angles between the respective liquid samples and the solid body surface are measured. Thereby, a correlation between cosines (Y) of the contact angles and surface tensions (X) of the liquid samples is derived as a logarithmic function. Surface tension of the solid body surface is evaluated by the use of a value of X that is calculated by substituting 1 for Y in the correlation. When evaluated by the foregoing evaluation method, a magnetic disk has a surface where the value of X, when 1 is substituted for Y, is greater than 0 and no greater than 17 mN/m.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: February 13, 2007
    Assignees: Hoya Corporation, Hoya Magnetics Singapore Pte. Ltd.
    Inventor: Masafumi Ishiyama
  • Patent number: 7168153
    Abstract: Various apparatus and methods are provided for positioning and handling single-sided hard memory disks. A disk carrier is provided with ribs formed on the inside surface of opposing side walls. The ribs form disk receiving grooves or channels. The ribs further comprise an alternating pattern of large and small ribs. The large ribs separate pairs of disks from other pairs, the small ribs separate and maintain spacing of the two disks comprising each pair of disks.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: January 30, 2007
    Assignee: Maxtor Corporation
    Inventors: Gerardo Buitron, Walter Crofton, Bruce Hachtmann, David Newman
  • Patent number: 7158004
    Abstract: The invention relates to an inductor comprising a plurality of interconnected conductive segments interwoven with a substrate. The inductance of the inductor is increased through the use of coatings and films of ferromagnetic materials such as magnetic metals, alloys, and oxides. The inductor is compatible with integrated circuit manufacturing techniques and eliminates the need in many systems and circuits for large off chip inductors. A sense and measurement coil, which is fabricated on the same substrate as the inductor, provides the capability to measure the magnetic field or flux produced by the inductor. This on chip measurement capability supplies information that permits circuit engineers to design and fabricate on chip inductors to very tight tolerances.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: January 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Kie Y. Ahn, Leonard Forbes