With Means To Create Magnetic Field To Test Material Patents (Class 324/228)
  • Patent number: 9876890
    Abstract: An air quality monitor carried by a smart phone and an air quality monitoring system carried by the smart phone are provided. The quality monitor carried by the smart phone includes a shell body, wherein a sensor is provided inside the shell body; a plug is provided on the shell body for being connected to the smart phone; a signal output terminal and a power input terminal of the sensor are both connected to the plug; wherein no power source or power source managing module is provided inside the shell body; no display module is provided on the shell body. Product weight and volume are greatly reduced, in such a manner that a product of the present invention is easy to carry. An air quality monitoring system carried by a smart phone includes: the smart phone, wherein the smart phone comprises a port and a signal processing system.
    Type: Grant
    Filed: July 10, 2017
    Date of Patent: January 23, 2018
    Assignee: Shanghai Eawada Environmental Technology CO., Ltd
    Inventors: Shangxin Shi, Yi Zhang
  • Patent number: 9871288
    Abstract: A vehicular door handle system includes a door handle assembly for a door of a vehicle. The door handle assembly includes a door handle portion that is graspable by a user to open the vehicle door. The door handle assembly includes an antenna circuit for a passive entry system of the vehicle. The antenna circuit includes at least an inductor in series electrical connection with a capacitor. The antenna circuit includes a resistor in series electrical connection with the inductor of the antenna circuit and the capacitor of the antenna circuit. The series electrical connection includes one of (i) the resistor being disposed between the inductor and the capacitor of the antenna circuit and (ii) the resistor not being disposed between the inductor and the capacitor of the antenna circuit. The resistor functions to reduce the Q factor of the antenna circuit.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: January 16, 2018
    Assignee: MAGNA MIRRORS OF AMERICA, INC.
    Inventor: Robert J. Dykhouse
  • Patent number: 9835569
    Abstract: A magnetic measurement system includes an X-ray source, a monochromator that converts right- and left-polarization X-ray into right- and left-monochromatic X-ray, an aperture slit that allows the right- and left-monochromatic X-ray to pass through, an analytical section, and piezoelectric scanning devices. The analytical section has a Fresnel zone plate that receives and focuses the right- and left-monochromatic X-ray on a single point being 10 nm or less wide of a magnetic sample, an order-sorting aperture that allows the focused X-ray to selectively pass through, a sample-stage that sets a comparatively thick magnetic sample that is more than 150 nm thick and less than or equal to 1000 nm thick to be irradiated with the X-ray, and an X-ray-detector that detects transmittance of transmission X-ray passing through the comparatively thick sample and that generates X-ray magnetic circular dichroism (XMCD) data by directly measuring the detected transmittance of the transmission X-ray.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: December 5, 2017
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, INTER-UNIVERSITY RESEARCH INSTITUTE CORPORATION HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION
    Inventors: Masao Yano, Kanta Ono
  • Patent number: 9767096
    Abstract: Systems, methods, and tangible, non-transitory, computer readable media is described herein. For example, a system includes a portable non-destructive testing (NDT) device. The NDT device includes a display, a user interface, a memory storing an operations object having a first text in a first language, and a processor. The processor is configured to present the first text on the operations object via the display during an operation of the portable NDT device, and wherein the processor is configured to create a second text in a second language via the user interface of the NDT device, and to present the second text on the operations object as an alternative to the first text via the display during the operation of the NDT device.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: September 19, 2017
    Assignee: General Electric Company
    Inventors: Chen Goldberger, Bryan David Maule, Thomas Charles Ward, Thomas Durkee Britton
  • Patent number: 9761371
    Abstract: The present invention relates to a coil type unit for wireless power transmission, a wireless power transmission device, an electronic device, and a manufacturing method of a coil type unit for wireless power transmission. A coil type unit for wireless power transmission according to the present invention includes a coil pattern in the form of a wiring pattern; a magnetic portion having the coil pattern attached to one surface thereof; and an adhesive portion interposed between the magnetic portion and the coil pattern to bond the magnetic portion and the coil pattern, wherein the magnetic portion is formed by laminating one or more conductive sheets with one or more magnetic sheets and integrally firing the laminated sheets, and the magnetic portion has conductive holes in the position, where both ends of the coil pattern are disposed, to electrically connect the both ends of the coil pattern and the conductive sheet.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: September 12, 2017
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: No Il Park, Jang Su Kim, Doo Sung Jung, Seung Wook Park
  • Patent number: 9714920
    Abstract: A detection system comprising a plurality of magnetic field generators and a plurality of magnetic field detectors located adjacent to a detection area, and a control system arranged to generate magnetic field using the generators, and, for each of the generators, to make measurements of the magnetic field generated using each of the detectors, and processing means arranged to process the measurements to generate a data set characterizing the detection area.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: July 25, 2017
    Assignee: RAPISCAN SYSTEMS, INC.
    Inventors: William Robert Breckon Lionheart, Anthony Peyton, Xiandong Ma
  • Patent number: 9714987
    Abstract: A fluxgate sensor including a magnetic-to-digital converter (MDC) can be adapted to measure an external magnetic field BEXT with a bandwidth fB. The MDC forward path can include: (a) converting an analog sense signal from the fluxgate sense coil to corresponding oversampled digital data using an oversampling data converter with an oversampling frequency fS greater than fB; and (b) loop filtering the oversampled digital data, synchronous with the oversampling frequency fS, to generate the loop output digital data. The MDC feedback path can include: (a) generating the feedback compensation current ICOMP from the loop output digital data, synchronous with a feedback path frequency fFB equal to ((M/N)×fS), where, M and N are integers; and (b) injecting the feedback compensation current ICOMP into the fluxgate compensation coil to induce the compensation field BCOMP, such that the induced compensation field BCOMP nulls the external field BEXT.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: July 25, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Sayyed Mahdi Kashmiri, Willem J. Kindt
  • Patent number: 9664755
    Abstract: A sensor package includes a magnetic field sensor, where the magnetic field sensor includes an in-plane sense element and a flux guide configured to direct a magnetic field oriented perpendicular to a plane of the magnetic field sensor into the plane. A current carrying structure is positioned proximate the flux guide and circuitry is coupled to the current carrying structure. The current carrying structure includes a continuous coil having multiple substantially parallel conductive segments connected by additional conductive segments oriented Perpendicular to the parallel conductive segments to form a continuous series of loops. The circuitry is configured to provide an electric current to the continuous coil such that the electric current flows through each of the parallel conductive segments, wherein the electric current generates a magnetic field, and the magnetic field is applied to the flux guide to recondition a magnetic polarization of the flux guide.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: May 30, 2017
    Assignee: NXP USA, Inc.
    Inventors: Paige M. Holm, Lianjun Liu
  • Patent number: 9658192
    Abstract: In a general methodology for insulation defect identification in a generator core, a Chattock coil is used to measure magnetic potential difference between teeth. Physical knowledge and empirical knowledge is combined in a model to predict insulation damage location and severity. Measurements are taken at multiple excitation frequencies to solve for multiple characteristics of the defect.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: May 23, 2017
    Assignees: Siemens Corporation, Siemens Energy, Inc.
    Inventors: Xuefei Guan, Jingdan Zhang, Shaohua Kevin Zhou, Mark W. Fischer, Waheed A. Abbasi, Scott A. Karstetter, Christopher John William Adams
  • Patent number: 9660523
    Abstract: A system and method allows for controlling a resonant switched-mode converter to provide a variable conversion ratio. The system and method operates to control the switching devices such that the impedance of the switched-mode converter is set to a plurality of configurations for a plurality of time intervals. The system and method may further include off-time modulation techniques for varying or maintaining the overall switching period of the switched-mode converter.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: May 23, 2017
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Jason T. Stauth, Kapil Kesarwani, Christopher Schaef
  • Patent number: 9612134
    Abstract: A method of sensing a sliding by a sensor including grouping one or more Hall elements into one or more groups, measuring magnetic field strength generated by a magnetic field source, and comparing the magnetic field strength at the one or more Hall elements to determine whether a horizontal sliding occurs.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: April 4, 2017
    Assignee: Magnachip Semiconductor, Ltd.
    Inventors: Seung-hwan Park, Hyung-nam Jin
  • Patent number: 9541612
    Abstract: A method for measuring a first magnetic field and the temperature of a magneto-resistive transducer includes producing, by the magneto-resistive transducer, a measurement signal dependent on the intensity of the first magnetic field and on the temperature of the magneto-resistive transducer. The method includes establishing a measurement of the intensity of the first magnetic field on the basis of the measurement signal produced and a measurement of the temperature of the magneto-resistive transducer. The method also includes generating a second magnetic field to combine with the first magnetic field to form a resultant magnetic field. The method further includes extracting from the measurement signal, the component which is dependent solely on the second magnetic field and establishing the temperature of the magneto-resistive transducer on the basis of the component extracted.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: January 10, 2017
    Assignees: Commissariat à l'énergie atomique et aux énergies alternatives, Renault S.A.S.
    Inventors: Sylvain Bacquet, Frédéric Auzas, Bertrand Delaet
  • Patent number: 9488647
    Abstract: A method detects magnetic particles (1) bound to a binding surface (111) of a sample chamber (112). The detection is made during and/or immediately after the action of an attractive magnetic field. The attractive magnetic field (B) is preceded by a repulsive magnetic field (B) which removes unbound magnetic particles away from the binding surface (111). Due to the attractive magnetic field (B), bound magnetic particles (1) come closer to the binding surface (111), which increases the signal of surface specific detection techniques like frustrated total internal reflection. The signal can be achieved by an attractive magnetic field that is parallel to the binding surface (111) thus inducing the generation of chains between unbound and bound magnetic particles.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: November 8, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Joannes Baptist Adrianus Dionisius Van Zon, Ron Martinus Laurentius Van Lieshout
  • Patent number: 9383208
    Abstract: A system that incorporates the subject disclosure may include, for example, a method for producing an electrical signal from an apparatus comprising an induction coil coupled to a mechanical resonator, wherein the electrical signal has an operating frequency proportional to a mechanical resonating frequency of the mechanical resonator and proportional to a change in a magnetic flux resulting from a change in orientation in the apparatus, detecting with a detection circuit a change in the electrical signal resulting from a change in the magnetic flux caused by the change in orientation in the apparatus, and determining a direction of the apparatus according to the change in the electrical signal. Other embodiments are disclosed.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: July 5, 2016
    Assignee: Analog Devices, Inc.
    Inventor: Pritiraj Mohanty
  • Patent number: 9366096
    Abstract: Embodiments of the present disclosure include a system having a clamping mechanism configured to apply a force on a first tool joint and a second tool joint, wherein the clamping mechanism is configured to transfer a torque from the first tool joint to the second tool joint, and the clamping mechanism is configured to rotate about an axis of the first and second tool joints.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: June 14, 2016
    Assignee: TESCO CORPORATION
    Inventors: Ryan Thomas Bowley, Edgar Fernando Yajure
  • Patent number: 9335385
    Abstract: SQUIDs may detect local magnetic fields. SQUIDS of varying sizes, and hence sensitivities may detect different magnitudes of magnetic fields. SQUIDs may be oriented to detect magnetic fields in a variety of orientations, for example along an orthogonal reference frame of a chip or wafer. The SQUIDS may be formed or carried on the same chip or wafer as a superconducting processor (e.g., a superconducting quantum processor). Measurement of magnetic fields may permit compensation, for example allowing tuning of a compensation field via a compensation coil and/or a heater to warm select portions of a system. A SQIF may be implemented as a SQUID employing an unconventional grating structure. Successful fabrication of an operable SQIF may be facilitated by incorporating multiple Josephson junctions in series in each arm of the unconventional grating structure.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: May 10, 2016
    Assignee: D-Wave Systems Inc.
    Inventors: Trevor Michael Lanting, Paul I. Bunyk, Andrew J. Berkley, Richard G. Harris, Sergey V. Uchaykin, Andrew Brock Wilson, Mark Johnson
  • Patent number: 9335383
    Abstract: A magnetic field generating device includes a triaxial Helmholtz coil 3, amounting table 4 on which a portable device 2 is mounted, a current supplying part 5 and a controlling part 6. The current supplying part 5 supplies current I to individual three monoaxial Helmholtz coils 30 which construct the triaxial Helmholtz coil 3. The controlling part 6 changes the current flowing through the individual monoaxial Helmholtz coils 30 in such a manner that a synthetic magnetic field of a magnetic field generated within the triaxial Helmholtz coil 3 by the current I and an external magnetic field which acts from the outside into the triaxial Helmholtz coil 3 acts on a triaxial magnetic sensor 20 within the portable device 2 mounted on the mounting table 4 from a plurality of predetermined directions.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: May 10, 2016
    Assignee: AICHI STEEL CORPORATION
    Inventors: Masahiko Fukasawa, Masaaki Nakada, Ryuji Kambara
  • Patent number: 9329295
    Abstract: A device for locating a ferromagnetic object has a non-magnetic housing with a front end, a rear end, and a perimeter wall defining a chamber within the housing. A ferromagnetic member is housed within the chamber in a substantially fixed position. A magnet element is housed within the chamber between the front end and the ferromagnetic member, wherein the magnet element is reversibly movable between a first position in which the magnet element is proximate the ferromagnetic member, and a second position in which the magnet element is proximate the front end.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: May 3, 2016
    Assignee: DIAMOND RESOURCE, LLC
    Inventors: John Blake, David Lee Still
  • Patent number: 9285437
    Abstract: A hall effect current sensor including a mounting bracket, a sensor assembly, and a sensor core. The sensor assembly includes a flux sensor. The sensor core includes a first portion and a second portion. The first portion and the second portion define a first air gap and a second air gap between the first portion and the second portion. The first air gap is adapted to receive the sensor assembly.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: March 15, 2016
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Robert G Rushmer, Jeffrey Annis, Richard D Marasch, Greg Voborsky
  • Patent number: 9214937
    Abstract: An inductive proximity sensor and a method comprising a transmitter coil, a receiver coil, an excitation device which is connected to the transmitter coil and an evaluation device, wherein the evaluation device is designed to generate an output signal which depends on a voltage ratio between a transmission voltage of the transmitter coil and/or of the excitation device and a reception voltage of the receiver coil, wherein the excitation device is designed to generate a sinusoidal radio frequency transmission voltage. An inductive proximity sensor and a method comprising a transmitter coil, a receiver coil, an excitation device which is connected to the transmitter coil and an evaluation device, wherein the evaluation device is designed to generate an output signal which is dependent on a reception voltage of the receiver coil, wherein the excitation device is designed to generate a sinusoidal radio frequency transmission voltage with a constant amplitude.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: December 15, 2015
    Assignee: Sick AG
    Inventors: Sascha Thoss, André Lissner
  • Patent number: 9075091
    Abstract: Sensor devices and related methods disclosed. One example sensor device includes a non-magnetic substrate defining an aperture structured to receive a conductor therein, a coil including a plurality of coil turns wound about at least a portion of the substrate, a first shield between the substrate and the plurality of coil turns, a second shield disposed proximate to the plurality of coil turns, opposite the first shield, such that the plurality of coil turns is disposed between the first shield and the second shield, and a filter element coupled to at least one of the first and second shields.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: July 7, 2015
    Assignee: General Electric Company
    Inventors: Subramanyam Satyasurya Chamarti, Steven Lee Bietz
  • Patent number: 9069028
    Abstract: Provided is a stud finder for determining the location of a stud within a wall. The stud finder includes a body having an internal compartment formed therein which is sized and configured to house a magnetic element therein. The stud finder is moveable along the wall to place the magnetic element in magnetic attraction with metallic fasteners (i.e., nails, screws, etc) disposed within the stud, such as for securing drywall to the stud. The magnetic attraction urges the magnetic element toward the metallic element to provide a visual indication as to the precise location of the metallic element, as well as the underlying stud.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: June 30, 2015
    Inventors: Emmett J. Ebner, Brian J. Huffer
  • Patent number: 9018946
    Abstract: An integrated magnetic-field sensor designed to detect an external magnetic field, comprising a first magnetoresistive structure for detecting the external magnetic field, the first magnetoresistive structure including first magnetoresistive means having a main axis of magnetization and a secondary axis of magnetization set orthogonal to one another. The magnetic-field sensor further comprises a magnetic-field generator, including a first portion configured for generating a first magnetic field having field lines in a first field direction, and a second portion, which is coplanar and is connected to the first portion, configured for generating a second magnetic field having field lines in a second field direction, the first magnetoresistive means being configured so that the main axis of magnetization extends parallel to the first field direction, and the secondary axis of magnetization extends parallel to the second field direction.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 28, 2015
    Assignee: STMicroelectronics S.R.L.
    Inventors: Dario Paci, Sarah Zerbini
  • Patent number: 9013175
    Abstract: A reading circuit for a magnetic-field sensor, generating an electrical detection quantity as a function of a detected magnetic field and of a detection sensitivity, is provided with an amplification stage, which is coupled to the magnetic-field sensor and generates an output signal as a function of the electrical detection quantity and of an amplification gain. In particular, the amplification gain is electronically selectable, and the reading circuit is moreover provided with a calibration stage, integrated with the amplification stage and configured so as to vary a value of the amplification gain in such a way as to compensate a variation of the detection sensitivity with respect to a nominal sensitivity value.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: April 21, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Carlo Alberto Romani, Enrico Pozzati, Fabio Bottinelli
  • Patent number: 9000759
    Abstract: A magnetic sensor for discriminating between high and low coercivity magnets is disclosed. The sensor comprises a first magnetic field operable to orient high and low coercivity magnets in a first magnetic orientation. The sensor also comprises a second magnetic field, lower in strength than the first magnetic field, and operable to orient only the low coercivity magnets in a second magnetic orientation opposite to the first magnetic orientation. The sensor further comprises a sensor for ascertaining the magnetic orientation of each of the magnets and thereby identifying if a magnet is a high coercivity magnet or a low coercivity magnet.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 7, 2015
    Assignee: NCR Corporation
    Inventors: Gary Ross, Adam Camilletti, Andrew Nicholas Dames, Edward G Colby
  • Patent number: 8991594
    Abstract: A rubber magnet (3) includes a plate-like diagonal portion (21) and a plate-like parallel portion (22) which are both magnetized in a thickness direction, the diagonal portion (21) extending in a conveyor belt width direction while linearly extending, in section in a conveyor belt length direction, from an outer side end (3b), which is closer to the front-side surface (2a), to an inner side end (3a), which is away from the front-side surface (2a), while being at an angle to the front-side surface (2a), the parallel portion (22) being formed continuously from the inner side end (3a) of the diagonal portion, so as to be arranged parallel to the front-side surface (2a).
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: March 31, 2015
    Assignee: Bridgestone Corporation
    Inventors: Tomoki Nakamura, Toshiki Sakaguchi
  • Publication number: 20150084622
    Abstract: The object of the present invention is to provide a method, system and apparatus that are capable of measuring magnetic characteristic of crystal grains composing magnetic polycrystalline materials in the magnetic field or nonmagnetic field by X-ray magnetic circular dichroism. In particular, the present invention is capable of measuring the magnetic characteristic of comparatively very thick materials.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Inventors: Masao YANO, Kanta ONO
  • Patent number: 8988070
    Abstract: A pulse-induction type metal detector using a transmitter coil energizing pulse that selectively reduces the amplitude of background signals from conductive soils, ores and salt water. The detector can be operated with higher amplification of the received signals than conventional detectors, without driving the input amplifier into saturation. This makes it possible to detect land mines, tramp metal and gold in media whose characteristics make detection with conventional metal detectors difficult.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: March 24, 2015
    Inventor: Allan Westersten
  • Patent number: 8981018
    Abstract: The condition of internal or hidden material layers or interfaces is monitored and used for control of a process that changes a condition of a material system. The material system has multiple component materials, such as layers or embedded constituents, or can be represented with multiple layers to model spatial distributions in the material properties. The material condition changes as a result of a process performed on the material, such as by cold working, or from functional operation. Sensors placed proximate to the test material surface or embedded between material layers are used to monitor a material property using magnetic, electric, or thermal interrogation fields. The sensor responses are converted into states of the material condition, such as temperature or residual stress, typically with a precomputed database of sensor responses.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: March 17, 2015
    Assignee: Jentek Sensors, Inc.
    Inventors: Neil J. Goldfine, Vladimir A. Zilberstein, Ian C. Shay, Christopher A. Craven, David C. Grundy, Volker Weiss, Andrew P. Washabaugh
  • Patent number: 8977511
    Abstract: A method for classifying electrical sheet is produced. The electrical sheet is used to produce an electrical machine and is available in the form of a strip roll wherein a magnetic flux that changes over time and that causes a shape change of the strip roll and magnetic losses is produced in the strip roll using an excitation winding fed by a feeding device, the shape change and/or the magnetic losses are measured using a measuring device and the measurement signal obtained is fed to an evaluation device, and the evaluation device categorizes the electrical sheet in regard to noise emission and/or magnetic losses using the measurement signal.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: March 10, 2015
    Assignee: Siemens Aktiengesellschaft Österreich
    Inventor: Helmut Pregartner
  • Patent number: 8952686
    Abstract: A system includes a magnetoresistive (MR) bridge circuit, a magnetic field sensor, and an adjustable load. The MR bridge circuit receives a supply voltage and generates an output voltage that indicates a strength/direction of a magnetic field. The MR bridge circuit includes first and second MR elements connected in series between a supply node and a ground node, and third and fourth MR elements connected in series between the supply node and the ground node. The output voltage is generated between a first node that is common to the first and second MR elements and a second node that is common to the third and fourth MR elements. The sensor generates signals based on the strength/direction of the magnetic field. The adjustable load is connected in parallel with one of the MR elements, and has a resistance that is controlled based on the signals generated by the sensor.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: February 10, 2015
    Assignee: Honeywell International Inc.
    Inventor: Perry A. Holman, Jr.
  • Publication number: 20150035521
    Abstract: The present invention relates to a portable metal detector adapted for detection of dangerous metallic items carried by individuals, for example during access to a departure lounge in an airport, comprising a casing which houses a transmitter/receiver winding, the casing being extended by a gripping and handling handle, and a processor which feeds a loop of the winding to generate a magnetic field and which detects perturbations of the magnetic field caused by the environment, characterised in that the detector comprises a sensor for detecting orientation of the detector in a vertical position of the handle and which, when the detector is in a vertical position, activates a single dynamic detection mode of the winding whereas, when the detector is in another position, it activates a static operating mode of the winding.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 5, 2015
    Inventor: Alessandro Manneschi
  • Patent number: 8947078
    Abstract: A measuring apparatus for sensing metal articles, comprises a transmission coil for producing a magnetic field, two reception coils, which are oriented relative to one another, and electrically connected to one another, in the region of the magnetic field such that a resulting received voltage on the reception coils is zero when the magnetic field acts on both reception coils in the same way, a control device configured to supply the transmission coil with an alternating transmission voltage, and a determination device configured to determine the metal article on the basis of the received voltage. In this arrangement, the control device is further configured to control RMS value for the transmission voltage such that the received voltage remains below a predetermined threshold value.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: February 3, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Markus Hahl, Christoph Wieland, Andrej Albrecht
  • Publication number: 20150008910
    Abstract: A magnetic particle imaging apparatus includes magnets [106,107] that produce a gradient magnetic field having a field free region (FFR), excitation field electromagnets [102,114] that produce a radiofrequency magnetic field within the field free region, high-Q receiving coils [112] that detect a response of magnetic particles in the field free region to the excitation field. Field translation electromagnets create a homogeneous magnetic field displacing the field-free region through the field of view (FOV) allowing the imaging region to be scaled to optimize scan time, scanning power, amplifier heating, SAR, dB/dt, and/or slew rate. Efficient multi-resolution scanning techniques are also provided. Intermodulated low and radio-frequency excitation signals are processed to produce an image of a distribution of the magnetic nanoparticles within the imaging region. A single composite image is computed using deconvolution of multiple signals at different harmonics.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 8, 2015
    Inventors: Patrick W. Goodwill, Steven M. Conolly
  • Patent number: 8928314
    Abstract: A magnetic detection apparatus comprises: a magnetic detection section which is obtained by pressing a base including a magnetic detection device, and magnetic field generation means fixed to the base, into a cap so as to integrate the base, the magnetic field generation means, and the cap; and a secondary molding section including an attachment section for attaching the magnetic detection section, and a connector section for extracting a signal detected by the magnetic detection section.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: January 6, 2015
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shigeki Tsujii, Mitsuhiro Ono, Hiroshi Kobayashi
  • Publication number: 20140375308
    Abstract: A magnetic measurement device which can measure the magnetic characteristics in a microregion of a thin plate magnetic sample. After a magnetic sample is applied by a magnetic field and magnetized accordingly, by scanning the magnetic sample using a measuring part, the magnetic flux leakage in the magnetic sample can be measured. The magnetic flux leaks outside by magnetizing a first region and a second region of the magnetic sample in reciprocally opposite directions and reducing the demagnetizing field. Specifically, a magnetic field generating part with at least a pair of magnetic poles is used to perform the magnetization of multiple poles, or the magnetic field generating part applies a damped oscillation magnetic field to perform the magnetization, or a local magnetic field generating part which applies an alternating magnetic field and scans the surface of the sample at the same time is used to perform the magnetization.
    Type: Application
    Filed: December 13, 2012
    Publication date: December 25, 2014
    Inventors: Kenichi Suzuki, Tsutomu Chikamatsu, Akio Ogawa, Kyung-ku Choi, Ryuji Hashimoto
  • Patent number: 8912790
    Abstract: A measuring device for measuring a film thickness of a silicon wafer (1) comprises: position and velocity sensors (4) linearly arranged along a longitudinal direction into first and second position and velocity sensor arrays spaced apart from each other in a lateral direction, in which the position and velocity sensors (4) in the first position and velocity sensor array are in one-to-one correspondence with the position and velocity sensors (4) in the second position and velocity sensor array in the lateral direction; an eddy current sensor (2) disposed in a symmetrical plane between the first position and velocity sensor array and the second position and velocity sensor array and perpendicular to the lateral direction; and a controller connected to the position and velocity sensors (4) and the eddy current sensor (2) respectively for controlling measurement of the thickness of the film according to detection signals from the position and velocity sensors (4) and the eddy current sensor (2).
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: December 16, 2014
    Assignee: Tsinghua University
    Inventors: Xinchun Lu, Pan Shen
  • Patent number: 8907665
    Abstract: A system includes at least one strip of ferromagnetic material and a plurality of pulsing/receiving coil circuits. The at least one strip of ferromagnetic material is induced with a bias magnetic field and is coupled to a surface of a structure under test. The plurality of pulsing/receiving coil circuits are aligned with a surface of the at least one strip of the ferromagnetic material. The plurality of pulsing/receiving coil circuits are individually controllable by a number of channels to excite guided waves in the structure under test using at least one of active phased-array focusing or synthetic phased-array focusing of the guided waves.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: December 9, 2014
    Assignee: FBS, Inc.
    Inventors: Joseph L. Rose, Jason K. Van Velsor, Steven E. Owens, Roger L. Royer, Jr.
  • Patent number: 8907664
    Abstract: Methods and apparatus for non-intrusive power monitoring and current measurement in a circuit breaker without modification of the breaker panel or the circuit breaker itself. In one example, an inductive pickup sensor senses current from the breaker face, an inductive link transmits power through a steel breaker panel door, and a passive balanced JFET modulator circuit modulates a carrier signal on the inductive link with information regarding the sensed current. A demodulated breaker current signal is available outside of the breaker panel door. The JFET modulator circuit does not require DC power to modulate the carrier signal with the information regarding the sensed current from the breaker. Such methods and apparatus may be interfaced with a spectral envelope load detection system that can monitor multiple loads from a central location.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: December 9, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Steven B. Leeb, Zachary A. Clifford, John J. Cooley, Al-Thaddeus Avestruz
  • Publication number: 20140333299
    Abstract: A measuring system, having a magnetic device for generating a magnetic field and having a magnetic field sensor with a sensor surface for detecting a flux density of the magnetic field penetrating the sensor surface at least in a first spatial direction, whereby the magnetic field sensor is fixedly positioned relative to the magnetic device. The magnetic device can have at least one permanent magnet and a flux concentrator made of a ferromagnetic material. The permanent magnet has at least two pole surfaces and an outer surface. The flux concentrator can have a smaller dimensions than the outer surface of the permanent magnet. The flux concentrator can be positioned within the outer surface of the permanent magnet and the flux concentrator and the permanent magnet can have a magnetic force closure.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Micronas GmbH
    Inventors: Klaus HEBERLE, Joerg FRANKE, Oliver BREITWIESER, Timo KAUFMANN
  • Publication number: 20140333298
    Abstract: A measuring system having a magnetic device for generating a magnetic field and having a magnetic field sensor for detecting a flux density of the magnetic field at least in a first spatial direction, whereby the magnetic field sensor is fixedly positioned relative to the magnetic device. The magnetic device has at least two main poles for generating a main magnetic field and at least two secondary poles for generating a secondary magnetic field. The magnetic field in the magnetic field sensor is formed by superposition of the main magnetic field and the secondary magnetic field. The magnetic field sensor is designed to measure the flux density of the superposition in the first spatial direction, and, in the magnetic field sensor, the secondary magnetic field compensates at least partially the main magnetic field in the first spatial direction.
    Type: Application
    Filed: May 8, 2014
    Publication date: November 13, 2014
    Applicant: Micronas GmbH
    Inventors: Klaus HEBERLE, Joerg FRANKE, Oliver BREITWIESER, Timo KAUFMANN
  • Patent number: 8884614
    Abstract: Present embodiments include eddy current array probes having differential coils capable of detecting both long and short flaws in a test specimen and, additionally or alternatively, multiplexed drive coils. For example, an eddy current array probe may include a first plurality of eddy current channels disposed in a first row and a second plurality of eddy current channels disposed in a second row. The first plurality and second plurality of eddy current channels overlap in a first direction but do not overlap in a second direction. The probe also includes a semi-circular drive coil disposed proximate to the first plurality and second plurality of eddy current channels and configured to generate a probing magnetic field for each sense coil of the eddy current channels.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: November 11, 2014
    Assignee: General Electric Company
    Inventors: Changting Wang, Yuri Alexeyevich Plotnikov, Mandar Diwakar Godbole, Aparna Chakrapani Sheila-Vadde
  • Patent number: 8884613
    Abstract: A water-chamber working apparatus 1 according to the present invention includes a movable body that can move along a tube plate 12 of a steam generator 10, an extendable member 21 that extends and retracts in a direction in which a first coupling portion 21d approach each other and a direction in which these portions move away from each other, where the first coupling portion 21d is attached to a maintenance hatch 15 via a first joint 23a including two rotation axes intersecting with each other, and the second coupling portion 21e is attached to the movable body via a second joint 23b including two rotation axes intersecting with each other, which are different from the rotation axes of the first joint 23a.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Jun Fujita
  • Patent number: 8872513
    Abstract: Disclosed are a medium discrimination apparatus and a discrimination method thereof. The medium discrimination apparatus comprises first and second magnetic sensor, a differential analog/digital converter and a controller. The first magnetic sensor senses a magnetic component printed at a specific position of an introduced medium and having a form of an analog signal containing a first noise generated from an internal circuit and a second noise generated from an operation of an actuator. The second magnetic sensor senses the first and second noises which are caused when the medium is transferred and has a form of an analog signal. The differential analog/digital converter performs a subtraction operation for the first and second noises sensed by the first and second magnetic sensors and convert result signals into one digital signal. The controller determines if the introduced medium is genuine or counterfeit according to the digital signal.
    Type: Grant
    Filed: June 24, 2009
    Date of Patent: October 28, 2014
    Assignee: LG CNS Co., Ltd.
    Inventors: In-Uk Kim, Seoung-Oh Han
  • Publication number: 20140312885
    Abstract: A magnetic flux enhancer system for a reluctance type resolver and an electromagnetic angle sensor having the same are provided. The electromagnetic angle sensor has a stator (210) and a rotor (115) that is rotatably supported by a rotation axis on the stator and separated therefrom by a gap, the stator having at least one magnetic field generating means (220) adapted to generate a distribution of magnetic flux that extends over the gap to the rotor, and at least one magnetic field detecting means (220) adapted to detect a change in the magnetic flux distribution caused by a rotation of the rotor. The electromagnetic angle sensor comprises a magnetic flux enhancer (230) adapted to be positioned on a side of the at least one magnetic field generating means that faces the rotor and to concentrate the generated distribution of magnetic flux over the gap along a radial direction substantially perpendicular to the rotation axis.
    Type: Application
    Filed: October 16, 2012
    Publication date: October 23, 2014
    Applicant: Arcelik Anonim Sirketi
    Inventors: Palanisamy Vellaiyanaicken, Devikishor Konadka
  • Publication number: 20140312887
    Abstract: An inspection apparatus (100) for monitoring the structural integrity of a pipeline (101) comprising a central electromagnetic device (102) suitable for generating a magnetic field (106); a pair of magnetic conveyors (103?, 103?) connected to the central electromagnetic device (102) suitable for conveying the magnetic field (106) to the wall of the pipeline (101); a system of sensors (104) for revealing the magnetic field (106) conveyed on the pipeline (101); electric means (105) for feeding the inspection apparatus (100) and acquiring and storing data relating to the magnetic field (106) revealed; wherein said central electromagnetic device (102) is divided into various ferromagnetic elements (107) held together by a casing (109) made of polymeric material suitable for degrading after prolonged contact with a mixture of hydrocarbons. Method wherein an inspection apparatus according to the present invention is used for monitoring the structural integrity of a pipeline (101).
    Type: Application
    Filed: December 20, 2012
    Publication date: October 23, 2014
    Inventors: Alberto Giulio Di Lullo, Giordano Pinarello, Aldo Canova
  • Publication number: 20140312886
    Abstract: A magnetic permeability detector includes an LC oscillator circuit including a coil and a capacitor; and a resistor connected in series with the coil.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Inventors: Tetsuro HIROTA, Hiroshi Hosokawa, Shunji Katoh, Masayuki Yamane, Masahiro Watanabe, Shingo Nishizaki
  • Publication number: 20140302619
    Abstract: The invention relates to a sensor apparatus (100) and a method for detecting clusters with magnetic particles in a sample. The sample is provided in at least one sample chamber (114) of a substantially planar cartridge (110) that is exposed to a modulated magnetic field (Bxz, Byz) generated by a magnetic field generator (190). The sample chamber (114) is illuminated with excitation light (L0), and the resulting output light (Ls) is detected by a light detector (180). The magnetic field (Bxz, Byz) may particularly rotate, inducing a corresponding rotation of clusters which in turn induces a variation of the detection signal (S). According to a preferred embodiment, excitation light (L0) is focused onto blocking spots (173) behind the sample chamber (114), thus shielding the light detector (180) from direct illumination.
    Type: Application
    Filed: November 6, 2012
    Publication date: October 9, 2014
    Inventors: Johannes Joseph Hubertina Barbara Schleipen, Menno Willem Jose Prins, Andrea Ranzoni
  • Publication number: 20140292318
    Abstract: A magnetic biosensor can include a magnetic stack comprising a free layer, a fixed layer, and a nonmagnetic layer between the free layer and the fixed layer. At least one of the free layer or the fixed layer may have a magnetic moment oriented out of a major plane of the free layer or the fixed layer, respectively, in an absence of an external magnetic field. The magnetic biosensor also may include a sample container disposed over the magnetic stack, a plurality of capture antibodies attached to a bottom surface of the sample container above the magnetic stack, and a magnetic field generator configured to generate a magnetic field substantially perpendicular to the major plane of the free layer or fixed layer.
    Type: Application
    Filed: October 19, 2012
    Publication date: October 2, 2014
    Inventors: Jian-Ping Wang, Md Tofizur Rahman, Yi Wang
  • Publication number: 20140292317
    Abstract: A miniature oxygen sensor makes use of paramagnetic properties of oxygen gas to provide a fast response time, low power consumption, improved accuracy and sensitivity, and superior durability. The miniature oxygen sensor disclosed maintains a sample of ambient air within a micro-channel formed in a semiconductor substrate. O2 molecules segregate in response to an applied magnetic field, thereby establishing a measureable Hall voltage. Oxygen present in the sample of ambient air can be deduced from a change in Hall voltage with variation in the applied magnetic field. The magnetic field can be applied either by an external magnet or by a thin film magnet integrated into a gas sensing cavity within the micro-channel. A differential sensor further includes a reference element containing an unmagnetized control sample. The miniature oxygen sensor is suitable for use as a real-time air quality monitor in consumer products such as smart phones.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 2, 2014
    Applicant: STMicroelectronics Pte Ltd.
    Inventors: Olivier Le Neel, Ravi Shankar