Using A Battery Testing Device Patents (Class 324/426)
  • Patent number: 8203345
    Abstract: A storage battery is provided which has a first and second post for electrically coupling to an electrical system. A test plug is provided for use in coupling the storage battery to an electronic battery tester. In another aspect, a battery tester is provided having a plug configured to couple to a test plug of a storage battery for use in performing an electronic battery test on the storage battery.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: June 19, 2012
    Assignee: Midtronics, Inc.
    Inventor: Kevin I. Bertness
  • Patent number: 8204651
    Abstract: According to the present invention, a power supply control device for an electric power steering device used for a power supply system comprises a main battery 40 connected to the electric power steering device via a first power supply line and a sub-battery 50 connected to the electric power steering device via a second power supply line, wherein when detecting the state of the sub-battery, said power supply control device restricts or disconnects power supply from the main battery to the electric power steering device while it permits power supply from the sub-battery to the electric power steering device, characterized in that said power supply control device prevents the detection of the state of the second battery if a vehicle speed is higher than a predetermined reference value.
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: June 19, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takeshi Tachibana, Koji Ito, Toshinori Esaka, Hidenori Matsuto
  • Patent number: 8203312
    Abstract: A battery pack includes at least one secondary battery, a fuse, and a control section. The fuse is configured to cut off charge or discharge current of the secondary battery upon detection of an abnormality of the secondary battery. The control section is configured to detect the abnormality of the secondary battery, and to perform a fusion-cutting process of fusion-cutting the fuse in accordance with the result of the detection. Upon detection of the abnormality, the control section measures a first potential being the potential of a subsequent stage of the fuse and a second potential being the potential of the secondary battery. If it is found from the result of the measurement that the first potential and the second potential are equal, the control section determines that the fuse has not been fusion-cut by the fusion-cutting process, and stops the fusion-cutting process.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: June 19, 2012
    Assignee: Sony Corporation
    Inventor: Yasuo Yoshikawa
  • Patent number: 8198870
    Abstract: A circuit for balancing a sub-stack voltage in a stack of ultracapacitors includes a pair of electrical leads that are connectable across a first sub-stack of one or more ultracapacitors, wherein a stack includes N sub-stacks of ultracapacitors coupled to an electrical bus, a discharge device switchably connectable with the pair of electrical leads, the discharge device configured to discharge the sub-stack of ultracapacitors, a voltage sensing circuit coupled to the electrical bus and configured to sense and output a voltage of the stack of ultracapacitors after the first sub-stack of one or more ultracapacitors has been discharged to a given threshold, and a voltage amplifier coupled to the output of the voltage sensing circuit and coupled to the pair of electrical leads, the voltage amplifier configured to provide a re-charge voltage to the first sub-stack of one or more ultracapacitors.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: June 12, 2012
    Assignee: Eaton Corporation
    Inventor: Joseph Charles Zuercher
  • Patent number: 8198900
    Abstract: An automotive battery charging system tester for testing the charging system of an automotive vehicle includes AC and DC voltage measurement circuits and a microprocessor controlled testing sequence. The microprocessor is used to perform a series of tests and to instruct an operator to perform steps associated with performing those tests. Through the application of various loads at various engine speeds, the tester is capable of identifying faults in the battery charging system including a bad battery, problems in the alternator or associated electronics, and problems in the starting system.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: June 12, 2012
    Assignee: Midtronics, Inc.
    Inventors: Kevin I. Bertness, Michael E. Troy
  • Publication number: 20120139545
    Abstract: An operational amplifier has an input biased at a predetermined reference voltage. A control unit opens both second switches and third switches corresponding to unit batteries being non-detection object, closes fourth switch. The control unit further closes both one of first switches and one of third switches corresponding to one unit battery being a detection object to charge corresponding one of first capacitors. Thereafter, the control unit opens the fourth switch. The control unit further closes one of the second switches corresponding to the one unit battery being the detection object, instead of the one of the first switches. Thus, the control unit detects a voltage of each of the unit batteries.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 7, 2012
    Applicant: DENSO CORPORATION
    Inventor: Tetsuya MAKIHARA
  • Patent number: 8193771
    Abstract: A battery tester determines a remaining level of charge of a battery mounted within a separate electronic device having an audio jack. The battery tester includes a plug and a circuit having a high impedance input amplifier. At least one electrical contact of the plug is electrically coupled to an input of the high impedance input amplifier. The plug is removably insertable within the audio jack such that the battery of the separate electronic device is electrically connected to the input of the high impedance input amplifier. When electrically coupled to the battery, an output of the high impedance input amplifier provides a signal proportional to the remaining level of charge of the battery, whereby the remaining level of charge of the battery is obtainable by the battery tester without having to remove the battery from the electronic device.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: June 5, 2012
    Assignee: NuWave Technologies, Inc.
    Inventor: Damian Coccio
  • Patent number: 8188750
    Abstract: A battery module voltage detector can reduce the difference in frequency response of an anti-aliasing filter for each battery module whose voltage is measured, and provide an accurate voltage measurement. The battery module voltage detector includes a plurality of switches connected to battery modules constituting a battery pack, resistors having an equal resistance value, and a filter composed of capacitors having equal capacitance and being disposed between the battery modules and the switches. The capacitors are divided into a first capacitor group and a second capacitor group which are symmetrical at the center of the battery pack. The first capacitor group is on the positive terminal side of the second battery. The second capacitor is on the negative terminal side of the battery pack. Capacitors may be connected between an output terminal of a (1+M/2)-th resistor and an N-th resistor, except a (1+m/2), the (1+M/2)-th resistor and the N-th resistor.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: May 29, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Yasumichi Ohnuki
  • Publication number: 20120126818
    Abstract: A battery condition detection sensor (1) for measuring characteristics of a battery (101) includes an electrically conductive battery post terminal (12) and a shunt resistor (13). The battery post terminal (12) is mounted to a battery post (102) provided in the battery (101). The shunt resistor (13) is electrically connected to the battery post terminal (12). The shunt resistor (13) is configured such that a connection terminal (52) of a wire harness (51) can be fixed thereto. The shunt resistor (13) has a rotation-blocking portion (inner walls of the insertion holes (15a, 15b)) for blocking rotation of the connection terminal (52).
    Type: Application
    Filed: March 28, 2011
    Publication date: May 24, 2012
    Applicants: FURUKAWA AUTOMOTIVE SYSTEMS INC., FURUKAWA ELECTRIC CO., LTD.
    Inventor: Hideaki Ishihara
  • Patent number: 8183836
    Abstract: In a battery pack which comprises: a battery set composed of two or more lithium battery cells connected in series; a first protection circuit including a first voltage detect part for detecting the voltage(s) of a part of the two or more battery cells, and a first signal output part for issuing an output signal when a detect voltage detected by the first voltage detect part goes below a given over-discharge judgment voltage value; a second protection circuit including a second voltage detect part for detecting the voltage(s) of another part of the two or more battery cells, and a second signal out part for issuing an output signal when the detect voltage of the battery cell detected by the second voltage detect part goes below a given over-discharge judgment voltage value; and, a switch which is connected to the current path of the battery set and can be turned on or off according to the output signals of the first and second signal output parts and, there is further provided dead time means connected betwee
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: May 22, 2012
    Assignee: Hitachi Koki Co., Ltd.
    Inventors: Kazuhiko Funabashi, Nobuhiro Takano
  • Publication number: 20120119749
    Abstract: A charge state detection circuit, which detects a state of charge of a battery block in which are parallel-connected a plurality of series circuits of a secondary battery and a cutoff element which assumes a cutoff state of cutting off the charge/discharge path of the secondary battery and a conducting state different from the cutoff state, the charge state detection circuit comprising: an effective battery number detection portion which detects, as the number of effective batteries, the number of cutoff elements in the conducting state from among the plurality of cutoff elements included in the battery block; a capacity information generation portion which, based on the number of effective batteries, generates capacity information related to actual full charge capacity, which is the actual full charge capacity of the battery block; a total current detection portion, which detects as a total current value a current flowing in the entire battery block; an electricity quantity calculation portion, which calcula
    Type: Application
    Filed: January 27, 2011
    Publication date: May 17, 2012
    Inventor: Takuma Iida
  • Patent number: 8179139
    Abstract: The rechargeable battery abnormality detection apparatus is provided with an internal short circuit detection section (20b) that monitors rechargeable battery (1) voltage change when no charging or discharging takes place, and detects internal short circuit abnormality when battery voltage drop during a predetermined time period exceeds a preset threshold voltage; a degradation appraisal section (20d) that judges the degree of rechargeable battery degradation; and a threshold control section (20c) that incrementally increases the threshold voltage according to the degree of degradation determined by the degradation appraisal section (20d).
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: May 15, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Atsushi Kawasumi, Toru Nishikawa
  • Patent number: 8179094
    Abstract: Embodiments of the invention include a device and method for improved battery learn cycles for battery backup units within data storage devices. The backup unit includes a first battery pack, a corresponding charge capacity gauge, one or more second battery packs, a corresponding charge capacity gauge, and a controller switch configured to select only one battery pack for a learn cycle at any given time. The charge capacity gauges are such that, at the end of the learn cycle discharge phase, the depth of discharge of the learn cycle battery pack is such that the charge capacity of the learn cycle battery pack combined with the full charge capacity of the remaining battery packs is sufficient for the device cached data to be off-loaded to a physical data storage device, and the data storage device does not have to switch from a write-back cache mode to a write-through cache mode.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 15, 2012
    Assignee: LSI Corporation
    Inventors: Lakshmana Anupindi, Brian Skinner
  • Patent number: 8174237
    Abstract: In a battery system, battery modules (3a, 3b) connected to each other in series respectively include: one or more single cells (3a1 to 3an, 3b1 to 3b-n) connected to one another in any one of series, parallel, and series-parallel; cell voltage switches (7a, 7b) for detecting voltages respectively of the one or more single cells; module monitoring control units (9a, 9b) each for monitoring the detected voltages respectively of the one or more signal cells; and communications level converter circuits (14a, 14b). The battery system includes a master unit (8a) for receiving information on the voltages respectively of the one or more single cells from the module monitoring control units via the communications level converter circuits. One of the communications level converter circuits includes a switch element (Q32) for transmitting a signal of a low-potential battery module to a high-potential battery module.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: May 8, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shinichiro Kosugi, Nobuo Shibuya
  • Publication number: 20120109555
    Abstract: Systems and methods of an adaptive rating for a backup power supply are disclosed. An exemplary method includes measuring electrical output for a load. The method also includes determining an adaptive rating for at least one battery module of a backup power supply. The method also includes storing changing adaptive ratings for the at least one battery module over time based on the measured electrical output for the load.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Inventors: Daniel Humphrey, Zachary J. Gerbozy
  • Publication number: 20120105220
    Abstract: A method and apparatus for determining coolant leakage in a vehicular propulsion system battery. An AC isolation resistance test is used to determine whether an isolation fault has occurred within the battery, but can also determine the capacitance of the circuit or system, which can further determine the coolant leakage levels of the vehicular propulsion system battery. This eliminates having an additional device to measure the coolant leakage.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventor: Fang Wang
  • Publication number: 20120106593
    Abstract: Faulty battery detecting and locating devices and methods are able to detect and locate a faulty battery cell. The device applies an energy to a sensing member, such as a polymeric tube containing at least two polymer-coated and twisted electric wires. Heat that is generated by a faulty battery triggers an electric communication between the two electric wires by melting at least a portion of the polymer. The resulting change in resistance between the two electric wires is used to detect and locate a faulty battery.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 3, 2012
    Applicant: SINOELECTRIC POWERTRAIN CORPORATION
    Inventors: Peng Zhou, Paul Tsao, David Kevin Pariseau
  • Publication number: 20120105066
    Abstract: DC offsets introduced in battery testing equipment are automatically compensated for using complementary current-mode servo feedback. An op amp receives and amplifies a response signal, while also introducing internal errors manifested in the amplified response signal. A correction circuitry coupled to receive the amplified response signal and comprising a balanced circuit with a positive input correction device and a negative input correction device to remove the DC bias. The correction circuitry further comprises an error sensing device to correct for the internal errors introduced by the op amp.
    Type: Application
    Filed: October 28, 2011
    Publication date: May 3, 2012
    Inventors: Donald Marvin, John McHardy, Kurt Salloux
  • Publication number: 20120101754
    Abstract: Method, apparatus, and computer program product embodiments are disclosed for estimating the remaining charging time of a rechargeable battery. An example embodiment of the invention comprises a method comprising the steps of determining if the battery charging point is in a constant current phase or in a constant voltage phase; if the battery charging point is in the constant current phase, calculating a time remaining to charge in the constant current phase based on the constant current phase charging characteristics and a time remaining to charge in the constant voltage phase based on the constant voltage phase charging characteristics; and if the battery charging point is in the constant voltage phase, calculating a time remaining to charge in the constant voltage phase based on the constant voltage phase charging characteristics.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 26, 2012
    Applicant: Nokia Corporation
    Inventor: Matti Samuli Halme
  • Publication number: 20120092018
    Abstract: A process of controlling the temperature of a battery pack includes the steps of determining the operating mode and present temperature of the battery pack. Optimal temperature for the battery pack depends on the operating mode and the difference between the present temperature and the previously identified optimal temperature. The battery pack is warmed if the temperature difference (measured minus optimal) is large. The optimal time interval over which the battery pack should be warmed is a function of the operating mode and the previously calculated temperature difference. A heater is switchably operated enabling and disabling the heat generating element to warm the pack to the previously identified Optimal temperature.
    Type: Application
    Filed: December 26, 2011
    Publication date: April 19, 2012
    Inventor: KARL FREDERICK SCHEUCHER
  • Patent number: 8159193
    Abstract: A semiconductor device which can operate normally even when the communication distance is extremely short, and which stores excess electric power which is not needed for circuit operation of the semiconductor device when a large amount of electric power is supplied thereto. The following are included: an antenna; a first AC/DC converter circuit which is connected to the antenna; a second AC/DC converter circuit which is connected to the antenna through a switching element; a detecting circuit which controls operation of the switching element in accordance with the value of a voltage output from the first AC/DC converter circuit; and a battery which stores electric power supplied from the antenna through the second AC/DC converter circuit. When the switching element is operated, electric power supplied from outside is at least partly supplied to the battery through the second AC/DC converter circuit.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: April 17, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kiyoshi Kato, Kazuma Furutani
  • Patent number: 8154297
    Abstract: A technique of monitoring a battery assembly may include monitoring a parameter associated with the battery assembly to obtain a number of monitored parameter samples. A temporal sequence of monotonically increasing values may be generated from the monitored parameter samples. The temporal sequence may be analyzed for an indication of a trend in the monitored parameter toward one of an upper operational boundary or a lower operational boundary to predict a fault condition of the battery assembly.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: April 10, 2012
    Assignee: ABB Technology AG
    Inventors: Mirrasoul J. Mousavi, Mohamed Maharsi, Deia Bayoumi, John J. McGowan
  • Patent number: 8154248
    Abstract: A rechargeable battery pack for a power tool can have a data terminal that provides a signal that is indicative of whether the voltage is below a threshold and can serve as both a pre-charge signal for a charger and as a stop-discharge signal for a power tool. A charger can include a power supply circuit and a voltage detection circuit. A charger control module can receive a signal indicative of the voltage of the battery pack and determine a pre-charge time based on the voltage and can monitor a change in the voltage of the battery pack during the pre-charge operation and stop the pre-charge operation based on the change in voltage and the time period.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: April 10, 2012
    Assignee: Black & Decker Inc.
    Inventors: Nathan Cruise, Tarek Aydin, Keith D. Flaharty, Fugen Qin, Steven J. Phillips
  • Patent number: 8154253
    Abstract: A circuit for detecting battery cell abnormalities in a multi-cell series battery for effectively and quickly detecting abnormalities with a simple, small circuit that provides improved reliability, safety and service life of the multi-cell series battery. In the voltage monitoring device 12, immediately after the start of the monitoring cycle of any battery cell BTi, cell voltage abnormality detector 14 checks whether cell voltage Vi is outside of the normal operating range. The cell voltage abnormality detector 14 has: a group of selection switches 18 for selecting any battery cell BT of multi-cell series battery 10 and retrieving its voltage to first and second monitoring terminals A, B; cell voltage/monitoring current converter 20; monitoring current/monitoring voltage converter 22; comparison/evaluation circuit 24; evaluation signal output circuit 26 and abnormality detection controller 28.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Kazuya Omagari
  • Patent number: 8154298
    Abstract: An apparatus for detecting an electrical variable of a rechargeable battery and a method for producing said apparatus, has: a measuring element (1), a printed circuit board (4) and a contact element (5) having a first end (6) and a second end (7), wherein the first end (6) of the contact element (5) is electrically connected to the printed circuit board (4), and the second end (7) of the contact element (5) is electrically connected to the measuring element (1) by a welded joint.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: April 10, 2012
    Assignee: Continental Automotive GmbH
    Inventor: Ralf Schimmel
  • Patent number: 8148994
    Abstract: A control unit (16) of a replacement determination device charges one or more battery modules (10) as determination targets, and measures the voltage change value of the battery module (10) in a predetermined period of time from the time of stoppage of charge by using a voltage measuring device (14). If the voltage change value becomes equal to or more than a reference voltage change value consecutively a predetermined number of times which is equal to or more than one, the control unit determines that the battery module (10) needs to be replaced.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 3, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Akira Yamashita, Takahisa Shodai, Akihiro Miyasaka, Riichi Kitano
  • Publication number: 20120074910
    Abstract: An electronic device comprises at least one battery coupled to the electronic device by a switchable electrical connection and logic to place the battery charge level within a predetermined charge range and to disconnect the battery from the electronic device when the battery is within the predetermined charge range. Other embodiments may be described.
    Type: Application
    Filed: September 24, 2010
    Publication date: March 29, 2012
    Inventor: Jose P. Piccolotto
  • Publication number: 20120074950
    Abstract: The present invention relates to a temperature estimating method of a battery. A predetermined module of a battery is equipped with a temperature sensor and a current/voltage sensor(s). Whether the battery deteriorates can be determined by using the measured temperature, current, and voltage.
    Type: Application
    Filed: December 6, 2010
    Publication date: March 29, 2012
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventor: Sangjin Heo
  • Publication number: 20120074949
    Abstract: A bi-directional DC/DC converter includes at least one module having a module input for providing a bi-directional module input current, and a module output with an output inductor for providing a bi-directional module output current. A transformer has a primary winding wound around a transformer core and connected to the module input, and a secondary winding wound around the core and connected to the module output. A primary set of switches is connected in an H-bridge configuration between the module input and the primary winding. And, a secondary set of switches is connected in an H-bridge configuration between the module output and the secondary winding. A current sensing component senses the module output current. A hysteretic control drives the primary set of switches to control flux. The hysteretic control drives the secondary set of switches to control the module output current as a function of the sensed module output current.
    Type: Application
    Filed: September 29, 2010
    Publication date: March 29, 2012
    Inventors: Kevin Kepley, Jonathan W. Kimball
  • Patent number: 8138747
    Abstract: The present invention relates to an internal short circuit evaluation method for a battery including an electrode group including a positive electrode plate, a negative electrode plate and a separator disposed between the positive electrode plate and the negative electrode plate, and an outer jacket covering the electrode group, the method including the steps of: (I) processing the electrode group to a predetermined position of the electrode group, from the outside of the electrode group toward the inside thereof; and (II) causing a short circuit between a portion of the electrode plate and a portion of the negative electrode plate of the electrode group that are located inside from the predetermined position, and measuring battery information that is changed by the short circuit, and an evaluation apparatus used for the above-described method.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: March 20, 2012
    Assignee: Panasonic Corporation
    Inventors: Hajime Nishino, Kenichi Suzuki, Shinji Kasamatsu, Masato Fujikawa, Mikinari Shimada
  • Publication number: 20120063900
    Abstract: The invention relates to a method for examining an electric energy accumulator (31) for a blade angle adjustment drive (14) of a wind turbine (1), comprising an inverter (21), at least one electric motor (20) which is fed by the inverter (21) and the energy accumulator (31). Said electric motor (20) is blocked, the energy accumulator (31) is charged by the blocked electric motor (20) by means of the inverter (21) and the discharging of the thus charged energy accumulator (31) is observed.
    Type: Application
    Filed: May 3, 2010
    Publication date: March 15, 2012
    Applicant: SSB WIND SYSTEMS GMBH & CO. KG
    Inventor: Hermann Kestermann
  • Patent number: 8134338
    Abstract: A battery management system is provided for managing a battery that supplies power to a vehicle. The battery includes a plurality of cells. The battery management system includes a sensing unit for measuring a voltage of each of the plurality of cells. The battery management system detects at least one first cell among the plurality of cells that needs to be balanced according to the measured voltage of each of the plurality of cells. In addition, the battery management system performs a cell balancing operation on said at least one first cell by using different methods according to a driving state of the vehicle.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: March 13, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Won-Suk Choi
  • Patent number: 8134335
    Abstract: The car power source apparatus is provided with a leakage detection circuit 3 having a battery 1 with a plurality of battery units 2 connected in series, a first series circuit 11 made up of first leakage detection resistors 12 and a first leakage detection switch 13 to connect the first connection node 10 of the series connected battery units 2 to ground 9, a second series circuit 21 made up of second leakage detection resistors 22 and a second leakage detection switch 23 to connect the second connection node 20 of the series connected battery units 2 to ground 9, and voltage detection circuits 4 to detect voltage of the first leakage detection resistors 12 and the second leakage detection resistors 22. Further, the car power source apparatus is provided with a failure detection circuit 5 to control the first leakage detection switch 13 and the second leakage detection switch 23 ON and OFF and determine failure of the leakage detection circuit 3 from voltages detected by the voltage detection circuits 4.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: March 13, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Takeshi Osawa, Ryuta Iwasaki
  • Patent number: 8129999
    Abstract: A circuit that indicates an impedance of a battery dielectric includes a signal generator module that flows a first current from a ground to a first terminal of a battery. A sensor circuit generates a signal based on a second current that flows from a second terminal of the battery through a resistance to ground. The second current includes the first current and a third current that flows to ground via an impedance presented by a battery dielectric housing. A signal conversion module generates an output signal based on the signal. The output signal represents the impedance presented by the battery dielectric housing.
    Type: Grant
    Filed: February 22, 2008
    Date of Patent: March 6, 2012
    Assignee: Cobasys, LLC
    Inventors: Stefan F. Szuba, Joshua M. Anzicek, Robert A. Galvin, John Lieske, John Theofanopoulos
  • Patent number: 8129995
    Abstract: An apparatus for measuring a battery cell voltage includes a battery having a cell group; a first switching unit for selectively connecting both terminals of each battery cell of the cell group to conductive lines; a first voltage charging unit connected between the conductive lines to primarily charge a cell voltage; a second voltage charging unit for relaying the charged voltage in the first voltage charging unit for secondary charging; a cell voltage sensing unit for sensing the voltage charged in the second voltage charging unit; and a second switching unit for interconnecting the voltage charging units in the charged voltage relaying mode and isolating the voltage charging units in the charged voltage sensing mode. This apparatus realizes isolation between a high voltage battery and a voltage sensing unit, thereby allowing voltage sensing of each battery cell included in a high voltage battery using a part with low withstanding voltage.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 6, 2012
    Assignee: LG Chem, Ltd.
    Inventors: Ju-Hyun Kang, Volodymyr Akimov
  • Patent number: 8125186
    Abstract: A graphic state of battery charge indicator is used to provide the user with a visual indication of state of battery charge, magnitude of current flow and direction of current flow by using displays such as multi-segment LCD or LED displays in the shape of a battery. The indicator is able to provide these parameters by sequencing the on/off operation of the segmented displays. A microcontroller is provided battery state data from a battery monitor and converts this information to on/off commands for the segmented displays. There may be up to 10 segmented displays in the indicator with each segment proportionally representing a percentage of the state of battery charge. State of charge is indicated by a single on display at the appropriate location in the display. Current flowing into the battery is represented by a ripple effect in the displays in the positive direction. Current flowing out of the battery is represented by a ripple effect in the display in the negative direction.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: February 28, 2012
    Inventor: Steve Carkner
  • Patent number: 8125229
    Abstract: A battery testing and charging system that includes at least one battery testing device and at least one battery charging device, wherein the battery testing device is removable from the battery charging device and wherein the battery testing device may communicate with a plurality of battery charging devices. Also, a method of testing and charging a battery that may be implemented using, for example, the above-described battery testing and charging system.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: February 28, 2012
    Assignee: SPX Corportaion
    Inventors: Surender Makhija, Garret Miller
  • Patent number: 8125191
    Abstract: An early warning method for an abnormal state of a lithium battery and a recording medium applicable to a portable electronic device are provided. The method includes the following steps. A plurality of curves of voltage against electric quantity is obtained according to different predicted average current consumptions of the portable electronic device. An operating average current consumption and an operating electric quantity from a first voltage to a second voltage are obtained when the lithium battery at an operating test state in a unit time. One of the curves of voltage against electric quantity is searched, and a warning electric quantity is obtained in a range from the first voltage to the second voltage. The warning electric quantity is compared with the electric quantity, so as to provide an early warning of an abnormal state.
    Type: Grant
    Filed: December 29, 2008
    Date of Patent: February 28, 2012
    Assignee: Inventec Appliances Corp.
    Inventor: Chien-Chen Chen
  • Patent number: 8125187
    Abstract: The method of controlling charging and discharging in a hybrid car power source detects remaining capacity of batteries 1 that supply power to the motor 11 that drives the hybrid car, controls battery 1 charging and discharging to keep detected remaining capacity within a pre-set first targeted control range under normal conditions, and controls battery 1 charging and discharging to keep detected remaining capacity within a second targeted control range that is narrower than the first targeted control range when an abnormality is detected. Further, the method of controlling charging and discharging sets the second targeted control range to include the detected remaining capacity when the range for controlling battery 1 remaining capacity is switched from the first targeted control range to the second targeted control range at detection of an abnormality.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: February 28, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Hiroshi Tatsumi
  • Patent number: 8125193
    Abstract: Methods and associated apparatus for testing an electrochemical device, such as a fuel cell. A first method involves charging the fuel cell during a charge period; discharging the fuel cell during a discharge period; and monitoring the response of the fuel cell during at least part of the discharge period or the open-circuit response of the fuel cell. Another method involves testing the fuel cell when the fuel cell is in a passive state in which substantially no electrochemical reactions are taking place in the fuel cell. simultaneously applying a stimulus to all of the devices, and independently monitoring the response of each of the devices to the stimulus. Further methods involve obtaining test data from a device being tested; obtaining equivalent circuit values; calculating sets of simulation data for each equivalent circuit value; comparing sets of simulation data with the test data; and selecting one of the equivalent circuit values based on the comparison.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: February 28, 2012
    Assignee: Eaton Power Quality Company
    Inventors: Shannon Charles Page, Adnan Al-Anbuky, Susan Pran Krumdieck
  • Patent number: 8125344
    Abstract: A portable computer may include battery indicator light structures. Battery status information in the portable computer may be presented to a user using an array of light-emitting diodes or other light emitters. Light-emitting diodes may be mounted on a printed circuit board. A stiffener may provide the printed circuit board with rigidity. The printed circuit board may include a connector that allows the board to be connected to a main logic board. A switch on the printed circuit board may be actuated by a power button on the portable computer. An opaque member with an array of holes may be used to reduce light bleed between adjacent light-emitting diodes. Diffusing plastic may be mounted within the array of holes. Bumps in the diffusing plastic may mate with corresponding holes on a portable computer housing.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 28, 2012
    Assignee: Apple Inc.
    Inventors: Keith J. Hendren, Bartley K Andre, Duncan R. Kerr, Christopher Stringer, Daniel J. Coster, Chris Ligtenberg, John Brock, Tom Wilson, Dinesh Mathew, Brett W. Degner, Tomas E. Ponce
  • Publication number: 20120043967
    Abstract: A ground fault detection circuit according to the present invention is a ground fault detection circuit that detects the occurrence of a ground fault of a battery that is insulated, and that includes: an AC signal generation section that generates an AC signal; a first capacitive element that couples the AC signal generated by the AC signal generation section to the battery; a voltage division section that voltage divides the AC signal that is coupled to the battery by the first capacitive element; a ground fault detection unit that detects a ground fault of the battery based on an AC component of an input signal; and a second capacitive element that couples the AC signal that has been voltage divided by the voltage division section to the ground fault detection unit as the input signal.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 23, 2012
    Applicants: Hitachi Vehicle Energy, Ltd., Hitachi, Ltd.
    Inventors: Hikaru Miura, Akihiko Kudou
  • Patent number: 8120365
    Abstract: A power control apparatus for controlling charging and discharging of a plurality of storage devices, including a voltage measuring device for measuring voltages of the storage devices, a current measuring device for measuring currents flowing through the storage devices, a status detecting device for detecting the operating status of each of the storage devices from values measured by the voltage measuring device and the current measuring device, and a charging/discharging controlling device for controlling currents, voltages, or power according to the operating status of each storage device detected by the status detecting device to charge or discharge the storage devices.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 21, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Akihiko Emori, Eiichi Toyota, Masato Suzuki, Motomi Shimada, Tsutomu Miyauchi, Takuya Kinoshita, Hideki Miyazaki
  • Patent number: 8120209
    Abstract: A voltage sensing device with which high-precision voltage sensing is possible without the need to obtain a unique correction constant for each device. A pair of voltage input nodes NCk and NCk-1 is selected from voltage input nodes NC0-NCn in switch part 10, and they are connected to sensing input nodes NA and NB in two types of patterns with different polarity (forward connection, reverse connection). Sensing input nodes NA and NB are held at reference potential Vm by voltage sensing part 20, and current Ina and Inb corresponding to the voltage at voltage input nodes NCk and NCk-1 flows to input resistors RIk and RIk-1. Currents Ina and Inb are synthesized at different ratios in voltage sensing part 20, and sensed voltage signal S20 is generated according to the synthesized current Ic. Sensed voltage data S40 with low error is generated according to the difference between the two sensed voltage signals S20 generated in the two connection patterns.
    Type: Grant
    Filed: September 3, 2009
    Date of Patent: February 21, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Toru Tanaka, Akio Ogura, Kazuya Omagari, Nariaki Ogasawara
  • Patent number: 8120363
    Abstract: A system includes an electrical energy storage device that may be in the form of one or more batteries, a charger to selectively charge the electrical energy storage device, and charger cabling sized to electrically interconnect the storage device and the charger together and span a distance separating them. The charger cabling is initially connected across the charger without the storage device to determine information specific to voltage drop caused by the cabling. The system is then reconfigured so that the cabling connects the storage device to the charger for charging. During this charging operation the previously gathered information is used to compensate for the voltage drop along the cabling as the storage device is charged with the charger.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: February 21, 2012
    Assignee: Cummins Power Generation IP, Inc.
    Inventor: Benjamin S. Fuchs
  • Patent number: 8120324
    Abstract: A system and method adapted to rejuvenate batteries at or near the resonant frequency of the battery. The present invention takes a battery and applies a modulated current charging signal to increase battery performance. A resonant signal is adapted to re-train and adjust battery materials for proper operation. By repeated charge/discharge cycling, battery memory decreases and/or battery capacity increases, thereby improving the battery capacity.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: February 21, 2012
    Assignee: Advanced Battery Management, LLC
    Inventors: John Arthur Fee, Brian L. Graham
  • Publication number: 20120038364
    Abstract: In one embodiment, a circuit includes a measuring circuit coupled to an accumulator cell. A first output of the measuring circuit outputs a current signal based on a cell voltage of the accumulator cell. The circuit includes an interface circuit coupled to the first output of the measuring circuit and a second output of a level-shifter circuit configured to change a voltage level on the first output at the interface circuit. The level-shifter circuit includes a first input coupled to the first output and one or more transistors coupled in series with one or more gate terminals that are each coupled to each of one or more terminals of the accumulator cell.
    Type: Application
    Filed: July 22, 2011
    Publication date: February 16, 2012
    Applicant: ATMEL AUTOMOTIVE GMBH
    Inventor: Clemens Hauser
  • Patent number: 8111037
    Abstract: A method is provided for determining a battery's state-of-health. An initial battery voltage is measured after a first voltage drop during an initiation of an engine cranking phase. A battery voltage is monitored during the remainder of the engine cranking phase. A lowest battery voltage is determined during the remainder of the engine cranking phase. A determination is made if a voltage difference between the lowest battery voltage and the initial battery voltage at the initiation of the engine cranking phase is less than a voltage threshold. A low battery state-of-health is identified in response to the voltage difference being less than the voltage threshold.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: February 7, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Xiaodong Zhang, Nick S. Kapsokavathis, Yilu Zhang, David W. Walters, Xidong Tang, Mutasim A. Salman
  • Patent number: 8111071
    Abstract: A sensing and control apparatus for a battery management system is provided. The sensing and control apparatus includes: a sensing unit and a main control unit. The sensing unit includes: a cell relay of a plurality of cell relays and a voltage detection unit. The cell relay is configured to be coupled to at least one of a plurality of cells. The voltage detection unit is coupled to a cell relay. The voltage detection unit is configured to: receive a reference voltage when each of the plurality of cell relays is turned off; and generate a second voltage by amplifying by a gain a first voltage that corresponds to the reference voltage. The main control unit is configured to calculate a valid gain corresponding to a ratio of the second voltage to the reference voltage when the temperature of the voltage detection unit is within a threshold temperature range.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: February 7, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Gye-Jong Lim, Soo-Seok Choi, Young-Jo Lee, Yong-Jun Tae, Han-Seok Yun, Se-Wook Seo, Beom-Gyu Kim, Ho-Young Park
  • Publication number: 20120025762
    Abstract: A method and system for controlling temperature in an electric vehicle battery pack such that battery pack longevity is preserved, while vehicle driving range is maximized. A controller prescribes a maximum allowable temperature in the battery pack as a function of state of charge, reflecting evidence that lithium-ion battery pack temperatures can be allowed to increase as state of charge decreases, without having a detrimental effect on battery pack life. During vehicle driving, battery pack temperature is allowed to increase with decreasing state of charge, and a cooling system is only used as necessary to maintain temperature beneath the increasing maximum level. The decreased usage of the cooling system reduces energy consumption and increases vehicle driving range. During charging operations, the cooling system must remove enough heat from the battery pack to maintain temperatures below a decreasing maximum, but this has no impact on driving range.
    Type: Application
    Filed: August 2, 2010
    Publication date: February 2, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Sebastian Lienkamp, Remy Fontaine, Marc Becker, Peter Kilian