Switched (e.g., On-off Control) Patents (Class 323/271)
  • Patent number: 11025182
    Abstract: A signal processing apparatus includes a processor, a memory storing a program, and an integration circuit that performs filter processing on an input signal to output a processed signal. The processor samples an output signal output from the integration circuit in a sampling period Ts and stores a sampled value of the output signal in accordance with the program, and detects a duty of the input signal based on a difference between a value of the output signal at a time t0 representing a present time point and a sampled value of the output signal obtained at a time t0?n representing an earlier time than the time t0 by an n sampling period when n is a positive integer, the value of the output signal, a value of the integer n, the sampling period Ts, and a time constant of a filter of the integration circuit.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: June 1, 2021
    Assignee: NIDEC CORPORATION
    Inventor: Hideyuki Takemoto
  • Patent number: 11011984
    Abstract: A circuit includes a power stage circuit configured to perform power conversion of an input voltage to provide an output voltage at an output. The circuit further includes a driver circuit configured to drive the power stage circuit to provide the output voltage. The circuit further includes a load transient dynamic compensator configured to detect a rate of change in the output voltage during load transient and to supply a compensating signal based on the rate of change. The circuit further includes a feedback control circuit configured to generate a series of pulses to control the driver circuit based on the output voltage and the compensating signal.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: May 18, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventor: Yueming Sun
  • Patent number: 10996701
    Abstract: A power converter having fast transient response is provided. The power converter includes a voltage detector circuit and a compensator circuit. The voltage detector circuit includes a plurality of resistors, a plurality of comparators, and a detection control circuit. The resistors are connected in series with each other and grounded. First and second terminals of one of the resistors are respectively connected to a reference voltage and a first terminal of the adjacent resistor. First and second terminals of another of the resistors are respectively connected to a second terminal of the adjacent resistor and grounded. First input terminals of the comparators are respectively connected to second terminals of the resistors. The detection control circuit outputs control signals according to comparison signals. The compensator circuit outputs a compensating signal according to the control signals. A main control circuit controls switch circuits according to the compensating signal.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: May 4, 2021
    Assignee: ANPEC ELECTRONICS CORPORATION
    Inventors: Tse-Hsu Wu, Fu-Chuan Chen, Yun-Chiang Chang
  • Patent number: 10999905
    Abstract: The present disclosure is related to accurate analog dimming of a light emitting diode (LED). Accurate dimming can require precise control of a power converter that supplies the LED with a current. The precise control relies on accurately sensing a level of the LED. When the power converter operates in a discontinuous conduction mode (DCM), for example at a low dimming ratio, the accuracy of the sensed LED-level can be affected by a resonant current offset, resulting from current ringing in the power converter. The disclosed circuits and methods provide accurate control of the LED-level by compensating for the resonant current offset in the sensed LED-level.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: May 4, 2021
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Hyunchul Eum, Gyumin Park, Minha Hwang
  • Patent number: 10992228
    Abstract: A method includes switching a switching circuit of the switched-mode power supply in a synchronous mode by turning on and off switches of the switching circuit in synchrony with a clock signal, wherein the switching circuit is coupled to an inductive element, and wherein the synchronous mode comprises a charging phase and a discharging phase; switching the switching circuit in an asynchronous mode by turning on and off switches of the switching circuit without being synchronized with the clock signal, wherein the asynchronous mode comprises a charging phase and a discharging phase; charging the inductive element during the charging phase of the synchronous mode; discharging the inductive element during the discharging phase of the synchronous mode; charging the inductive element during the charging phase of the asynchronous mode; and discharging the inductive element during the discharging phase of the asynchronous mode.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: April 27, 2021
    Assignee: STMicroelectronics (Grenoble 2) SAS
    Inventors: David Chesneau, Francois Amiard
  • Patent number: 10985656
    Abstract: A system that provides intelligent constant on-time control may include a first switch coupled to a power input; a second switch coupled to the first switch; a switching node between the first switch and the second switch, the switching node configured to be connected to an inductor and a power output; feedback paths coupled to (1) a synthesized node and (2) the power output, the feedback paths enabling feedback of signals from (1) the synthesized node, and (2) the power output; and a controller coupled to the feedback paths. The controller may be configured to control a voltage at the power output based on a combination of the signals carried by the feedback paths.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 20, 2021
    Assignee: Kinetic Technologies
    Inventors: Xin Zhang, Jan Nilsson, William Robert Pelletier
  • Patent number: 10972007
    Abstract: A voltage regulator circuit included in a computer system may include multiple devices and a switch node coupled to a regulated power supply node via an inductor. The voltage regulator circuit may, using different subsets of the multiple devices, charge a capacitor for a first period of time and then couple the switch node to the capacitor for a second period of time. A control circuit may sense, using a common circuit, different characteristics of a current through the inductor during respective operation modes, and adjust the first and second periods of time based on the different characteristics of the current and a current operation mode.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: April 6, 2021
    Assignee: Apple Inc.
    Inventors: Floyd L. Dankert, Jitendra K. Agrawal, Dingkun Du
  • Patent number: 10969810
    Abstract: A voltage regulator and a method are presented. The regulator has a pass device coupled to an input node at an input voltage. Furthermore, the voltage regulator has a regulator circuit to control the pass device to provide a regulated output voltage at an output node based on the input voltage. Components of the regulator circuit are arranged and operated between the input node and the output node. The voltage regulator allows a load of the voltage regulator to be arranged between the output node and a reference node at a reference voltage, wherein the reference voltage differs from the output voltage.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: April 6, 2021
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Jan Grabinski, Frank Kronmueller
  • Patent number: 10958079
    Abstract: In one embodiment, an energy harvesting system includes multiple-input-multiple-output switched-capacitor (MIMOSC) circuitry comprising a plurality of switched-capacitor circuit units to receive a plurality of direct current (DC) input voltages at respective input terminals of the switched-capacitor circuit unit, combine the received DC input voltages, and provide the combined DC input voltages at an output terminal of the switched-capacitor circuit unit. The energy harvesting system also includes maximum power point tracking (MPPT) circuitry coupled to switches of the switched-capacitor circuit units of the MIMOSC circuitry. The MPPT circuitry is to provide a plurality of switching signals to the switches of the switched-capacitor circuit units. The MIMOSC circuitry is to provide a plurality of DC output voltages to respective loads based on the switching signals from the MPPT circuitry.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: March 23, 2021
    Assignee: Intel Corporation
    Inventors: Xiaosen Liu, Khondker Z. Ahmed, Vivek K. De, Nachiket V. Desai, Suhwan Kim, Harish K. Krishnamurthy, Turbo Majumder, Krishnan Ravichandran, Christopher Schaef, Vaibhav A. Vaidya, Sriram R. Vangal
  • Patent number: 10958065
    Abstract: A switching circuit includes: a detection wiring configured to receive a potential changing depending on a current of a first switching element; a first circuit connected between the detection wiring and a first having a first time constant, and making the first wiring follow the potential of the detection wiring; a second circuit connected between the detection wiring and a second wiring, having a second time constant larger than the first time constant, and making the second wiring fellow the potential of the detection wiring; a potential maintaining circuit configured to maintain the second wiring at a potential higher than the potential of the first wiring while a current is not flow through the first switching element; and a control circuit configured to turn off the first switching element in a case where the potential of the first wiring exceeds the potential of the second wiring.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: March 23, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Ken Toshiyuki
  • Patent number: 10951250
    Abstract: A DC-shifting predriver has an input port configured for coupling to a serial data stream, an inverting output amplifier having an feedback node and an output port configured for coupling to a transistor at the input to a high-speed DAC or TX driver, and a capacitor AC-coupled between the input port and the feedback node. A weak feedback inverter having structure similar to, but less drive strength than the inverting output amplifier is coupled between the output port and the feedback node to act as a positive feedback latch. The predriver provides a DC shift up to 3V with high reliability and minimal intersymbol interference for data rates from 10 GS/s to 28 GS/s or higher. The predriver may provide multiple input ports implemented as a predriver array in an M-bit system, and the output amplifier may consist of N stages.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 16, 2021
    Assignee: SITRUS TECHNOLOGY CORPORATION
    Inventors: Karim Vincent Abdelhalim, Michael Q. Le
  • Patent number: 10938304
    Abstract: Various embodiments provide a direct current (DC)-DC converter circuit. The DC-DC converter circuit includes a control circuit to switch the DC-DC converter circuit between a charge state, a discharge state, and a tri-state mode. As part of a first control loop, the control circuit may switch the DC-DC converter between the charge state and the discharge state based on the output voltage to provide the output voltage with the target voltage level. Additionally, as part of a second control loop, the control circuit may switch the DC-DC converter between the charge state and the discharge state based on the current through an inductor of the DC-DC converter. The second control loop may provide overcurrent protection for the DC-DC converter. Other embodiments may be described and claimed.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: March 2, 2021
    Assignee: Intel Corporation
    Inventors: David Herbison, Marc Hesener, Tobias Werth, Stefan Guenther
  • Patent number: 10931147
    Abstract: A converter comprises a first switch, a capacitor and a second switch connected in series between an input voltage source and an output filter, a third switch connected between a common node of the first switch and the capacitor, and a common node of the second switch and the output filter and a fourth switch connected between a common node of the capacitor and the second switch, and ground.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: February 23, 2021
    Assignee: NuVolta Technologies (Hefei) Co., Ltd.
    Inventors: Junxiao Chen, Jinbiao Huang, Zeng Li
  • Patent number: 10924002
    Abstract: A transient response enhancement circuit for buck-type voltage converters, wherein, the transient load changing detecting module detects the output voltage of the buck-type voltage converter. The first control signal is generated when the increase of the output voltage is detected, and the second control signal is generated when the decrease of the output voltage is detected, thereby self-adaptively detecting the time of the buck-type voltage converter in response to the load changing. The compensation voltage predicting operation module predicts and adjusts the compensation voltage and the adjusted compensation voltage is superimposed on the buck-type voltage converter through the internal active compensation module to adjust the duty ratio of the buck-type voltage converter. The drive controlling insertion logic module can further improve the response speed.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: February 16, 2021
    Assignee: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
    Inventors: Zekun Zhou, Junyuan Rong, Zuao Wang, Yue Shi, Zhuo Wang, Bo Zhang
  • Patent number: 10917015
    Abstract: A multiphase operation control method comprises configuring a plurality of power phases of a power converter to operate in an interleaved manner by passing a token sequentially among the plurality of power phases, turning on a first power phase after the first power phase possesses the token and receives a trigger signal from a control circuit of the first power phase, passing the token to a second power phase after the first power phase finishes, passing the token sequentially until a last power phase of the plurality of power phases possesses the token and forwarding the token to the first power phase after the last power phase finishes.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: February 9, 2021
    Assignee: Active-Semi (BVI) Inc.
    Inventors: Narasimhan Trichy, Masashi Nogawa
  • Patent number: 10917003
    Abstract: A control circuit for a switching power converter includes a current compensator. The current compensator is configured to receive a first current reference signal, a second current reference signal and a signal representing an input current of the switching power converter, generate a first current error signal based on the signal representing the input current and the first current reference signal for controlling at least one power switch of the power converter, generate a second current error signal based on the signal representing the input current and the second current reference signal, and adjust the first current error signal based on the second current error signal to limit the amount of current flowing through the switching power converter. Other example control circuits, switching power converters including control circuits and methods for limiting current in switching power converters are also disclosed.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: February 9, 2021
    Assignee: Astec International Limited
    Inventor: Yancy Fontanilla Boncato
  • Patent number: 10901449
    Abstract: An electronic circuit includes a first input pin configured to receive a first input signal that includes an enable information and at least one operation parameter information, a second input pin configured to receive a second input signal, an output pin, a control circuit configured to generate a drive signal based on the first input signal and the second input signal, an output circuit configured to generate an output signal at the output pin, the enable information includes an enabled state and a disabled state, the control circuit is configured to generate the drive signal in the enabled state and to turn to the electronic circuit off in the disabled state, the at least one operation parameter information includes information about an operational parameter of the output signal, and the output circuit is configured to use the at least one operation parameter information to change the operational parameter of the output signal.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: January 26, 2021
    Assignee: Infineon Technologies Austria AG
    Inventors: Tobias Gerber, Thomas Ferianz
  • Patent number: 10882475
    Abstract: The disclosure relates to a control device for a motor vehicle which comprises a first electrical terminal for receiving a first supply voltage of a first vehicle electrical system and a second electrical terminal for receiving a second supply voltage of a second vehicle electrical system, the second supply voltage being smaller than the first supply voltage, wherein an electrical ground terminal is provided for closing a common ground potential of the first and second vehicle electrical systems, and a switching device connected downstream of the first terminal is set up, depending on a voltage signal which is determined by a potential difference between the second terminal and the ground terminal, to block a current flow through the first terminal, wherein the switching device interrupts the current flow if the voltage signal indicates an interruption of an electrical connection between the ground terminal and the ground potential.
    Type: Grant
    Filed: May 29, 2017
    Date of Patent: January 5, 2021
    Assignee: Audi AG
    Inventor: Richard Kaußler
  • Patent number: 10878755
    Abstract: A pixel compensating circuit comprises an organic light-emitting diode (OLED), a first transistor, a compensating transistor, a storage capacitor, a second transistor, a third transistor, and a seventh transistor. If a present-stage scan signal is at a low voltage potential, the second transistor is turned on, the gate of the first transistor and the drain of the first transistor are short-circuited. A data signal is transmitted to a source of the first transistor after the third transistor is turned on. A third reference voltage is transmitted to the source of the first transistor after the seventh transistor is turned on. An aging phenomenon and the uniformity of the driving transistor are improved.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: December 29, 2020
    Inventor: Jun Li
  • Patent number: 10855170
    Abstract: A power management integrated circuit (PMIC) is provided for extracting power from an energy harvester. The PMIC includes a voltage converter to convert an input power at a voltage Vin into an output power at an output voltage Vout_VC. The voltage converter includes, in addition to a main voltage converter circuit, a cold-start circuit for starting the voltage converter from an OFF state. The PMIC further includes an input terminal for receiving a voltage VEN-CS proportional to the converter input voltage Vin and a voltage comparator for comparing the voltage VEN-CS with a reference voltage Vref. A controller enables the cold-start circuit when VEN-CS?Vref.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: December 1, 2020
    Assignee: E-PEAS S.A.
    Inventors: Julien De Vos, Geoffroy Gosset, Cedric Hocquet
  • Patent number: 10840798
    Abstract: A high-voltage power converter with a high-side switch coupled with a high-voltage input and a high-side switch control coupled with the high-side switch are presented. The high-side switch control drives the high-side switch on and off. There is a low-side switch coupled via an output node to the high-side switch. The low-side switch is on when the high-side switch is off and vice versa. A supply capacitor is coupled with a low-voltage supply terminal. The high-side switch control to provides a supply voltage for the high-side switch control. A communication module is coupled with the high-side switch control to provide a bidirectional communication between the high-side switch control and a control system that operates in a low-voltage domain, wherein the communication to and from the high-side switch control is enabled when the low-side switch is on and the high-side switch is off.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 17, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventors: Nebojsa Jelaca, Horst Knoedgen, Christoph N. Nagl
  • Patent number: 10826397
    Abstract: A switching power supply includes: a switching output circuit configured to generate an output voltage from an input voltage by charging a capacitor by turning on and off an output transistor; a control circuit configured to halt the driving of the switching output circuit when charging electric charge to the capacitor per switching event is limited to a lower limit value and the output voltage, or a feedback voltage commensurate therewith, is raised from a predetermined reference voltage; and a lower limit value setting circuit configured to variably control the lower limit value during the driven period of the switching output circuit. For example, the lower limit value setting circuit can increase the lower limit value with increase in the number of times of switching.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: November 3, 2020
    Assignee: Rohm Co., Ltd.
    Inventors: Seiji Takenaka, Masashi Nagasato, Tetsuo Tateishi
  • Patent number: 10826299
    Abstract: A grid-connected inverter system having a seamless switching function. An inverter converts DC power into AC power. A breaker is connected between the inverter, a grid, and a load to switch between a grid-connected operation and an independent operation. A filter converts an output of the inverter into a sine wave. A controller operates the inverter in a current control mode or a voltage control mode. The controller operates the inverter in the current control mode for a period of time longer than a turn-off time of the breaker when an abnormality in the grid is detected, and operates the inverter in the voltage control mode when the grid is disconnected from the load due to turn-off of the breaker.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 3, 2020
    Assignees: ENERGYPARTNERS CO., LTD.
    Inventor: Young Cheol Shin
  • Patent number: 10816599
    Abstract: Method and apparatus to test an integrated circuit includes retrieving power distribution data relating to an integrated circuit and designating a segment that includes at least one component of the integrated circuit. A switching limit associated with the segment may be set based on the power distribution data. Processes further generate a testing pattern that includes the determined switching limit associated with the segment.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: October 27, 2020
    Assignee: International Business Machines Corporation
    Inventors: Steven M. Douskey, Raghu G. Gopalakrishnasetty, Sumit Panigrahi, Mary P. Kusko
  • Patent number: 10763851
    Abstract: A gate control circuit has a first gate controller that controls a gate voltage of a first transistor connected between a first reference voltage node and an output node on the basis of a potential difference between the first reference voltage node and a second reference voltage node, a second gate controller that controls a gate voltage of a second transistor connected between the output node and a fourth reference voltage node. and a voltage adjustment circuit that temporarily increases the potential difference between the first reference voltage node and the second reference voltage node in a first period in which the voltage of the first reference voltage node is rising from an initial voltage and a second period in which the voltage of the first reference voltage node is falling from a normal voltage.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: September 1, 2020
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventor: Yukio Tsunetsugu
  • Patent number: 10756530
    Abstract: The present overcurrent detection circuit includes: a comparative voltage generation unit that generates a comparative voltage that changes in accordance with a power supply voltage; and a comparison unit that generates a comparison result signal by comparing a drain-source voltage of a switching transistor with the comparative voltage.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: August 25, 2020
    Assignee: SEIKO EPSON CORPORATION
    Inventor: Toshikazu Kuwano
  • Patent number: 10727745
    Abstract: A system that provides intelligent constant on-time control may include a first switch coupled to a power input; a second switch coupled to the first switch; a switching node between the first switch and the second switch, the switching node configured to be connected to an inductor and a power output; feedback paths coupled to (1) the switching node and (2) the power output, the feedback paths enabling feedback of signals from (1) the switching node, and (2) the power output; and a processor coupled to the feedback paths. The processor may be configured to control a voltage at the power output based on a combination of the signals carried by the feedback paths.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: July 28, 2020
    Assignee: Kinetic Technologies
    Inventors: Xin Zhang, Jan Nilsson, William Robert Pelletier
  • Patent number: 10720915
    Abstract: An adaptive gate driver for a driving a power MOSFET to switch is disclosed. The adaptive gate driver includes a load sense circuit to sense a current through the power MOSFET. A controller coupled to the load sense circuit compares the sensed current to a threshold to determine if the load on the power MOSFET is a normal load or a heavy load. Based on the comparison, the controller controls the gate driver to drive the power MOSFET with a first strength level when a normal load determined and at second strength level when a heavy load is determined. The driving strength in the heavy-load condition is lower than the normal-load condition and by lowering the driving strength of the gate driver during the heavy-load condition a voltage across the power MOSFET may be prevented from exceeding a threshold related to a breakdown condition during a switching period.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: July 21, 2020
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Zhiwei Liu, Marc Dagan, Xudong Huang
  • Patent number: 10715043
    Abstract: A single inductor multiple output SIMO power converter and method are presented. The converter has a single inductor and at least two output terminals which are denoted as first output terminal and second output terminal. The SIMO power converter also has a first switching element and a second switching element. The first switching element is coupled between an output terminal of the inductor and the first output terminal of the SIMO power converter. The second switching element is coupled between the output terminal of the inductor and the second output terminal of the SIMO power converter. The SIMO power converter also has a control circuit to detect an overload condition at the first output terminal, and to generate control signals for controlling the switching of the first switching element and the second switching element based on the detected overload condition.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: July 14, 2020
    Assignee: Dialog Semiconductor (UK) Limited
    Inventor: Lourans Samid
  • Patent number: 10693453
    Abstract: A power switch circuit including first and second transistors, and a control circuit is provided. A first end of the first transistor serves as an input terminal of the power switch circuit. A second end of the first transistor is coupled to a node. A control end of the first transistor receives a first control voltage. A first end of the second transistor serves as an output terminal of the power switch circuit. A second end of the second transistor is coupled to the node. A control end of the second transistor receives a second control voltage. The control circuit detects a voltage of the node to determine a type of series connection between the first and second transistors, and generates the first and second control voltages to control a turned-on state of another of the first and second transistors after turning on one of the first and second transistors.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: June 23, 2020
    Assignee: Excelliance MOS Corporation
    Inventors: Ching-Tsan Lee, Ke-Wei Wu, Pei-Ting Yang
  • Patent number: 10693379
    Abstract: According to an implementation, a resonant converter for short-circuit protection includes an oscillator, a short-circuit detector configured to detect a short-circuit condition in a component of the resonant converter, and a pulse width modulation (PWM) controller configured to control the oscillator in a PWM mode before short-circuit protection is triggered. The oscillator, when in the PWM mode, is configured to generate a first clock signal for driving a first power switch and a second clock signal for driving a second power switch.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: June 23, 2020
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Sangcheol Moon, Jintae Kim, Hangseok Choi
  • Patent number: 10666137
    Abstract: An inductor conducts a first current, which is variable. A first transistor is coupled through the inductor to an output node. The first transistor alternately switches on and off in response to a voltage signal, so that the first current is: enhanced while the first transistor is switched on in response to the voltage signal; and limited while the first transistor is switched off in response to the voltage signal. A second transistor is coupled to the first transistor. The second transistor conducts a second current, which is variable. On/off switching of the second transistor is independent of the voltage signal. Control circuitry senses the second current and adjusts the voltage signal to alternately switch the first transistor on and off in response to: the sensing of the second current; and a voltage of the output node.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: May 26, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Erick Omar Torres, Harish Venkataraman, Philomena C. Brady
  • Patent number: 10658933
    Abstract: According to an implementation, a resonant converter for short-circuit protection includes an oscillator, a short-circuit detector configured to detect a short-circuit condition in a component of the resonant converter, and a pulse width modulation (PWM) controller configured to control the oscillator in a PWM mode before short-circuit protection is triggered. The oscillator, when in the PWM mode, is configured to generate a first clock signal for driving a first power switch and a second clock signal for driving a second power switch.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: May 19, 2020
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Sangcheol Moon, Jintae Kim, Hangseok Choi
  • Patent number: 10651733
    Abstract: Described is an apparatus which comprises: a low-side switch coupled to an output node for providing regulated voltage supply; and a first driver operable to cause the low-side switch to turn off when the output node rises above a first transistor threshold voltage. Described is also a voltage regulator which comprises: a signal generator to generate a pulse-width modulated (PWM) signal; a bridge having a low-side switch coupled to an output node for providing regulated voltage supply according to the PWM signal; a first driver operable to cause the low-side switch to turn off when the output node rises above a first transistor threshold voltage; and a bridge controller to provide control signals to the first driver. The voltage regulator may operate without diode clamps and its operation is self-timed. The voltage regulator also provides tolerance against process variation.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: May 12, 2020
    Assignee: INTEL CORPORATION
    Inventors: Gerhard Schrom, Mark S. Milshtein, Alexander Lyakhov
  • Patent number: 10647215
    Abstract: A magnetic coil suitable for wireless power transfer comprises a layer of magnetically-permeable material and plural conductors that follow respective convoluted paths relative to the layer of magnetically-permeable material to form respective inductors. In use, the conductors have substantially equalized inductances based on the convoluted paths and interaction with the magnetically-permeable material. One way of achieving this is to place the conductors such that the overall proximity of the conductors to the layer of magnetically-permeable material along their respective lengths is substantially equal. In this way, the conductors are positioned substantially symmetrically with respect to the layer of magnetically-permeable material, such that an average distance of each individual section of the conductors proximate to the permeable layer is equal.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 12, 2020
    Assignee: WiTricity Corporation
    Inventors: Simon Islinger, Leandro Alberto Percebon, Nicholas Athol Keeling
  • Patent number: 10630184
    Abstract: A power controller for an electrical load is disclosed. The power controller includes a power stage operable to selectively provide an output voltage to the load. An input voltage generator supplies an input voltage to the power stage. A hysteretic comparator is operable to compare a reference voltage to a feedback output voltage from the load, the feedback output voltage being at least a portion of the output voltage, and provide a hysteretic comparator output to the power stage which controls the output voltage. A synthesizing circuit is operable to generate a synthesized voltage and couple the synthesized voltage with the feedback output voltage before the feedback output voltage is compared with the reference voltage by the hysteretic comparator. Coupling of the synthesized voltage with the feedback output voltage synchronizes the hysteretic comparator output with the input voltage provided to the power stage.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: April 21, 2020
    Assignee: Enovate Medical, LLC
    Inventor: George Blakely
  • Patent number: 10627843
    Abstract: A low drop out, LDO, voltage regulator circuit is that includes a high gain amplifier configured to receive a current biasing signal and arranged to regulate the voltage supply signal and output a regulated voltage supply signal. A regulation adjustment circuit is operably coupled to an output of the high gain amplifier and includes a comparator configured to compare the output regulated voltage supply signal with a threshold, wherein an output of the comparator is configured to perform one of: (i) supply a dynamic current boost to the LDO current biasing signal, in response to the regulated voltage supply signal voltage dropping below the threshold; (ii) activate a dynamic current pull down circuit to reduce an over voltage output of the LDO voltage regulator circuit in response to the regulated voltage supply signal voltage exceeding the threshold.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: April 21, 2020
    Assignee: NXP B.V.
    Inventor: Jean-Robert Tourret
  • Patent number: 10615702
    Abstract: A control method of a power converter including a first stage converter and a second stage converter is provided. The first stage converter converts an input voltage into an intermediate voltage. The second stage converter converts the intermediate voltage into an output voltage to power a load. If a loading amount of the load is larger than a first threshold value, the intermediate voltage is adjusted to increase a voltage difference between the intermediate voltage and the output voltage, so that a change of the intermediate voltage is in a negative correlation with a change of the loading amount. If the loading amount is smaller than a second threshold value, the intermediate voltage remains be unchanged or the intermediate voltage is adjusted, so that the change of the intermediate voltage is in positive correlation with the change of the loading amount.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: April 7, 2020
    Assignee: DELTA ELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Yu Zhang, Haoyi Ye, Jianhong Zeng
  • Patent number: 10608544
    Abstract: A Synchronous Rectifier (SR) controller circuit includes a dead time evaluation circuit, an offset voltage controller circuit, an off threshold control circuit, and a comparator circuit. The dead time evaluation circuit produces an indication of whether a measured dead time of an SR switching device is less than a target dead time. The offset voltage controller circuit determines an offset count using the indication, an offset voltage using the offset count, and high and low saturation indicators according to the offset count. The off threshold control circuit determines a threshold count using the high and low saturation indicators and an off threshold voltage using the threshold count. The comparator circuit determines whether a measured voltage of the SR switching device is greater than a virtual off threshold voltage, the virtual off threshold voltage corresponding to the off threshold voltage minus the offset voltage.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: March 31, 2020
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Sangcheol Moon, Hangseok Choi, Chi Chen Chung, Cheng-Sung Chen
  • Patent number: 10601412
    Abstract: Disclosed examples include self-biased DLL circuits to generate a bias current signal proportional to a repetition frequency of a first signal representing continuous switching or discontinued switching operation of the DC-DC converter. The DLL circuit includes a monostable multivibrator to provide a pulse output signal in response to an edge of the first signal with a pulse duration set by a control current signal, a phase detector to provide output signals according to a phase difference between an edge of the pulse output signal and the first signal, and an output circuit to provide an output signal according to the phase detector output signals and according to an offset signal, to provide the bias current signal according to the output signal, and to provide the control current signal according to the output signal.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: March 24, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Michael Couleur, Neil Gibson, Antonio Priego
  • Patent number: 10602575
    Abstract: The invention provides a current modulating circuit, for example for use in a driving circuit for driving a lighting load such as an LED arrangement. A current modulating element is provided in series with the lighting load, and modulates the current based on a data input signal. A feedback system controls the current modulating element, and it has a first feedback control path which uses a voltage across the current modulating element, and a second feedback control path which uses the data input signal. The voltage feedback is used to maintain the overall current equal to the current output from a driver. The difference in current is taken up by a capacitor at the output of the driver.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: March 24, 2020
    Assignee: SIGNIFY HOLDING B.V.
    Inventors: Johan-Paul Marie Gerard Linnartz, Kumar Arulandu, Aleksandar Sevo, Haimin Tao
  • Patent number: 10587192
    Abstract: A voltage reducing circuit includes a power switch circuit portion having high-side and low-side field-effect-transistors connected at a switch node. The power switch circuit portion has an on-state wherein the high-side transistor is enabled and the low-side transistor is disabled and, vice versa, an off-state. An energy storage circuit portion including an inductor connected to the switch node is arranged to provide an output voltage. A timer determines a falltime duration required for the output voltage to fall to a threshold value. A controller switches the voltage reducing circuit between a first mode of operation in which a periodic pulse width modulated drive signal is applied to the high-side and low-side field-effect-transistors; and a second mode of operation in which a pulse is applied to the high-side and low-side field-effect-transistors only if the output voltage reaches the threshold value.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: March 10, 2020
    Assignee: Nordic Semiconductor ASA
    Inventor: Samuli Antti Hallikainen
  • Patent number: 10581316
    Abstract: A semiconductor device of an embodiment includes a first diode having a first anode and a first cathode, the first anode connected to either one of first and second electrodes of a first transistor having the first and second electrodes and a first gate electrode; a first electric resistor having a first one end connected to the first cathode and a first other end connected to positive pole of a direct-current power source; a first capacitor having a second one end and a second other end connected to the first cathode; a second capacitor having a third one end connected to negative pole of the direct-current power source and a third other end connected to the second one end of the first capacitor; and a second switching element connected in parallel to the second capacitor.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: March 3, 2020
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kentaro Ikeda
  • Patent number: 10564226
    Abstract: A diagnostic system for a DC-DC voltage converter having a high voltage switch, a low voltage switch, and a DC-DC voltage converter control circuit is provided. The system includes first and second tri-state buffer ICs and a microcontroller. The first tri-state buffer IC receives a first shutdown indicator voltage from the DC-DC voltage converter control circuit indicating that a first plurality of FET switches in a high side FET IC and a second plurality of FET switches in a low side FET IC have been transitioned to an open operational state. The first tri-state buffer IC outputs a second shutdown indicator voltage to the microcontroller that indicates that the first and second plurality of FET switches have been transitioned to the open operational state.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: February 18, 2020
    Assignee: LG Chem, Ltd.
    Inventors: Kerfegar K. Katrak, Mehdi Rexha, Chieh-Kai Chang
  • Patent number: 10566177
    Abstract: Embodiments presented herein relate to a pulse control system for a substrate processing system. The pulse control system includes a power source, a system controller, and a pulse shape controller. The pulse shape controller is coupled to the power source and in communication with the system controller. The pulse shape controller includes a first switch assembly and a second switch assembly. The first switch assembly includes a first switch having a first end and a second end. The first switch is configurable between an open state and a closed state. The second switch assembly includes a second switch having a first end and a second end. The first switch is in the closed state and the second switch is in the open state. The first switch in the closed state is configured to allow a pulse supplied by the power source to transfer through the pulse shape controller.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: February 18, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Michael Stowell, Viachslav Babayan, Jingjing Liu, Zhong Qiang Hua
  • Patent number: 10554127
    Abstract: A multi-output DC-DC converter with constant on time control. The multi-output DC-DC converter has N clock signals, and N switching circuits converting an input voltage signal to N output voltage signals respectively. The N clock signals have the same frequency and a predetermined phase shift between every two successive clock signals of the N clock signals. When the N switching circuits are operated in a steady state, each of the N switching circuits is synchronized with a corresponding one of the N clock signals.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: February 4, 2020
    Assignee: Chengdu Monolithic Power Systems Co., Ltd.
    Inventor: Junyong Gong
  • Patent number: 10554120
    Abstract: [Technical Problem] In a power conversion device for stepping up or stepping down the input voltage, when voltage converter become out of order, it is not possible to specify an IGBT element and a current sensor, which is in an extraordinary fault condition. [Solution to Problem] The power conversion device is configured to detect a voltage value of a smoothing condenser, connected in parallel to a load, where the load is to be connected to the power conversion device; detects, by a first current sensor, a current which flows through switching elements in a plurality of voltage converter; decides an abnormality of a switching element, by switching the switching element one by one; specifies the abnormality of the switching element; and specifies that the first current sensor is in an abnormal state, in a case where there is no abnormal state switching elements.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: February 4, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiro Fujioka, Nobuhiro Kihara, Mai Nakada, Yoshihiro Takeshima, Yujiro Nakada
  • Patent number: 10530258
    Abstract: A predictive dead time generating circuit includes a dead time detecting module configured to detect a dead time between the switching off of the upper power transistor and the switching on of the lower power transistor, and a dead time between the switching off of the lower power transistor and the switching on of the upper power transistor, and to generate a first detecting signal and a second detecting signal according to the condition of whether the detected dead time reaches an optimal value. The logic control module changes the output of the delay module according to the judgment result of the dead time detecting module, so as to change the dead time between the driving signal of the upper power transistor and the driving signal of the lower power transistor.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: January 7, 2020
    Assignee: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA
    Inventors: Zekun Zhou, Yunkun Wang, Yandong Yuan, Shilei Li, Zhuo Wang, Bo Zhang
  • Patent number: 10528071
    Abstract: According to an embodiment of an electronic circuit, the electronic circuit includes a first input pin, a second input pin, an output pin, a control circuit and an output circuit. The first input pin is configured to receive a first input signal that includes an enable information and at least one operation parameter information. The second input pin is configured to receive a second input signal. The control circuit is configured to generate a drive signal based on the enable information included in the first input signal and the second input signal. The output circuit is configured to generate an output signal at the output pin such that a timing of the output signal is dependent on the drive signal and at least one parameter of the output signal is dependent on the at least one operation parameter information included in the first input signal.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: January 7, 2020
    Assignee: Infineon Technologies Austria AG
    Inventors: Tobias Gerber, Thomas Ferianz
  • Patent number: 10503195
    Abstract: A reference voltage generation circuit small in circuit scale and in power consumption is provided. The reference voltage generation circuit, including a stabilizing capacitor, outputting a voltage at both ends of the stabilizing capacitor as an output voltage, includes a voltage detection circuit, a reference voltage circuit, a stabilizing capacitor, a current source circuit, and a control circuit. The current source circuit generates a first current if the output voltage is lower than a detection voltage and a second current if the output voltage is higher than or equal to the detection voltage, the first current being larger than the second current. The voltage detection circuit includes one of a single transistor and transistors connected by cascode connection that is smaller in the number of stages than the cascode connection in the reference voltage circuit.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: December 10, 2019
    Assignee: ABLIC INC.
    Inventor: Minoru Sano