Piezoelectric Element Or Electrode Patents (Class 310/323.06)
  • Patent number: 7902723
    Abstract: A screw thread driving polyhedral ultrasonic motor includes a stator, a rotor and multiple piezoelectric plates being bonded to the stator or the rotor. The stator and the rotor have screw threads matched with each other. The stator and the rotor are connected via the screw threads.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: March 8, 2011
    Assignee: Tsinghua University
    Inventors: Tieying Zhou, Cunyue Lu, Yu Chen, Deyong Fu, Xiaoping Hu, Yi Li, Bin Tian, Zhengping Wang
  • Publication number: 20110025168
    Abstract: Provided are a vibrating body and a vibration wave actuator, which can suppress vibration attenuation along with a reduction in size with an inexpensive structure, to thereby improve vibration efficiency, and can output stable vibration energy. A vibrating body includes: a piezoelectric element including a piezoelectric layer and an electrode layer; a ceramic substrate to which the piezoelectric element is fixed; and a ceramic layer including the same main component as a main component of the ceramic substrate, which is provided between the piezoelectric element and the ceramic substrate, and the piezoelectric element is fixed to the ceramic substrate through intermediation of the ceramic layer.
    Type: Application
    Filed: July 22, 2010
    Publication date: February 3, 2011
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Yutaka Maruyama
  • Patent number: 7851972
    Abstract: It is an subject of the present invention to provide a vibration actuator in which a plurality of rotors can be driven by a single vibration unit. When a composite vibrator (2) is driven to generate a composite vibration combining a plurality of vibrations, a first stator (3) and a second stator (4) vibrate, thereby causing elliptical movements in corner portions (8) and (9) of the first stator (3) and the second stator (4), respectively. As a result, a first rotor (A) abutting onto and pressurized against the corner portion (8) of the first stator (3) and a second rotor (B) abutting onto and pressurized against the corner portion (9) of the second stator (4) are rotated at the same time. Further, in this case, by selecting vibration modes of the plurality of vibrations constituting the composite vibration, the two rotors (A) and (B) can be rotated in the same direction or in opposite directions with respect to each other.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: December 14, 2010
    Assignees: Kabushiki Kaisha Toyota Jidoshokki, Tokyo Institute of Technology
    Inventors: Masaki Takasan, Hirohiko Ishikawa, Kazuo Seiki, Kentaro Nakamura, Sadayuki Ueha
  • Patent number: 7834518
    Abstract: The invention relates to a linear ultrasound piezoelectric motor comprising a mobile element that is in frictional contact with a plate-like rectangular resonance plate, wherein the frictional surface is embodied by means of at least one of the longitudinal narrow sides of the resonance plate, and electrodes for producing acoustic vibrations which are arranged on the longitudinal wide sides of the resonance plate. According to the invention, the generator for producing acoustic vibrations is asymmetrically arranged in relation to a plane which symmetrically cross-cuts the resonance plate, and comprises two opposing electrodes generating a stationary asymmetrical space wave when excited.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: November 16, 2010
    Assignee: Physik Instŕumente (PI) GmbH & Co. KG
    Inventors: Wladimir Wischnewskij, Alexej Wischnewskij
  • Publication number: 20100284098
    Abstract: A piezoelectric actuator with low susceptibility to friction and rubbing is provided. A piezoelectric actuator of the present invention is provided with protruding portions, first piezoelectric actuators and second piezoelectric actuators. The protruding portions protrude from a first face of a base member toward a moving member, and are capable of supporting the moving member. The first piezoelectric actuators are provided along members other than the protruding portions and are capable of expanding and contracting in an orthogonal direction that is orthogonal to the first face. The second piezoelectric actuators are provided along the members other than the protruding portions and are capable of expanding and contracting in a direction other than the orthogonal direction.
    Type: Application
    Filed: May 10, 2010
    Publication date: November 11, 2010
    Applicant: NIKON CORPORATION
    Inventor: Kunihiro KUWANO
  • Publication number: 20100283356
    Abstract: Provided is a method of producing a vibrating body for a vibration wave drive device using a vibrator in which an electromechanical energy conversion element is joined to a vibrating body having a plurality of protruding portions, the method including a first step and a second step. In the first step, an elastic material having a plurality of protruding portions is produced. In the second step, a pressure in a direction opposite to a protruding direction of the protruding portions of the elastic material is applied to press at least parts of the protruding portions to reduce slits between the protruding portions adjacent to each other.
    Type: Application
    Filed: May 3, 2010
    Publication date: November 11, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Jun Tamai
  • Patent number: 7819005
    Abstract: Devices usable as sensors, as transducers, or as both sensors and transducers include one or more nanotubes or nanowires. In some embodiments, the devices may each include a plurality of sensor/transducer devices carried by a common substrate. The sensor/transducer devices may be individually operable, and may exhibit a plurality of resonant frequencies to enhance the operable frequency bandwidth of the devices. Sensor/transducer devices include one or more elements configured to alter a resonant frequency of a nanotube. Such elements may be selectively and individually actuable. Methods for sensing mechanical displacements and vibrations include monitoring an electrical characteristic of a nanotube. Methods for generating mechanical displacements and vibrations include using an electrical signal to induce mechanical displacements or vibrations in one or more nanotubes.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: October 26, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Neal R. Rueger
  • Publication number: 20100207488
    Abstract: A spherical rotary piezoelectric motor comprises a spherical rotor, a hemispherical stator, and a plurality of piezoelectric actuators. The hemispherical stator comprises an inner surface and an outer surface, wherein the inner surface forms a hemispherical hollow portion which substantially corresponds to the spherical rotor so as to contain a portion of the spherical rotor. The plurality of piezoelectric actuators is arranged on the inner surface (or the outer surface) of the hemispherical stator respectively so as to drive the hemispherical stator. The hemispherical stator generates traveling waves with a resultant elliptical motion, so the spherical rotor can be rotated accordingly with at least one degree of freedom.
    Type: Application
    Filed: May 5, 2009
    Publication date: August 19, 2010
    Applicant: CHUNG-YUAN CHRISTIAN UNIVERSITY
    Inventors: Yung Ting, Yi-Ta Lee
  • Patent number: 7732980
    Abstract: To provide an electromechanical conversion element, a vibration actuator, a vibration actuator driving device, a lens barrel and a camera, which facilitate the achievement of the desired drive characteristics. An electromechanical conversion element comprising: a piezoelectric body having a polarization part polarized in a certain direction; and a plurality of separately formed electrodes on a continuous region of the polarization part.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: June 8, 2010
    Assignee: Nikon Corporation
    Inventor: Toshikazu Morioke
  • Patent number: 7723900
    Abstract: An electro-mechanical wave device which may be used for movement of a mechanical member, e.g. by friction, a motor comprising one or more wave devices, and a method of providing the electro-mechanical wave device. The electro-mechanical wave device comprises a substrate comprising a plurality of conductors, and a plurality of actuators positioned on the substrate for generation of mechanical waves along a predetermined propagation path, each of the actuators being connected to a respective set of the conductors of the substrate for reception of an excitation signal transmitted by the set of conductors.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 25, 2010
    Assignee: PCB Motor APS
    Inventors: Henning Ellesgaard, Elvind Johansen, Tom Olesen, Henrik Andersen, Morten Hartvig Hansen
  • Patent number: 7698926
    Abstract: An energy harvesting system and method. An array of cantilevers with PZT films is electrically connected to an energy harvesting device that converts vibration energy to electrical energy. An AC output signal provided by the cantilevers can be rectified to a DC output, thereby avoiding impairment in total electrical output. The DC output terminals can be connected in parallel and/or in series in order to achieve a higher voltage and/or a higher current that prevents the output from different cantilevers from counteracting one another. The connection circuitry includes one or more rectifying components integrated with one or more micro-cantilevers into a single integrated circuit chip. An oscillograph can be utilized to monitor the DC output voltage signal from an associated testing circuit.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: April 20, 2010
    Assignee: Honeywell International Inc.
    Inventors: Xinhui Mao, HuaBin Fang
  • Patent number: 7671518
    Abstract: Piezoelectric vibrators provided with an electrode that includes a drive electrode and adjustment electrodes formed in advance on part of the electrode; the drive electrode and adjustment electrodes that are initially electrically connected to each other are electrically cutoff and insulated from each other by cutting conductive parts between the drive electrode and adjustment electrodes, or the mutually insulated drive electrode and adjustment electrodes are electrically connected using solder, a wire, or another electrically conductive member, whereby the characteristic frequencies are adjusted.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: March 2, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Akihiro Sawada, Shigeaki Seki, Susumu Kayamori
  • Patent number: 7667374
    Abstract: In an ultrasonic transducer including a gap between an upper electrode and a lower electrode on a silicon substrate, it is made possible to reduce or adjust warpage of an above-gap membrane vibrated by electrostatic actuation due to internal stress. A fourth insulating film and a fifth insulating film of films positioned above the gap which is a cavity required for transmitting and receiving ultrasonic are respectively a silicon oxide film for compression stress and a silicon nitride film for tensile stress. Therefore, compression stress and tensile stress cancel each other, so that warpage of the above-gap membrane is reduced. An amount of warpage can be adjusted by adjusting a film thickness of the fourth insulating film and a film thickness of the fifth insulating film.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: February 23, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Takanori Aono, Tatsuya Nagata, Hiroyuki Enomoto, Shuntaro Machida
  • Publication number: 20100007244
    Abstract: A piezoelectric motor that includes a rotor and a stator having a surface on which a driving member that is in contact with the rotor for rotating the rotor is disposed. The stator includes a stator body, a plurality of piezoelectric elements disposed on a surface of the stator body, and an electrode wiring plate integrally formed with the stator body. The piezoelectric elements are electrically connected to a plurality of electrodes formed on the electrode wiring plate through a plurality of wiring lines. The wiring lines are constituted by an electroconductive film extending from a surface of the stator body to the electrodes.
    Type: Application
    Filed: July 6, 2009
    Publication date: January 14, 2010
    Applicant: Murata Manufacturing Co., Ltd.
    Inventors: Katsumi Fujimoto, Hiroshi Asano
  • Patent number: 7638932
    Abstract: Internal electrode layers (5) include a common electrode layer (3) and feed electrode layers (6) alternately placed in a stacking direction with piezoelectric layers (1) interposed between the common electrode layer (3) and the feed electrode layers (6). The common electrode layer (3) has a common electrode (3a). The feed electrode layers (6) include a first feed electrode layer (6a) and a second feed electrode layer (6b). The first feed electrode layer (6) has four divided electrodes (2a through 2d) and a first connection electrode (2e) for providing connection between two of the divided electrodes (2b, 2d). The second feed electrode layer (6) has four divided electrodes (4a through 4d) and a second connection electrode (4e) for providing connection between two of the divided electrodes (4a, 4c).
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: December 29, 2009
    Assignee: Panasonic Corporation
    Inventor: Yusuke Adachi
  • Patent number: 7638926
    Abstract: A piezoelectric ultrasonic motor includes a piezoelectric stator including a metal tube with an inner space and piezoelectric elements mounted on the outer circumference of the metal tube, a rotary shaft including a rotation bar inserted into the inner space of the metal tube, and a rotation member provided around the rotation bar in contact with the piezoelectric stator. The piezoelectric stator strains with an electric field applied thereto, and the rotation member rotates in response to the strain of the piezoelectric stator. A power transmission member is provided at one portion of the rotation bar to transmit the rotation of the rotation member to an object to be transported. With face contact the motor achieves stable actuation together with enhanced force and sufficient strain, and a flexibility to be applied to various apparatuses such as a camera module.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: December 29, 2009
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Byung Woo Kang, Burhanettin Koc, Jung Ho Ryu, Sang Min On, Dong Kyun Lee
  • Patent number: 7633215
    Abstract: At least one exemplary embodiment is directed to an electro-mechanical energy converter and a vibration wave driving apparatus that can facilitate miniaturization, high power, low cost and low voltage drive, by using a polygonal piezoelectric element with a plurality of electrode films divided by a boundary of electrode film on the polygonal piezoelectric element.
    Type: Grant
    Filed: October 10, 2008
    Date of Patent: December 15, 2009
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kiyoshi Nitto, Yutaka Maruyama, Takayuki Tsukimoto
  • Patent number: 7605368
    Abstract: A vibration-type cantilever holder holds a cantilever opposed to a sample. The holder supports a main body part of the cantilever at only its base end so that a probe at the free end of the cantilever can contact the sample. The holder has a cantilever-attaching stand on which the main body part is placed and fastened such that the cantilever is tilted at a predetermined angle with respect to the sample. A first vibration source is fastened to the cantilever-attaching stand and vibrates with a phase and an amplitude depending on a predetermined waveform signal, and the first vibration source is fastened at a first location to a holder main body. A second vibration source is fastened at a second location, which is spaced from the first location, to the holder main body and generates vibrations to offset vibrations traveling from the first vibration source to the cantilever-attaching stand and holder main body.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: October 20, 2009
    Assignee: SII NanoTechnology Inc.
    Inventors: Masatsugu Shigeno, Masato Iyoki
  • Patent number: 7580209
    Abstract: Systems for positioning a functional element, such as an optical lens, include a housing, a primary guide pin coupled to the housing, a functional group that includes the functional element, and a vibrational actuator assembly. The functional group is movably coupled with the primary guide pin and includes a first friction surface and a second friction surface. The first and second friction surfaces are oriented relative to one another at one of an obtuse angle and a straight angle. The vibrational actuator assembly is substantially registered relative to the housing and includes a first drive element and a second drive element. The first drive element is configured to interact with the first friction surface and the second drive element is configured to interact with the second friction surface. The vibrational actuator assembly operates to translate the functional group.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: August 25, 2009
    Assignee: Flextronics AP, LLC
    Inventors: Lothar Westerweck, Wolfram Grziwa
  • Patent number: 7573624
    Abstract: In the orientation device of a transmission assembly for orienting at least one beam in elevation and/or in bearing, said assembly pivots on a fork about an elevation axis and is driven about this axis by a motor supported by said fork, which fork can pivot on a base about a bearing axis, perpendicular to the elevation axis and driven about this axis by a second motor supported by said base, and at least one of the motors is a travelling-wave piezoelectric rotary motor.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: August 11, 2009
    Assignee: Sagem Defense Securite
    Inventors: Florent Thibout, Jacques Robineau, Jean-Thierry Audren, Julien Aragones
  • Publication number: 20090134744
    Abstract: A ring type piezoelectric ultrasonic resonator includes a piezoelectric ceramic segmented for each quarter of wavelength of an applied AC electric field, wherein the piezoelectric ceramic is alternately polarized in polarization units each having two segments, and a sine wave AC electric field and a sine wave AC electric field having a predetermined phase difference from the sine wave AC electric field are alternately applied to each of the segments. Further, the number of the segments of the piezoelectric ceramic is an integral multiple of 4. Moreover, the sine wave AC electric field applied to each of the segments of the piezoelectric ceramic has a phase difference of 90-degree with respect to adjacent segments.
    Type: Application
    Filed: November 18, 2008
    Publication date: May 28, 2009
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Seok Jin Yoon, Hyun Jai Kim, Chong Yun Kang, Hyun Cheol Song
  • Publication number: 20080297001
    Abstract: The invention relates to a miniaturizable motor (1) comprising a rotor (12) that is driven by a hollow cylindrical piezo oscillator (2). Said rotor is effectively connected to a frictional face (13) of the piezo oscillator while a main electrode or counter electrode (3) and excitation electrodes (4, 5, 6) are disposed on the surface of the hollow cylinder. The hollow cylindrical piezo oscillator is made of a monocrystalline material with a trigonal crystal system which is provided with three main electrical axes that are placed at a 120° angle relative to each other as well as an optical axis. Said optical axis encloses a 90° angle along with the point of intersection of the electrical axes while coinciding with the longitudinal axis of the hollow cylindrical piezo oscillator. Furthermore, the axial axis of symmetry of the respective excitation electrode intersects one of the main electrical axes while said axial axis of symmetry extends parallel to the optical axis.
    Type: Application
    Filed: June 29, 2005
    Publication date: December 4, 2008
    Applicant: PHYSIK INSTRUMENTE (PI) GMBH & CO. KG
    Inventors: Wladimir Wischnewskij, Alexej Wischnewskij
  • Publication number: 20080247059
    Abstract: The present invention provides a piezoelectric ultrasonic motors and a method of driving a motor with a standing wave. The motors include a thin ring/cylinder-type stator having one or two piezoelectric (ceramic or single crystal) rings/cylinders, coated with a segmented top/outer electrode and a bottom/inner electrode and poled in a thickness/radial direction, a metal ring/cylinder which is laminated with piezoelectric ring(s)/cylinder(s) having several inner threaded protrusions. The motor also includes a power source for supplying an alternating voltage to one group of electrodes of the piezoelectric stator to excite a standing wave vibration along one diameter direction of the stator ring/cylinder. The motor further includes a short cylinder rotor, which may have a lens inside for certain optical applications, or it may include other elements.
    Type: Application
    Filed: April 3, 2008
    Publication date: October 9, 2008
    Inventor: Shuxiang Dong
  • Publication number: 20080238254
    Abstract: A screw thread driving polyhedral ultrasonic motor includes a stator, a rotor and multiple piezoelectric plates being bonded to the stator or the rotor. The stator and the rotor have screw threads matched with each other. The stator and the rotor are connected via the screw threads.
    Type: Application
    Filed: November 16, 2006
    Publication date: October 2, 2008
    Inventors: Tieying Zhou, Cunyue Lu, Yu Chen, Deyong Fu, Xiaoping Hu, Yi Li, Bin Tian, Zhengping Wang
  • Publication number: 20070279928
    Abstract: The light emitting apparatus according to the present invention includes a light source; and an optical component including a fixed member having a through hole, and a wavelength conversion member having at least one part thereof arranged in the through hole, a cut-in part or a hole part being formed in a direction substantially perpendicular to the longitudinal direction of the through hole of the fixed member; where the light from the light source is guided to the wavelength conversion member.
    Type: Application
    Filed: May 24, 2007
    Publication date: December 6, 2007
    Inventors: Atsutomo Hama, Yukihiro Hayashi
  • Patent number: 7288873
    Abstract: A device for emission of high frequency signals is provided. The emission device is capable of emission of signals in the Gigahertz (GHz) and Terahertz (THz) range. The device may utilize, for example, a cantilever comprising a material that is capable of altering its electrical properties when flexed.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: October 30, 2007
    Assignee: Scenterra, Inc.
    Inventors: Kenneth E. Salsman, Daniel W. So
  • Patent number: 7245058
    Abstract: A vibration wave driving apparatus includes a vibration member in which an electro-mechanical energy conversion element is fixed to an elastic member, and a contact member pressed against a sliding part provided in the vibration member, so as to be kept in contact therewith. The vibration wave driving apparatus is configured to supply alternating signals in a predetermined driving frequency band to the electro-mechanical energy conversion element, thereby generating a predetermined natural vibration mode in the elastic member to drive the contact member. In the apparatus, the natural vibration mode is generated in the elastic member, a natural frequency of another vibration mode different from the natural vibration mode is detected, and a stiffness of the support member is altered if the natural frequency of the other vibration mode detected is included in the driving frequency band.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: July 17, 2007
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kosuke Fujimoto, Shinji Yamamoto, Mitsuo Nishimura, Takao Mori
  • Patent number: 7183699
    Abstract: A stacked type electromechanical energy conversion element which is compact in size and capable of providing higher output power and enhanced operating efficiency. A plurality of electrode layers are formed, respectively, on one surfaces of a plurality of piezoelectric layers, and the material layers and said electrode layers are stacked one upon another. Electrodes are formed at least in the plurality of material layers for providing electrical connections between corresponding ones of the plurality of electrode layers. The plurality of electrode layers have a non-uniform configuration depending on a predetermined strain distribution that is to occur in the stacked type electromechanical energy conversion element.
    Type: Grant
    Filed: June 13, 2005
    Date of Patent: February 27, 2007
    Assignee: Canon Kabushi Kaisha
    Inventors: Yutaka Maruyama, Kiyoshi Nitto
  • Patent number: 7129799
    Abstract: A piezoelectric oscillator using zinc oxide as a piezoelectric plate which eliminates unwanted resonance called inharmonic overtone by optimizing ratio Le/H of driving electrode length Le to oscillator thickness H. Ratio Le/H is set between 4 and 100 in the piezoelectric oscillator polarized in a thickness direction of a piezoelectric plate and using thickness extension vibration as main vibration or the piezoelectric oscillator polarized in a length direction of the piezoelectric plate and using thickness shear vibration as main vibration. This achieves stable characteristic because no unwanted resonance exists between the resonance frequency and anti-resonance frequency of the main vibration.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: October 31, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Yukinori Sasaki
  • Patent number: 7005776
    Abstract: An ultrasonic motor comprises a piezoelectric vibrating member having a detecting polarized portion for detecting a drive signal having a drive frequency of the detecting polarized portion and a driving polarized portion for receiving the drive signal to oscillate the piezoelectric vibrating member in self-excited oscillation to produce a drive force. The detecting polarized portion is disposed at a portion of the piezoelectric vibrating member for undergoing maximum deformation in at least one vibration mode of oscillation of the piezoelectric vibrating member. An amplifying circuit amplifies the drive signal detected by the detecting polarized portion and inputs the amplified signal to the driving polarized portion to oscillate the piezoelectric vibrating member.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: February 28, 2006
    Assignee: Seiko Instruments Inc.
    Inventors: Akihiro Iino, Masao Kasuga, Kenji Suzuki
  • Patent number: 6952073
    Abstract: The present invention relates to a vibration wave driving apparatus including: a vibration member which has an electro-mechanical energy conversion element having a plurality of electrode regions that are fixed to an elastic member and polarized in the same direction, and which generates a travelling wave that is obtained by synthesizing a plurality of standing waves different in phase on a surface of the elastic member by supplying an ac signal to the electro-mechanical energy conversion element; and a moving member which is in contact with the vibration member and driven by the travelling wave.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: October 4, 2005
    Assignee: Canon Kabushiki Kaisha
    Inventor: Shinji Yamamoto
  • Patent number: 6943481
    Abstract: The present invention has been devised in order to raise driving efficiency of the vibration wave driving apparatus. A vibration member of a vibration wave driving apparatus of the present invention comprises the vibration member constituted of an elastic member and an electro-mechanical energy conversion element, and a rotor contacting the vibration member, and the vibration member generates a travelling wave in the elastic member when an alternating signal is applied to the electro-mechanical energy conversion element, in which an electrode film provided on a surface of the electro-mechanical energy conversion element of the vibration member is divided into a plurality of circular areas with different radiuses and each circular area is divided into a plurality of electrodes along its peripheral direction.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: September 13, 2005
    Assignees: Canon Precision Kabushiki Kaisha, Canon Kabushiki Kaisha
    Inventors: Takuji Okamoto, Eiichi Yanagi, Masaharu Suzuki, Yoshifumi Nishimoto, Hirokazu Hashidume, Osamu Yanase
  • Patent number: 6909223
    Abstract: A rotation/displacement converting actuator has an actuator unit constituted by a displacing body and an actuator in which the displacing body can be linearly displaced. The actuator has a pair of plate-shaped bases, a rotor, a vibrating element that rotates the rotor, and a cam mechanism for converting rotary motion of the rotor to linear motion of the displacing body. The rotor is fixed to a shaft to which the rotor (cam rotor) is fixed. An outer circumferential surface of the rotor constitutes a cam surface of the cam mechanism. A roller is provided at a tip portion of the displacing body. The roller abuts on the outer circumferential surface (cam surface) of the rotor.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: June 21, 2005
    Assignee: Seiko Epson Corporation
    Inventor: Osamu Miyazawa
  • Patent number: 6744176
    Abstract: The present invention concerns a piezoelectric motor of the type including: a stator (2); a rotor (20) capable of moving in rotation in a plane (Pdm) called the mean movement plane perpendicular to a geometrical rotational axis (X1) on which the rotor (20) is centred; coupling means (8) for driving the rotor (20) arranged between the stator (2) and said rotor (20); piezoelectric means (12) capable of being electrically excited to impart a vibratory movement onto the coupling means (8); transmission means (40) able to transmit the vibratory movement from the coupling means (8) to the rotor (20) in order to drive said rotor (20) in rotation about its axis (X1), and holding means (44) for applying the rotor (20) onto the coupling means (8), characterised in that the coupling means (8) are arranged freely about the geometrical rotational axis (X1) on which they are centred, and in that the coupling means (8) rest on the stator (2) via support means (10) shaped to convert the vibratory movement of the point
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: June 1, 2004
    Assignee: Asulab S.A.
    Inventor: Rudolf Dinger
  • Patent number: 6707233
    Abstract: An ultrasonic motor includes a stator having a piezoelectric element and a rotor facing the stator. The piezoelectric element is annular and is polarized into segments in the circumferential direction. A flexible plate is fixed to the piezoelectric element with an electrode plate in between. The flexible plate includes a flexible substrate, a conductor, and a reinforcement. The conductor is located on a part of the flexible substrate to be electrically connected to the electrode plate. The reinforcement is located on the flexible substrate at a position that is off the conductor. The reinforcement suppresses vibration generated at a part of the piezoelectric element that is off the conductor, thereby stabilizing vibration of the piezoelectric element in the circumferential direction.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: March 16, 2004
    Assignee: ASMO Co., LTD
    Inventors: Nobumitsu Oda, Takashi Fukui, Yoshihiro Adachi
  • Patent number: 6693509
    Abstract: A coding and decoding system for wireless telecommunication comprises a wireless telecommunication device and a personal card. The wireless telecommunication device consists of a first piezoelectric substrate, a coded IDT, a first electrode-group, a first amplifier, an antenna, a second amplifier, a second electrode-group, a first intermediary IDT, and a signal analyzer. The personal card attached to the wireless telecommunication device consists of a second piezoelectric substrate, a personal coded IDT, a third electrode-group, a second intermediary IDT. The coding and decoding system for wireless telecommunication has four sections, that is, (1) a personal transmitting section (2) a main transmitting section (3) a personal receiving section and (4) a main receiving section.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: February 17, 2004
    Inventor: Kohji Toda
  • Patent number: 6690100
    Abstract: A piezoelectric actuator is formed in a manner which enhances the identifying function of markings provided thereon, and minimizes the influence on the markings when an electrode pattern on the piezoelectric actuator is shifted. The piezoelectric actuator has a piezoelectric element, an electrode pattern formed thereon, and at least one identifying marking formed on the electrode pattern, each identifying marking having a shape comprising multiple sides and being formed at a specific location of the electrode pattern for use in identifying a characteristic of the electrode pattern.
    Type: Grant
    Filed: April 26, 1999
    Date of Patent: February 10, 2004
    Assignee: Seiko Instruments Inc.
    Inventors: Keitaro Koroishi, Hironobu Itoh, Tomoyuki Yoshino
  • Patent number: 6674217
    Abstract: There is disclosed a vibration member comprising: a driving portion; an elastic member including the driving portion; and an electro-mechanical energy conversion element as a driving source in contact with the elastic member. The electro-mechanical energy conversion element is provided with an alternating signal to generate a plurality of vibrations, and the plurality of vibrations are combined to generate a driving vibration in the driving portion. An ununiformity of rigidity of the vibration member caused by a polarization treatment performed on the electro-mechanical energy conversion element is offset by partially changing the rigidity of the vibration member, so that a stable driving vibration of the vibration member can be outputted.
    Type: Grant
    Filed: July 26, 2000
    Date of Patent: January 6, 2004
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kosuke Fujimoto
  • Publication number: 20030168934
    Abstract: The invention relates to a device for the deflection of optical beams (25), provided with a piezo-plate (14), which has piezoelectric regions (15, 16), controlled by piezo electrodes (20, 21). At least one end section (22) of the piezo plate (14) is free of piezo electrodes (20, 31), whereby said free end section (22) is of a size, corresponding to the dimensions of the beams falling thereon. A deflection is thus achieved which leaves the wavefronts of the beams (25) essentially undisturbed.
    Type: Application
    Filed: April 8, 2003
    Publication date: September 11, 2003
    Inventors: Vladimir Hinkov, Iliyana Hinkov
  • Patent number: 6586860
    Abstract: In a self-excited oscillator circuit, a buffer is connected to an electrode or electrodes, and a buffer and an inverter are connected to an electrode or electrodes. Each of the inverters and and the buffer has a tri-state configuration and is capable of setting an output terminal in a high-impedance state, i.e., turning off an output signal, according to a signal input to a control terminal. Therefore, it is possible to turn off a drive circuit and the ultrasonic motor by setting the inverter in the high-impedance state. It is also possible to change the direction of movement of the moving member by setting one of the buffer and the inverter in the high-impedance state.
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: July 1, 2003
    Assignee: Seiko Instruments Inc.
    Inventors: Akihiro Iino, Kenji Suzuki, Masao Kasuga
  • Patent number: 6539952
    Abstract: The invention provides an apparatus and method for cleaning or etching wafers. The invention further provides a megasonic transducer designed to apply mechanical vibrations to a layer of fluid in contact with a wafer. The electromechanical transducer is housed in a quartz or sapphire lens which is chemically compatible with the layer of fluid, and sealed to protect the housing interior from fluids and chemical fumes. An electrical power source produces a signal that is sent to the transducer to generate a megasonic wave. The wave travels between the lens and the wafer, through the layer of fluid, dislodging small particles from the wafer which are then removed in the fluid stream. In one embodiment of the present invention, a wafer to be cleaned is placed on a rotatable support below a transducer assembly. A fluid is introduced through the transducer assembly to provide a layer of fluid between the lens and wafer.
    Type: Grant
    Filed: April 24, 2001
    Date of Patent: April 1, 2003
    Assignee: Solid State Equipment Corp.
    Inventor: Herman Itzkowitz
  • Patent number: 6518689
    Abstract: A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: February 11, 2003
    Assignee: Honeywell Federal Manufacturing & Technologies, LLC
    Inventor: Simon Scott Yerganian
  • Publication number: 20020125794
    Abstract: A vibrating piece in which a CI values ratio is maintained constant while minimizing the CI value of the fundamental wave, variations of the CI values between the vibrating piece devices are reduced even if the base is made short, and the entire vibrating piece can be made smaller.
    Type: Application
    Filed: January 14, 2002
    Publication date: September 12, 2002
    Inventors: Hideo Tanaya, Fumitaka Kitamura, Junichiro Sakata
  • Patent number: 6433463
    Abstract: Micromechanical parts are freed from a surface of a substrate to which the parts are stiction bonded by applying a pulse stress wave to the substrate that propagates through the substrate and is reflected at the surface to which the micropart is stiction bonded, breaking the bond between the micropart and the substrate surface by a spalling action at the surface. A piezoelectric transducer may be secured to the bottom surface of the substrate such that a voltage pulse supplied to the piezoelectric transducer deforms the piezoelectric element and the substrate to which it is secured to provide a pulse stress wave that propagates through the substrate to the top surface. For microparts that are in contact with but not stiction bonded to the substrate top surface, a pulse stress wave can be applied to the substrate to drive the microparts away from the surface by the rapid displacement of that surface as the pulse stress wave is reflected at the surface.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: August 13, 2002
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Amit Lal, Ville Kaajakari
  • Publication number: 20020074900
    Abstract: The present invention relates to a ring-type piezoelectric ultrasonic motor that is different from the electro-magnetically driven conventional motors and that has applications in robots and automation equipments. More specifically, the present invention relates to a ring-type piezoelectric ultrasonic motor that is driven by a frictional force between rotor and stator, and stator is produced a mechanical displacement by a piezoelectric ceramics applying an alternate electric field with an ultrasonic frequency (above 16 kHz).
    Type: Application
    Filed: September 21, 2001
    Publication date: June 20, 2002
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Seok Jin Yoon, Hyun Jai Kim, Hyung Jin Jung, Piotr Vasiljev
  • Patent number: 6384550
    Abstract: A sound signal from an audio amplifier is converted to a speed signal by a drive circuit, and a cone sheet which forms a diaphragm is driven by a supersonic wave motor driven by a travelling vibration wave through a link and a leaf spring.
    Type: Grant
    Filed: September 6, 1995
    Date of Patent: May 7, 2002
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hideaki Miyakawa, Masaichi Satoh, Kenichi Nagasawa, Reiji Mitarai
  • Publication number: 20020017831
    Abstract: A piezoelectric motor having a stator and a rotor. The stator and the rotor are in mechanical contact with one another along at least one cylindrical friction surface by means of curved, elastic and longitudinally elongated pusher plates, the pusher plates being held against the friction surface at a first end of the pusher plates, and arranged at an angle to the friction surface. A piezoelectric element is connected to either the rotor or the stator. The piezoelectric element has electrodes placed on opposing surfaces of the piezoelectric element, and is connectable to an alternating current source via the electrodes for providing longitudinal oscillations in the piezoelectric element. A first ring plate and a second ring plate are arranged on opposite sides of the piezoelectric element, so that at least a portion of surfaces of the piezoelectric element are pressed against surfaces of the first ring plate and the second ring plate, respectively, by a clamping device.
    Type: Application
    Filed: July 30, 2001
    Publication date: February 14, 2002
    Inventors: Alexander M. Iarochenko, V?apos;Yacheslav V. Lavrinenko
  • Publication number: 20020014810
    Abstract: In order to achieve both of securing the effective area of the activation portion and maintaining process accuracy of electrodes of piezoelectric element, a stacked electro-mechanical energy conversion element of the present invention is configured by stacking a plurality of layers made of a material having an electro-mechanical energy conversion function in which a plurality of electrode areas are formed, and comprises a first layer having an electro-conductive electrode portion formed from the electrode area to a side face which is a non-stacked area, a second layer having a through-hole formed by an electro-conductive member being pierced, a third layer having a connection electro-conductive film which communicates the electro-conductive electrode portion of the first layer and the through-hole of the second layer, and an external electro-conductive film formed in the side surface of the first layer so as to communicate with the electro-conductive electrode portion.
    Type: Application
    Filed: June 4, 2001
    Publication date: February 7, 2002
    Inventor: Yutaka Maruyama
  • Publication number: 20010035699
    Abstract: A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
    Type: Application
    Filed: May 18, 2001
    Publication date: November 1, 2001
    Inventor: Simon Scott Yerganian
  • Publication number: 20010022485
    Abstract: An ultrasonic motor includes a stator having a piezoelectric element and a rotor facing the stator. The piezoelectric element vibrates the stator to rotate the rotor. A lining member is located between the rotor and the stator. A spring is installed in the motor. The spring is deformed by a predetermined amount to press the rotor against the stator. The force of the spring pressing the rotor changes in accordance with the deformation of the spring. The spring is installed such that its deformation is in a predetermined range, so that, within the range, the urging force of the spring changes by a relatively small amount for a given change of deformation. Therefore, when deformation of the spring changes due to wearing of the lining member, the urging force of the disk spring scarcely changes. Accordingly, the rotation characteristics of the motor scarcely change over time.
    Type: Application
    Filed: December 12, 2000
    Publication date: September 20, 2001
    Inventors: Nobumitsu Oda, Takashi Fukui, Yoshihiro Adachi