Encapsulated Or Coated Patents (Class 310/340)
-
Patent number: 12048249Abstract: A piezoelectric actuator includes: a piezoelectric element; and a case including a base body and a tubular body, the case being configured to receive the piezoelectric element. The base body includes a bottom plate portion and an annular projection disposed upright on the bottom plate portion. The annular projection includes an upper-side first region having a relatively small outside diameter and a lower-side second region having a relatively large outside diameter, and includes a stepped outer surface defined by an outer surface of the first region and an outer surface of the second region that are connected with each other. The first region is inserted inside the tubular body, an end face of the tubular body abuts on an upper end of the second region, and the tubular body and the second region is joined to each other.Type: GrantFiled: June 21, 2019Date of Patent: July 23, 2024Assignee: KYOCERA CorporationInventor: Shinsaku Satoi
-
Patent number: 11641186Abstract: A quartz crystal resonator includes a quartz crystal resonator element, a thermistor, and a package base having a first principal surface and a second principal surface having an opposed surface relationship with each other, the quartz crystal resonator element is mounted on the first principal surface side, the thermistor is housed in a recessed section of the second principal surface side of the package base, a plurality of electrode terminals connected to the quartz crystal resonator element or the thermistor is disposed on the second principal surface side of the package base, and a distance in a first direction perpendicular to the first principal surface from a mounting surface of the electrode terminals to the thermistor is equal to or longer than 0.05 mm.Type: GrantFiled: July 7, 2021Date of Patent: May 2, 2023Inventor: Go Yamashita
-
Patent number: 11435318Abstract: A specimen liquid sensor apparatus includes a specimen liquid sensor having an external terminal and a reader on which the specimen liquid sensor can be detachably attached. The reader includes a first portion, a second portion that can be displaced with respect to the first portion. A connection terminal located on an upper surface of the first portion, and an external terminal of the specimen liquid sensor and a connection terminal of the reader are in contact with each other in a closed state in which the specimen liquid sensor is located between an upper surface of the first portion and a lower surface of the second portion.Type: GrantFiled: November 20, 2020Date of Patent: September 6, 2022Assignee: KYOCERA CORPORATIONInventor: Hiroshi Katta
-
Patent number: 11395600Abstract: In an exemplary embodiment, a vibration waveform sensor includes a pair of conductive pads 22, 23, and a piezoelectric element 30 whose terminal electrodes are connected thereto, which are provided on a board 20, and these are surrounded by a conductive ring-like spacer 40. On the interior side of the spacer 40, a cover part 44 substantially like a disk is provided in a manner covering over the pair of conductive pads 22, 23 and the piezoelectric element 30. The cover part 44 cuts off any humming noise from the top face of the piezoelectric element 30 over a continuous surface, which results in a reduction of humming noise.Type: GrantFiled: February 9, 2017Date of Patent: July 26, 2022Assignee: TAIYO YUDEN CO., LTD.Inventors: Keiichi Kobayashi, Takashi Ishiguro
-
Patent number: 11325381Abstract: There is provided a liquid discharge head including a substrate having a pressure chamber, an actuator, and a channel member. The actuator has a first film arranged on the substrate and a second film arranged on a surface of the first film. The substrate and the channel member are attached to each other with an adhesive. A first through hole is formed in a part of the first film, and a second through hole is formed in a part of the second film. An edge of the first through hole is positioned further inward of the second through hole than an edge of the second through hole. The adhesive is applied to a part of the surface of the first film overlapping with the second through hole, so as to cover a boundary part between the first and second films.Type: GrantFiled: December 3, 2020Date of Patent: May 10, 2022Assignee: Brother Kogyo Kabushiki KaishaInventor: Atsushi Hirota
-
Patent number: 11271542Abstract: An acoustic wave device includes: a mounting substrate; a first wiring layer located on an upper surface of the mounting substrate, the first wiring layer including a first bond region and a first connection region connecting with the first bond region and having a thickness substantially equal to a thickness of the first bond region; an element substrate mounted on the mounting substrate; an acoustic wave element located on a lower surface of the element substrate; and a second wiring layer located on the lower surface of the element substrate, the second wiring layer including a second bond region and a second connection region, the second bond region directly bonding with the first bond region of the first wiring layer, the second connection region connecting the acoustic wave element with the second bond region and having a thickness substantially equal to a thickness of the second bond region.Type: GrantFiled: August 25, 2017Date of Patent: March 8, 2022Assignee: TAIYO YUDEN CO., LTD.Inventor: Takashi Yamashita
-
Patent number: 11258004Abstract: A transducer device, including an electroactive polymer transducer, which has at least two electrode layers which are situated in parallel to one another and which are connected to one another by inserting an elastic intermediate layer in each case, and including a circuit having electronic components for the purpose of generating an electrical voltage applied to the electrode layers of the polymer transducer, the circuit increasing an input voltage to a voltage which is increased with regard to the input voltage.Type: GrantFiled: August 10, 2017Date of Patent: February 22, 2022Assignee: Robert Bosch GmbHInventor: Istvan Denes
-
Patent number: 11101785Abstract: A quartz crystal resonator includes a quartz crystal resonator element, a thermistor, and a package base having a first principal surface and a second principal surface having an opposed surface relationship with each other, the quartz crystal resonator element is mounted on the first principal surface side, the thermistor is housed in a recessed section of the second principal surface side of the package base, a plurality of electrode terminals connected to the quartz crystal resonator element or the thermistor is disposed on the second principal surface side of the package base, and a distance in a first direction perpendicular to the first principal surface from a mounting surface of the electrode terminals to the thermistor is equal to or longer than 0.05 mm.Type: GrantFiled: July 10, 2019Date of Patent: August 24, 2021Inventor: Go Yamashita
-
Patent number: 11063568Abstract: A method for adjusting a resonant frequency of a resonator without impairing piezoelectricity that includes preparing a lower lid; arranging a substrate with a lower surface that faces the lower lid and forming a first electrode layer, a piezoelectric film, and a second electrode layer on an upper surface of the substrate. Moreover, a vibration arm is formed that bends and vibrates from the first electrode layer, the second electrode layer, and the piezoelectric film and an upper lid faces the lower lid with the resonator interposed therebetween. The method further includes adjusting a frequency of the resonator before or after arranging the upper lid by exciting the vibration arm by applying a voltage between the first electrode layer and the second electrode layer and by causing a part of the vibration arm to collide with either or both of the lower lid and the upper lid.Type: GrantFiled: November 16, 2018Date of Patent: July 13, 2021Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Shungo Morinaga
-
Patent number: 10958231Abstract: A surface acoustic wave device includes a piezoelectric substrate, an IDT electrode, a support layer, a cover layer, and a pillar-shaped electrode. The IDT electrode is provided on a main surface of the piezoelectric substrate. The support layer is disposed around a region where the IDT electrode is provided and has a larger height from the main surfaces than a height of the IDT electrode therefrom. The cover layer is disposed on the support layer and covers the IDT electrode. The pillar-shaped electrode is located on one of the main surfaces where the pillar-shaped electrode is in contact with the support layer. The pillar-shaped electrode is electrically connected to the IDT electrode. The pillar-shaped electrode includes a top surface and a side surface. Each of the top surface and the side surface includes a portion exposed to outside.Type: GrantFiled: November 16, 2017Date of Patent: March 23, 2021Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Kentaro Funahashi
-
Patent number: 10637481Abstract: An oscillator includes a case that has a base and a cap connected to the base; a first substrate accommodated in the case; a lead terminal electrically connected to the first substrate; and a resonator module electrically connected to the lead terminal and supported by the lead terminal with a gap with respect to the first substrate between the first substrate and the base.Type: GrantFiled: June 5, 2018Date of Patent: April 28, 2020Assignee: SEIKO EPSON CORPORATIONInventors: Manabu Kondo, Kensaku Isohata, Kenji Hayashi
-
Patent number: 10629455Abstract: The present disclosure relates to a semiconductor package and a method for manufacturing the same. The semiconductor package includes a first substrate, a blocking dam, and a first contact pad. The first substrate includes a chip-mounting region and an outer connecting region outside the chip-mounting region. The blocking dam is disposed over the first substrate, wherein the blocking dam is disposed between the chip-mounting region and the outer connecting region, the blocking dam surrounds the chip-mounting region and includes a metal layer, and the blocking dam is of a wave shape as seen in a top view of the blocking dam. A first contact pad is disposed over the first substrate, and the first contact pad is within the outer connecting region.Type: GrantFiled: December 10, 2018Date of Patent: April 21, 2020Assignee: NANYA TECHNOLOGY CORPORATIONInventor: Te-Yin Chen
-
Patent number: 10614842Abstract: A thin-film piezoelectric-material element includes a laminated structure part having a lower electrode film, a piezoelectric-material film laminated on the lower electrode film and an upper electrode film laminated on the piezoelectric-material film, a lower piezoelectric-material protective-film being formed with alloy material, and an upper piezoelectric-material protective-film being formed with alloy material. The lower piezoelectric-material protective-film and the upper piezoelectric-material protective-film are formed respectively in the lower side of the lower electrode film and the upper side of the upper electrode film, of the laminated structure part, so as to sandwich the laminated structure part. The lower piezoelectric-material protective-film, and the upper piezoelectric-material protective-film are formed with alloy material including Fe as main ingredient and having Co and Mo, by Ion beam deposition.Type: GrantFiled: July 4, 2019Date of Patent: April 7, 2020Assignee: SAE Magnetics (H.K.) Ltd.Inventors: Wei Xiong, Atsushi Iijima
-
Patent number: 10607641Abstract: A thin-film piezoelectric-material element includes a laminated structure part having a lower electrode film, a piezoelectric-material film laminated on the lower electrode film and an upper electrode film laminated on the piezoelectric-material film, a lower piezoelectric-material protective-film being formed with alloy material, and an upper piezoelectric-material protective-film being formed with alloy material. The lower piezoelectric-material protective-film and the upper piezoelectric-material protective-film are formed respectively in the lower side of the lower electrode film and the upper side of the upper electrode film, of the laminated structure part, so as to sandwich the laminated structure part.Type: GrantFiled: September 19, 2018Date of Patent: March 31, 2020Assignee: SAE MAGNETICS (H.K.) LTD.Inventors: Wei Xiong, Atsushi Iijima
-
Patent number: 10591993Abstract: Disclosed herein are structures, devices, methods and systems for providing haptic output on an electronic device. In some embodiments, the electronic device includes an actuator configured to move in a first direction. The electronic device also includes a substrate coupled to the actuator. When the actuator moves in the first direction, the substrate or a portion of the substrate, by virtue of being coupled to the actuator, moves in a second direction. In some implementations, the movement of the substrate is perpendicular to the movement of the actuator.Type: GrantFiled: January 26, 2017Date of Patent: March 17, 2020Assignee: APPLE INC.Inventors: Alex J. Lehmann, Juan Pu, Paul X. Wang, Qiliang Xu, Zheng Gao
-
Patent number: 10491050Abstract: Systems, methods, computer-readable storage mediums including computer-readable instructions and/or circuitry for control of transmission to a target device with communicating with one or more sensors in an ad-hoc sensor network may implement operations including, but not limited to: generating electrical power from at least one ambient source via at least one structurally integrated electromagnetic transducer; powering at least one transmitter via the electrical power to wirelessly transmit one or more sensor operation activation signals to one or more sensors; and at least one of powering one or more sensing operations of one or more sensors via the electrical power or charging one or more power storage devices electrically coupled to the one or more sensors via the electrical power.Type: GrantFiled: August 7, 2013Date of Patent: November 26, 2019Assignee: Elwha LLCInventors: Jesse R. Cheatham, III, Matthew G. Dyor, Peter N. Glaskowsky, Kimberly D. A. Hallman, Roderick A. Hyde, Muriel Y. Ishikawa, Edward K. Y. Jung, Michael F. Koenig, Robert W. Lord, Richard T. Lord, Craig J. Mundie, Nathan P. Myhrvold, Robert C. Petroski, Desney S. Tan, Lowell L. Wood, Jr.
-
Patent number: 10446474Abstract: A packaging structure and a method for fabricating the packaging structure are provided. The packaging structure includes a base substrate including a solder pad body region and a trench region adjacent to and around the solder pad body region. The packaging structure also includes a passivation layer on a surface of the base substrate and exposing the solder pad body region and the trench region. In addition, the packaging structure includes a main body solder pad on the solder pad body region of the base substrate, and one or more trenches on the trench region of the base substrate and between the passivation layer and the main body solder pad. Further, the packaging structure includes a bonding conductive wire having one end connected to the main body solder pad.Type: GrantFiled: December 21, 2017Date of Patent: October 15, 2019Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) CorporationInventors: Li Zhong Jin, Li Hui Lu, Chun Chao Fei, Po Yuan Chiang, Ya Ping Wang
-
Patent number: 10396754Abstract: A quartz crystal resonator includes a quartz crystal resonator element, a thermistor, and a package base having a first principal surface and a second principal surface having an opposed surface relationship with each other, the quartz crystal resonator element is mounted on the first principal surface side, the thermistor is housed in a recessed section of the second principal surface side of the package base, a plurality of electrode terminals connected to the quartz crystal resonator element or the thermistor is disposed on the second principal surface side of the package base, and a distance in a first direction perpendicular to the first principal surface from a mounting surface of the electrode terminals to the thermistor is equal to or longer than 0.05 mm.Type: GrantFiled: May 23, 2018Date of Patent: August 27, 2019Assignee: Seiko Epson CorporationInventor: Go Yamashita
-
Patent number: 10381978Abstract: A package includes a first layer on which a quartz crystal resonator element is mounted; a second layer that is joined to the first layer and on which a circuit element mounted; a third layer that is joined to a surface of the second layer that is opposite in direction to a surface of the second layer, on which the circuit element is mounted; a connection pad that is provided on the first layer; an external lateral surface terminal that is electrically connected to the connection pad; resonance element wiring that electrically connects the connection pad and the external lateral surface terminal to each other, in which the resonance element wiring is positioned between the third layer and the second layer, and includes terminal wiring that is connected to the external lateral surface terminal and interlayer wiring that connects the connection pad and the terminal wiring.Type: GrantFiled: September 27, 2017Date of Patent: August 13, 2019Assignee: SEIKO EPSON CORPORATIONInventor: Shinya Aoki
-
Patent number: 10355665Abstract: An electronic component housing package includes a base having a first principal face provided with a mounting section for mounting an electronic component; a frame having a second principal face, the frame being disposed on the base so as to surround the mounting section; a frame-shaped metallized layer disposed on the second principal face of the frame; and a side-surface conductor disposed on an inner side surface of the frame, the side-surface conductor connecting the frame-shaped metallized layer and a relay conductor formed on the first principal face, the side-surface conductor being covered with an insulating film from one end to the other end in a width direction of the side-surface conductor.Type: GrantFiled: November 17, 2016Date of Patent: July 16, 2019Assignee: Kyocera CorporationInventors: Takuo Kisaki, Masaki Suzuki
-
Patent number: 10311853Abstract: A piezoelectric sounding body includes: a piezoelectric vibrating plate; a case housing the piezoelectric vibrating plate; a first conductive terminal electrically connected to one electrode in the piezoelectric vibrating plate; and a second conductive terminal electrically connected to the other electrode in the piezoelectric vibrating plate. The case includes: a lower case where the first conductive terminal and the second conductive terminal are fixed; and an upper case configured to be fixed in a caulking manner to the lower case and to sandwich the piezoelectric vibrating plate between the upper case and the lower case.Type: GrantFiled: August 11, 2016Date of Patent: June 4, 2019Assignee: TDK CORPORATIONInventors: Akira Satoh, Kaoru Kijima
-
Patent number: 10193525Abstract: An SAW device (1) has a piezoelectric substrate (3) propagating acoustic waves, and a comb-shaped electrode (6) arranged on a first surface (3a) of the piezoelectric substrate (3). The SAW device (1) has a columnar terminal (15) located on the first surface (3a) and electrically connected to the comb-shaped electrode (6), and a cover member (9) covering the a side surface of the terminal (15). The terminal (15) comprises, in a first region in the height direction of height thereof, a larger diameter on the side of the first surface (3a) compared with the diameter on the side opposite to the first surface (3a).Type: GrantFiled: February 20, 2015Date of Patent: January 29, 2019Assignee: KYOCERA CorporationInventors: Toru Fukano, Junya Nishii
-
Patent number: 10147867Abstract: A resonator element includes: a substrate; and an electrode that includes a first conductive layer provided on a surface of the substrate, and a second conductive layer, provided on the opposite side to the first conductive layer on the substrate side, which is disposed within an outer edge of the first conductive layer when seen in a plan view from a direction perpendicular to the surface.Type: GrantFiled: May 26, 2016Date of Patent: December 4, 2018Assignee: Seiko Epson CorporationInventors: Yoshitaka Fujihara, Kazuhisa Hatanaka, Matsutaro Naito
-
Patent number: 9981139Abstract: Among other things, in general, an acousto-mechanical transducer for the interconversion of electricity and acoustic waves is described. Methods are also described for the construction of such transducers.Type: GrantFiled: May 8, 2014Date of Patent: May 29, 2018Assignee: Dalhousie UniversityInventors: Robert B. A. Adamson, Jeffrey R. Leadbetter, Jeremy A. Brown, Manohar Bance
-
Patent number: 9985599Abstract: A method capable of manufacturing a quartz vibrator by disposing a metallic bonding material on one main surface of a ceramic plate having a quartz vibrating element mounted thereon. Thereafter, the bonding of a cap having a recess to the ceramic plate by disposing the cap on the one main surface of the ceramic plate so that an open side of the recess faces the ceramic plate, melting the bonding material, and then allowing the bonding material to set, is carried out.Type: GrantFiled: September 15, 2014Date of Patent: May 29, 2018Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Yoshifumi Saito, Hiroaki Kaida, Manabu Ibayashi, Yuichiro Nagamine, Katsuma Moroishi, Takuya Kono, Kazuhiro Mimura
-
Patent number: 9962738Abstract: An ultrasonic transducer system includes at least one transducer element, a diaphragm, and at least one resonance body, the ultrasonic transducer system being configured for transmitting and/or receiving ultrasonic signals, the resonance body being coupled at an end face to the diaphragm and the at least one transducer element being coupled to a lateral surface of the resonance body so that the at least one transducer element and the resonance body have a shared interface. Also described is a method for the manufacture and to a motor vehicle having an ultrasonic transducer system of this type, the diaphragm of the ultrasonic transducer system being formed by an outer skin of a bumper, a side mirror, or a door section, and the transducer element(s) and resonance bodies being situated concealed behind the outer skin.Type: GrantFiled: April 3, 2014Date of Patent: May 8, 2018Assignee: ROBERT BOSCH GMBHInventor: Andre Gerlach
-
Patent number: 9905747Abstract: A crystal vibration device where a crystal unit is supported on a case substrate in a cantilever manner by first and second conductive adhesive layers. The crystal unit has a length direction and is formed using a rectangular-plate-shaped crystal substrate and A>4.30t+0.16, where A (mm) represents a shorter distance among distances between a central axis of the crystal substrate and end portions of the first and second conductive adhesive layers on a central axis side, and t (?m) represents a thickness of the crystal substrate.Type: GrantFiled: September 30, 2015Date of Patent: February 27, 2018Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Hiroyuki Yamamoto, Masaru Asai
-
Patent number: 9897799Abstract: A piezoelectric element includes a first electrode having a film shape and provided on a base portion, a second electrode having a film shape and opposed to the first electrode on an opposite side of the first electrode from the base portion, a piezoelectric film interposed between the first electrode and the second electrode and partially covered with the second electrode, and an insulation film covering the second electrode and the piezoelectric film with extending over at least a part of an outer edge of the second electrode. The insulation film may cover a whole of the outer edge of the second electrode without covering an inner region of the second electrode. Accordingly, a withstand voltage of the piezoelectric film can be increased.Type: GrantFiled: April 10, 2015Date of Patent: February 20, 2018Assignee: DENSO CORPORATIONInventors: Akira Wada, Noriyuki Matsushita
-
Patent number: 9893265Abstract: A crystal resonation device that includes a base plate, a cap, a joining material, and a crystal resonator. The cap is provided on the base plate. The cap forms a sealed space with the base plate. The joining material joins the base plate and the cap. The joining material contains a cured material of thermosetting resin. The crystal resonator is provided on the base plate in the sealed space. The joining material is located in an outer side portion of a wall of the cap joined to the joining material.Type: GrantFiled: July 16, 2014Date of Patent: February 13, 2018Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Yoshifumi Saito, Toshiyuki Yasugi
-
Patent number: 9780759Abstract: An elastic wave device propagating plate waves includes a stack of an acoustic reflection layer, a piezoelectric layer, and IDT electrode on a supporting substrate. The piezoelectric layer is thinner than a period of fingers of the IDT electrode. The acoustic reflection layer includes low-acoustic-impedance layers and high-acoustic-impedance layers. The low-acoustic-impedance layers are made of SiO2, and the high-acoustic-impedance layers are made of at least one material selected from the group consisting of W, LiTaO3, Al2O3, AlN, LiNbO3, SiN, and ZnO.Type: GrantFiled: June 18, 2013Date of Patent: October 3, 2017Assignee: Murata Manufacturing Co., Ltd.Inventors: Tetsuya Kimura, Takashi Ogami, Katsuya Daimon
-
Patent number: 9680445Abstract: A device includes a substrate; a cavity package having a first surface attached to the substrate, the cavity package enclosing an electronic circuit; an elastic layer formed on a second surface of the cavity package, opposite the first surface; and a molding compound formed on the substrate, encasing the cavity package and the elastic layer. The elastic layer decouples stress between the cavity package and the molding compound encasing the cavity package, for maintaining structural integrity of the cavity package and for preventing separation of the cavity package from the substrate.Type: GrantFiled: October 31, 2014Date of Patent: June 13, 2017Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.Inventors: Andrew Thomas Barfknecht, Klaus-Guenter Oppermann
-
Patent number: 9522536Abstract: A piezoelectric device comprising a substrate having two surface sides; a vibration plate on one of the two surface side, a piezoelectric element including a first electrode provided on the vibration plate, a piezoelectric body layer provided on the first electrode, the piezoelectric body layer having a groove section on a side surface, the groove section including a first surface facing to the vibration plate, and a second electrode provided on the piezoelectric body layer, and a stress application film having tensile stress and provided on an inner surface of the groove section.Type: GrantFiled: September 18, 2015Date of Patent: December 20, 2016Assignee: Seiko Epson CorporationInventors: Noboru Furuya, Masao Nakayama, Hideki Hahiro
-
Patent number: 9516773Abstract: A lid body includes: a first surface; a second surface having a top-bottom relation with the first surface; an outer peripheral surface connecting the first surface and the second surface; a groove provided in the first surface from the outer peripheral surface toward an interior of the first surface; and first and second marks arranged at positions that do not overlap with an outer peripheral edge of the second surface in a plan view.Type: GrantFiled: November 10, 2014Date of Patent: December 6, 2016Assignee: Seiko Epson CorporationInventor: Juichiro Matsuzawa
-
Patent number: 9466780Abstract: The invention relates to an actuator unit, which comprises a piezoactuator (1) having a first end face (14?) and a second end face (13?). The actuator unit further comprises a sleeve (9) for accommodating the piezoactuator (1), wherein the sleeve (9) has a first end face (14) and a second end face (13). The actuator unit further comprises a potting compound (11) which surrounds the piezoactuator (1). The piezoactuator (1) and the potting compound (11) are introduced into the sleeve (9). The potting compound (11) extends no further than the first end face (14?) of the piezoactuator (1). The invention further relates to a method for manufacturing an actuator unit and a sleeve for accommodating a piezoactuator.Type: GrantFiled: October 26, 2011Date of Patent: October 11, 2016Assignee: EPCOS AGInventors: Johann Kreiter, Siegfried Fellner
-
Patent number: 9428380Abstract: One or more embodiments are directed to encapsulating structure comprising: a substrate having a first surface and housing at least one conductive pad, which extends facing the first surface and is configured for being electrically coupled to a conduction terminal at a reference voltage; a cover member, set at a distance from and facing the first surface of the substrate; and housing walls, which extend between the substrate and the cover member. The substrate, the cover member, and the housing walls define a cavity, which is internal to the encapsulating structure and houses the conductive pad. Moreover present inside the cavity is at least one electrically conductive structure, which extends between, and in electrical contact with, the cover member and the conductive pad for connecting the cover member electrically to the conduction terminal.Type: GrantFiled: April 14, 2015Date of Patent: August 30, 2016Assignee: STMicroelectronics S.r.l.Inventors: Fulvio Vittorio Fontana, Giovanni Graziosi, Alex Gritti
-
Patent number: 9332353Abstract: A plane-type speaker where, on one of the main surfaces of an exciter film, there are placed piezoelectric films which are expanded and contracted by sound-releasing driving signals applied thereto. An oscillation plate is secured to the excited film through frame members. The oscillation plate has a flat-plate shape and is secured to the exciter film while having a warped shape such that it is gradually spaced further away from the exciter film, with decreasing distance from the secured ends to a center area, when viewed at a side surface. This realizes a state where the exciter film is pulled outwardly with respect to the secured ends due to bending stresses therein. If sound-releasing driving signals are applied to the piezoelectric films in this state, the exciter film contracts and expands along with the expansion and contraction of the piezoelectric films, thereby causing the oscillation plate to oscillate.Type: GrantFiled: November 15, 2013Date of Patent: May 3, 2016Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Masamichi Ando
-
Patent number: 9325292Abstract: A piezoelectric device includes: a piezoelectric vibrating reed; and a package, wherein the piezoelectric vibrating reed has a vibrating part and first and second supporting arms extending from a base end part, the package has a base, a lid, a cavity defined by the base and the lid, a convex part projecting from the base or the lid into the cavity, a length of the first supporting arm is shorter than a length of the second supporting arm, and the convex part is provided in a range ahead of a leading end of the first vibrating arm in an extension direction of the first supporting arm and at least partially overlapping with the second supporting arm in a length direction of the piezoelectric vibrating reed so as not to overlap with the piezoelectric vibrating reed in a plan view.Type: GrantFiled: March 24, 2014Date of Patent: April 26, 2016Assignee: Seiko Epson CorporationInventors: Katsuo Ishikawa, Akitoshi Hara
-
Patent number: 9257022Abstract: A system is provided that converts an input, such as audio data, into one or more haptic effects. The system applies a granular synthesis algorithm to the input in order to generate a haptic signal. The system subsequently outputs the one or more haptic effects based on the generated haptic signal. The system can also shift a frequency of the input, and also filter the input, before the system applies the granular synthesis algorithm to the input.Type: GrantFiled: September 3, 2014Date of Patent: February 9, 2016Assignee: Immersion CorporationInventors: Juan Manuel Cruz-Hernandez, Ali Modarres, Liwen Wu, David Birnbaum
-
Patent number: 9257634Abstract: A piezoelectric element 300 includes a first electrode 60, a piezoelectric layer 70 which is provided on the first electrode, and a second electrode 80 which is provided on the piezoelectric layer, and the piezoelectric layer is made of a piezoelectric material expressed as a mixed crystal including a first component formed of a complex oxide containing Bi and Fe and having a rhombohedral perovskite structure and a complex oxide containing Ba and Ti and having a tetragonal perovskite structure, a second component formed of a complex oxide containing Bi, K, and Ti and having a tetragonal perovskite structure, and a third component formed of a complex oxide containing Bi, Mg, and Ti and having a rhombohedral perovskite structure.Type: GrantFiled: June 5, 2015Date of Patent: February 9, 2016Assignee: Seiko Epson CorporationInventor: Xiaoxing Wang
-
Patent number: 9240769Abstract: A piezoelectric thin film resonator includes a substrate, a lower electrode provided on the substrate, a piezoelectric film provided on the lower electrode, and an upper electrode provided on the piezoelectric film. At least a portion of the upper electrode and that of the lower electrode oppose each other through the piezoelectric film, and at least a portion of the periphery of the upper electrode is reversely tapered.Type: GrantFiled: June 20, 2012Date of Patent: January 19, 2016Assignee: TAIYO YUDEN CO., LTD.Inventors: Takeshi Sakashita, Motoaki Hara, Masafumi Iwaki, Tsuyoshi Yokoyama, Shinji Taniguchi, Tokihiro Nishihara, Masanori Ueda
-
Patent number: 9060227Abstract: One or more embodiments are directed to encapsulating structure comprising: a substrate having a first surface and housing at least one conductive pad, which extends facing the first surface and is configured for being electrically coupled to a conduction terminal at a reference voltage; a cover member, set at a distance from and facing the first surface of the substrate; and housing walls, which extend between the substrate and the cover member. The substrate, the cover member, and the housing walls define a cavity, which is internal to the encapsulating structure and houses the conductive pad. Moreover present inside the cavity is at least one electrically conductive structure, which extends between, and in electrical contact with, the cover member and the conductive pad for connecting the cover member electrically to the conduction terminal.Type: GrantFiled: October 24, 2012Date of Patent: June 16, 2015Assignee: STMicroelectronics S.r.l.Inventors: Fulvio Vittorio Fontana, Giovanni Graziosi, Alex Gritti
-
Patent number: 9000304Abstract: A sealing member for an electronic component package includes, on another principal surface of a base material constituting the sealing member for the electronic component package, an external terminal electrode, a wiring pattern, and a resin material. The external terminal electrode is to be electrically coupled to an outside of the electronic component package. The wiring pattern is configured to couple an electronic component element on one principal surface of the base material to the external terminal electrode. The resin material is layered over the other principal surface and the wiring pattern. The external terminal electrode is layered over the wiring pattern and the resin material.Type: GrantFiled: September 20, 2011Date of Patent: April 7, 2015Assignee: Daishinku CorporationInventor: Naoki Kohda
-
Patent number: 8975802Abstract: An acoustic wave device includes: a comb-like electrode provided on a piezoelectric substrate; and a first medium that covers the comb-like electrode and has at least a silicon oxide film in which an element is doped, wherein sonic speed in the silicon oxide film in which the element is doped is lower than sonic speed in an undoped silicon oxide film.Type: GrantFiled: August 2, 2012Date of Patent: March 10, 2015Assignee: Taiyo Yuden Co., Ltd.Inventors: Satoru Matsuda, Takashi Matsuda, Michio Miura
-
Patent number: 8970090Abstract: An ultrasonic sensor is disclosed. The ultrasonic sensor includes a piezoelectric element and an acoustic matching member. The piezoelectric element is configured to detect ultrasonic wave transmitted from a transmitter and reflected by a detection target object located in a detection target space. The acoustic matching member is configured to conduct the received ultrasonic wave to the piezoelectric element. The piezo electric element is covered with the acoustic matching member including a principal oscillation portion and a supplement oscillation portion. Thickness of a part of the supplement oscillation portion, the part covering the piezoelectric element, is smaller than a predetermined thickness threshold.Type: GrantFiled: June 28, 2011Date of Patent: March 3, 2015Assignees: DENSO CORPORATION, Nippon Soken, Inc.Inventors: Keiko Akiyama, Mitsuyasu Matsuura, Toshiki Isogai, Makiko Sugiura
-
Publication number: 20150035412Abstract: A piezo-stack includes a plurality of lateral surfaces and a first passivation layer applied to a first lateral surface. The first passivation layer terminates flush with opposing lateral surfaces that adjoin the first lateral surface.Type: ApplicationFiled: December 19, 2012Publication date: February 5, 2015Inventors: Thomas Richter, Harald Johannes Kastl, Claus Zumstrull
-
Patent number: 8904850Abstract: We have demonstrated that a surface acoustic wave (SAW) sensor coated with a nanoporous framework material (NFM) film can perform ultrasensitive water vapor detection at concentrations in air from 0.05 to 12,000 ppmv at 1 atmosphere pressure. The method is extendable to other MEMS-based sensors, such as microcantilevers, or to quartz crystal microbalance sensors. We identify a specific NFM that provides high sensitivity and selectivity to water vapor. However, our approach is generalizable to detection of other species using NFM to provide sensitivity and selectivity.Type: GrantFiled: October 5, 2011Date of Patent: December 9, 2014Assignee: Sandia CorporationInventors: Mark D. Allendorf, Alex L. Robinson
-
Publication number: 20140333183Abstract: A resin is provided so as to cover four side faces of a piezoelectric multilayer body integrally and thus is effectively prevented from peeling from the piezoelectric multilayer body, whereby high adhesion is attained between the piezoelectric multilayer body and the resin. At the same time, the resin covers dicing surfaces in the side faces of the piezoelectric multilayer body, thereby effectively restraining the piezoelectric body and the electrodes from producing particles.Type: ApplicationFiled: April 9, 2014Publication date: November 13, 2014Applicant: TDK CORPORATIONInventors: Ryuta MOTANI, Masahiro KITAJIMA, Nobuo KOBAYASHI
-
Publication number: 20140325808Abstract: An actuator assembly includes a housing and an actuator arranged within the housing, the actuator including a first part and a second part movable relative to the first part. An insulating material is disposed within the housing, the insulating material encapsulating at least the movable part of the actuator.Type: ApplicationFiled: March 14, 2014Publication date: November 6, 2014Applicant: Parker-Hannifin CorporationInventor: Yufeng Qi
-
Patent number: 8847471Abstract: A piezoelectric element includes a first electrode, a first multilayer composite disposed on the first electrode, a second multilayer composite disposed on the first electrode with a distance from the first multilayer composite, and a covering layer covering the side surfaces of the first and second multilayer composites and the surface of the first electrode between the first multilayer composite and the second multilayer composite. The first and second multilayer composites each include a piezoelectric layer and a second electrode over the piezoelectric layer. The first electrode contains a metal that can react with chlorine, and has at least one of a bump and a dip at the surface thereof between the first multilayer composite and the second multilayer composite.Type: GrantFiled: September 7, 2011Date of Patent: September 30, 2014Assignee: Seiko Epson CorporationInventor: Hideki Hahiro
-
Patent number: 8841823Abstract: A wear cap including a flexible barrel and a rigid disc enables a high-frequency ultrasonic transducer to properly align to the surface of a material to be tested. The wear cap may be employed for any type of contact sensor that requires a protective wear cap and that needs to align to the surface of a material to be tested. An ultrasonic transducer assembly includes a wear cap and an ultrasonic transducer. The ultrasonic transducer is mounted in the wear cap and includes a transducer body with a cylindrical shape. A method of producing a wear cap for an ultrasonic transducer includes selecting a flexible material, forming a flexible barrel from the flexible material, selecting a rigid material, forming a rigid disc from the rigid material, and affixing the rigid disc to an end of the flexible barrel.Type: GrantFiled: September 23, 2011Date of Patent: September 23, 2014Assignee: Ascent Ventures, LLCInventor: Todd Jackson