Including Field-effect Transistor Patents (Class 327/203)
  • Patent number: 8988123
    Abstract: Small area low power data retention flop. In accordance with a first embodiment of the present invention, a circuit includes a master latch coupled to a data retention latch. The data retention latch is configured to operate as a slave latch to the master latch to implement a master-slave flip flop during normal operation. The data retention latch is configured to retain an output value of the master-slave flip flop during a low power data retention mode when the master latch is powered down. A single control input is configured to select between the normal operation and the low power data retention mode. The circuit may be independent of a third latch.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: March 24, 2015
    Assignee: NVIDIA Corporation
    Inventors: Ge Yang, Hwong-Kwo Lin, Xi Zhang, Jiani Yu
  • Publication number: 20150070063
    Abstract: A flip-flop that includes a multiplexer configured to generate a multiplexer output. The multiplexer output is generated in response to an input and a scan enable, and is given to a transmission gate. A master latch is coupled to the transmission gate and to a tri-state inverter. The master latch is configured to receive an output of the transmission gate. A slave latch is configured to receive an output of the tri-state inverter and the multiplexer output. A data inverter is coupled to the slave latch. The data inverter is configured to generate a flip-flop output. A half clock gating inverter is configured to generate an inverted clock input in response to a clock input and the multiplexer output.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Applicant: Texas Instruments Incorporated
    Inventors: Girishankar Gurumurthy, Mahesh Ramdas Vasishta
  • Patent number: 8970272
    Abstract: A high-speed low-power latch includes three sets of transistors. A first set of transistors selects a tracking mode or a holding mode for the latch based on a clock signal having non-rail-to-rail or rail-to-rail voltage swing. A second set of transistors captures a data value based on an input signal and provides an output signal during the tracking mode. A third set of transistors stores the data value and provides the output signal during the holding mode. The input and output signals have rail-to-rail voltage swing. In another aspect, a signal generator includes at least one latch and a control circuit. The latch(es) receive a clock signal and generate an output signal. The control circuit senses a duty cycle of a feedback signal derived from the output signal and generates a control signal to adjust operation of the latch(es) to obtain 50% duty cycle for the feedback signal.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: March 3, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Kun Zhang, Harish Muthali
  • Patent number: 8957718
    Abstract: A flip-flop circuit has a master latch circuit and a slave latch circuit. In the flip-flop circuit, the master latch circuit and the slave latch circuit share at least a pair of transistors. In response to the clock signal, the signal held in the master latch circuit can be output at higher speed as the output signal via the intermediate node, the slave latch circuit and the output circuit. The flip-flop circuit can be reduced in cell size and improved in processing speed.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: February 17, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Muneaki Maeno
  • Patent number: 8957717
    Abstract: A scan flip-flop may include a selector outputting a data signal or a scan input signal in response to a scan enable signal, and a flip-flop that latches an output signal of the selector or the data signal, based on a clock signal and a low voltage signal.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: February 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Min Su Kim
  • Patent number: 8957719
    Abstract: A clock synchronization circuit is configured to capture an input data bit according to an input clock signal, and to synchronize and output the input data bit. The clock synchronization circuit includes a clock buffer for generating an internal clock signal according to the input clock signal and transmitting the internal clock signal to a clock line. The clock synchronization circuit further includes a D flip-flop for capturing and outputting the input data bit at an edge timing of the internal clock signal. The clock buffer includes an inverter core portion and an electric current suppressing portion. The inverter core portion is configured to generate the internal clock signal through alternately supplying an electric current to the clock line and drawing the electric current from the clock line according to the input clock signal. The electric current suppressing portion is configured to suppress an amount of the electric current.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: February 17, 2015
    Assignee: Lapis Semiconductor Co., Ltd
    Inventor: Kenji Arai
  • Publication number: 20150028927
    Abstract: A flip-flop circuit may include a master latch and a slave latch. Each latch may have a transparent mode and a storage mode. The slave latch may be in storage mode when the master latch is in transparent mode; and vice-versa. A clock signal may control the mode of each latch through a pair of clock-gated pull-up transistors and a pair clock-gated of pull-down transistors, for a total of four clock-gated transistors. The clock-gated transistors may be shared by the master latch and the slave latch. Fewer clock-gated transistors may be required when they are shared, as opposed to not being shared. Clock-gated transistors may have parasitic capacitance and consume power when subjected to a varying clock signal, due to the charging and discharging of the parasitic capacitance. Having fewer clock-gated transistors thus may reduce the power consumed by the flip-flop circuit.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Inventors: Ilyas Elkin, Ge Yang
  • Patent number: 8941429
    Abstract: In a master-slave flip-flop, the master latch has first and second three-state stages, and a first feedback stage. The slave latch has third and fourth three-state stages, and a second feedback stage. First and second clock switches having opposite phases are provided. The first clock switch is configured in one of the first and fourth three-state stages, and the other stage shares the first clock switch. The second clock switch is configured in one of the second and third three-state stages, and the other stage shares the second clock switch. The second three-state stage has an additional pair of complementary devices having signal paths connected in series with each other with both being gated by a data output of the slave latch. The flip-flop reduces the number of clock switches and clock switch power consumption.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: January 27, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Zhihong Cheng
  • Patent number: 8941428
    Abstract: A latching circuit has an input for receiving the data value, an output for outputting a value indicative of the data value, a clock signal input for receiving a clock signal; and a pass gate. A feedback loop has two switching circuits arranged in parallel between two inverting devices, a first of the two switching circuits is configured to be off and not conduct in response to a control signal having a predetermined control value and a second of the two switching circuits is configured to be on and conduct in response to the control signal having the predetermined control value. A control signal controlling the two switching circuits is linked such that the switching devices switch their conduction status and the access control device act together to update the data value within the feedback loop.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: January 27, 2015
    Assignee: ARM Limited
    Inventors: Virgile Javerliac, Yannick Marc Nevers, Laurent Christian Sibuet, Selma Laabidi
  • Publication number: 20150022250
    Abstract: Monolithic three dimensional (3D) flip-flops with minimal clock skew and related systems and methods are disclosed. The present disclosure provides a 3D integrated circuit (IC) (3DIC) that has a flop spread across at least two tiers of the 3DIC. The flop is split across tiers with transistor partitioning in such a way that keeps all the clock related devices at the same tier, thus potentially giving better setup, hold and clock-to-q margin. In particular, a first tier of the 3DIC has the master latch, slave latch, and clock circuit. A second tier has the input circuit and the output circuit.
    Type: Application
    Filed: August 28, 2013
    Publication date: January 22, 2015
    Applicant: Qualcomm Incorporated
    Inventors: Pratyush Kamal, Yang Du
  • Patent number: 8928380
    Abstract: A current-mode D latch includes a first load element, a second load element, a first bias current source, a first switch transistor, a second switch transistor, a first stage circuit and a second stage circuit. The first switch transistor is controlled by an inverted reset signal. The second switch transistor is controlled by a reset signal. When an inverted clock signal is in a first level state and the reset signal is inactive, the first input signal is converted into the first output signal and the first inverted input signal is converted into the first inverted output signal by the first stage circuit. When a clock signal is in the first level state and the reset signal is inactive, the first output signal and the first inverted output signal are maintained by the second stage circuit.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: January 6, 2015
    Assignees: Global Unichip Corporation, Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Tsai-Ming Yang, Yen-Chung Chen, Yi-Lin Lee, Jen-Tai Hsu
  • Patent number: 8901979
    Abstract: In accordance with an embodiment, a description is given of a storage circuit including an input stage configured to provide a value to be stored, a storage stage configured to store the value to be stored, an output stage configured to output a value stored by the storage circuit, and a control circuit, wherein the control circuit is configured to receive a signal from the output stage, which signal indicates the charge state of the output stage, and, if the charge state of the output stage is equal to a predefined precharge state, to output an activation signal to the storage stage, and wherein the storage stage is configured to store the value to be stored, provided by the input stage, in reaction to the activation signal.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 2, 2014
    Assignee: Infineon Technologies AG
    Inventor: Thomas Kuenemund
  • Publication number: 20140347113
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CLK and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CLK, CLKN, RET, RETN, SS and SSN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Publication number: 20140347114
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CLK and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CLK, CLKN, RET, RETN, SS and SSN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Publication number: 20140333363
    Abstract: There is provided a semiconductor device having: a latch circuit having a plurality of data holding nodes; a first capacitance element connected to the first data holding node included in the plurality of data holding nodes; and a first switch element provided between the first data holding node and the first capacitance element.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 13, 2014
    Applicant: FUJITSU SEMICONDUCTOR LIMITED
    Inventors: Taiki Uemura, Yoshiharu Tosaka
  • Publication number: 20140328115
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SSN and PREN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: August 22, 2013
    Publication date: November 6, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Patent number: 8872563
    Abstract: A vehicle communication system for communicating with a person who is within a vehicle includes a device for hearing audible noises that emanate within the vehicle at locations external to the vehicle without making physical contact with the vehicle. Communication from the person in the vehicle to a person external to the vehicle is performed by aiming a light beam from the vehicle and receiving reflections of the light beam. The light beam is modulated by vibration of the vehicle caused the audible noises from within the vehicle. The received light beam is then processed to reproduce the audible noises so that the audible noises can be heard from a location outside of the vehicle, even when the vehicle is sealed (windows closed, etc.).
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: October 28, 2014
    Inventor: Eddie B. Lofton
  • Publication number: 20140266365
    Abstract: A circuit for a low latency, low area, and low power flip-flop may include a pass-gate multiplexer that can selectively allow one of input or test data to enter a master cell when a clock signal is low. The master cell may include a first inverter cross-coupled to a second inverter, and may receive the input or test data and may latch and provide at an input node of the slave cell, an inverted input data or the test data, upon a transition of the clock signal to a high state. The slave cell may include a second clock pass-gate and a third inverter that is cross-coupled to a fourth inverter, and may receive the inverted input data or the test data and may latch and provide at an output node, the input data or the test data, upon the transition of the clock signal to a high state.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: BROADCOM CORPORATION
    Inventors: Paul Penzes, Ardavan Moassessi
  • Patent number: 8836400
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SSN and PREN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: September 16, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Publication number: 20140240017
    Abstract: In a master-slave flip-flop, the master latch has first and second three-state stages, and a first feedback stage. The slave latch has third and fourth three-state stages, and a second feedback stage. First and second clock switches having opposite phases are provided. The first clock switch is configured in one of the first and fourth three-state stages, and the other stage shares the first clock switch. The second clock switch is configured in one of the second and third three-state stages, and the other stage shares the second clock switch. The second three-state stage has an additional pair of complementary devices having signal paths connected in series with each other with both being gated by a data output of the slave latch. The flip-flop reduces the number of clock switches and clock switch power consumption.
    Type: Application
    Filed: August 6, 2013
    Publication date: August 28, 2014
    Inventor: Zhihong Cheng
  • Patent number: 8816739
    Abstract: There is provided a semiconductor device having: a latch circuit (103, 104) having a plurality of data holding nodes; a first capacitance element (C) connected to the first data holding node (A) included in the plurality of data holding nodes; and a first switch element (SW2) provided between the first data holding node (A) and the first capacitance element (C).
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: August 26, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiki Uemura, Yoshiharu Tosaka
  • Publication number: 20140232441
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SSN and PREN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: July 23, 2013
    Publication date: August 21, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Publication number: 20140232443
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLKN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SSN and PREN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: January 14, 2014
    Publication date: August 21, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Publication number: 20140232440
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SSN and PREN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: May 2, 2013
    Publication date: August 21, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Publication number: 20140232442
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLKN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SS, RE and REN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: January 14, 2014
    Publication date: August 21, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Patent number: 8810295
    Abstract: A latch circuit may include a first inverting unit configured to drive a second node in response to a level of a first node, a second inverting unit configured to drive the first node in response to a level of the second node, an initialization unit configured to drive the first node at a first level in response to activation of an initialization signal, and a power breaker configured to break a supply of power of a second level to the second inverting unit when the initialization signal is activated.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: August 19, 2014
    Assignee: SK Hynix Inc.
    Inventors: Ja-Beom Koo, Kang-Youl Lee, Don-Hyun Choi
  • Publication number: 20140225657
    Abstract: A flip-flop circuit has a master latch circuit and a slave latch circuit. In the flip-flop circuit, the master latch circuit and the slave latch circuit share at least a pair of transistors. In response to the clock signal, the signal held in the master latch circuit can be output at higher speed as the output signal via the intermediate node, the slave latch circuit and the output circuit. The flip-flop circuit can be reduced in cell size and improved in processing speed.
    Type: Application
    Filed: July 29, 2013
    Publication date: August 14, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Muneaki MAENO
  • Patent number: 8803582
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. Clock signals CKT and CLKZ and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CKT and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, SS, SSN and PREN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Grant
    Filed: May 2, 2013
    Date of Patent: August 12, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Publication number: 20140218090
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CLK and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CLK, CLKN, RET, RETN, SS and SSN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Publication number: 20140218091
    Abstract: In an embodiment of the invention, a flip-flop circuit contains a 2-input multiplexer, a master latch, a transfer gate and a slave latch. The scan enable control signals SE and SEN of the multiplexer determine whether data or scan data is input to the master latch. The clock signals CLK and CLKN and retention control signals RET and RETN determine when the master latch is latched. The slave latch is configured to receive the output of the master latch, a second data bit D2, the clock signals CLK and CLN, the retain control signals RET and RETN, the slave control signals SS and SSN. The signals CLK, CLKN, RET, RETN, SS and SSN determine whether the output of the master latch or the second data bit D2 is latched in the slave latch. Control signals RET and RETN determine when data is stored in the slave latch during retention mode.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 7, 2014
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Steven Bartling, Sudhanshu Khanna
  • Patent number: 8797077
    Abstract: A master-slave flip-flop circuit includes: a master circuit to receive input data in a first state of a reference clock and hold the input data in a second state of the reference clock to output intermediary data; and a slave circuit to receive the intermediary data in the second state and hold the intermediary data in the first state to output data, wherein the master circuit includes: a feedback two-input NOR gate to receive an output of the master circuit and a first clock; an input three-input NOR gate to receive the input data, a second clock, and a third clock; and a synthesis two-input NOR gate to receive an output of the input three-input NOR gate and an output of the feedback two-input NOR gate.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: August 5, 2014
    Assignee: Fujitsu Limited
    Inventor: Ryuhei Sasagawa
  • Patent number: 8791740
    Abstract: A method for reducing average current consumption in a local oscillator (LO) path is disclosed. An LO signal is received at a master frequency divider and a slave frequency divider. Output from the master frequency divider is mixed with an input signal to produce a first mixed output. Output from the slave frequency divider is mixed with the input signal to produce a second mixed output. The second mixed output is forced to be in phase with the first mixed output.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: July 29, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Dongjiang Qiao, Bhushan S. Asuri, Junxiong Deng, Frederic Bossu
  • Publication number: 20140184296
    Abstract: The present disclosure relates to a device and method to reduce the dynamic/static power consumption of an MCML logic device. In order to retain register contents during power off mode, an MCML retention latch and flip-flop are disclosed. Retention Latch circuits in MCML architecture are used to retain critical register contents during power off mode, wherein combination logic including clock buffers on the clock tree paths are powered off to reduce dynamic/static power consumption. The MCML retention flip-flop comprises a master latch and a slave latch, wherein a power switch is added to the master latch to power the master latch off during power off mode. The slave latch includes pull-down circuits that remain active to enable the slave latch to retain data at a proper voltage level during power off mode. Other devices and methods are also disclosed.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 3, 2014
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsung-Hsiung Lee, Shi-Hung Wang, Kuang-Kai Yen, Wei-Li Chen, Yung-Hsu Chuang, Shih-Hung Lan, Fan-Ming Kuo, Chewn-Pu Jou, Fu-Lung Hsueh
  • Patent number: 8754692
    Abstract: A dual edge triggered flip flop can pass data values on a clock rising or falling edge. The dual edge triggered flip flop can be operated at half the clock speed of a single edge triggered flip flop and produce substantially the same throughput. The dual edge triggered flip flop may use less power than a single edge triggered flip flop due at least in part to the construction of an intermediate gate as a data interlock gate. The dual edge triggered flip flop may contain a plurality of master nodes, and is soft error hardened compared to a single edge triggered flip flop.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 17, 2014
    Assignee: Oracle America, Inc.
    Inventor: Bo Tang
  • Patent number: 8749287
    Abstract: A semiconductor device has a first latch circuit, a second latch circuit configured to receive an output of the first latch circuit, a first switching element provided between the first latch circuit and the second latch circuit, a feedback line for feeding data held by the second latch circuit to the first latch circuit, and a second switching element provided on the feedback line.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: June 10, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventors: Taiki Uemura, Yoshiharu Tosaka
  • Patent number: 8730404
    Abstract: In an embodiment, the present invention includes a latch circuit having a first input to receive a data signal and a second input to receive a clock signal. This latch circuit may have a first pair of transistors including a first transistor gated by the data signal and a second transistor gated by an inverted data signal and a second pair of transistors including third and fourth transistors gated by the clock signal. The first transistor may be coupled to the third transistor at a first inter-latch node and the second transistor coupled to the fourth transistor at a second inter-latch node. A reset circuit may be coupled to the latch circuit to maintain the first and second inter-latch nodes at a predetermined voltage level when the clock signal is inactive.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 20, 2014
    Assignee: Silicon Laboratories Inc.
    Inventors: Clayton Daigle, Abdulkerim L. Coban
  • Patent number: 8717079
    Abstract: The invention provides a flip-flop. In one embodiment, the flip-flop receives a low swing clock signal, and comprises a first NMOS transistor, a first latch circuit, a second NMOS transistor, and a second latch circuit. The low swing clock signal is inverted to obtain an inverted low swing clock signal. The first NMOS transistor is coupled between a receiving node and a first node, and has a gate coupled to the inverted low swing clock signal. The first latch circuit is coupled between the first node and a second node. The second NMOS transistor is coupled between the second node and a third node. The second latch circuit is coupled between the third node and a fourth node, and generates an output signal on the fourth node.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: May 6, 2014
    Assignee: Mediatek Inc.
    Inventors: Cheng-Hsing Chien, Yung-Chieh Yu, Jia-Yi Xu
  • Patent number: 8704574
    Abstract: A power distribution system includes the use of a master digital signal processor (DSP) and two slave DSPs connected to the master DSP. The slaves DSPs may be connected to each of a plurality of solid state power channels (SSPC) controlling power distribution functions to each of the channels. A power control strategy may use one power supply for the master DSP, a second power supply shared between the slave DSPs, and a third power supply shared between each of the SSPC channels.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 22, 2014
    Assignee: Honeywell International Inc.
    Inventors: Prashant Purushotham Prabhuk, Narendra Rao, Ezekiel Poulose Aikkaravelil, Vinod Kunnambath, Randy Fuller, David Lazarovich, Zhenning Liu
  • Patent number: 8686778
    Abstract: The described embodiments provide a configurable clock circuit. The clock circuit includes a control and enable circuit and a clock distribution circuit. During operation, when a signal on an enable input to the control and enable circuit is asserted and the control and enable circuit is configured in a clock mode, the control and enable circuit generates an enable signal on a control output to enable a signal on a clock input to propagate through the clock distribution circuit to the clock output. Alternatively, when a signal on the enable input to the control and enable circuit is asserted and the control and enable circuit is configured in a pulse mode, the control and enable circuit generates a pulsed control signal on the control output to control a length of a pulse generated from the clock input on a clock output by the clock distribution circuit.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 1, 2014
    Assignee: Oracle America, Inc.
    Inventors: Jason M. Hart, Robert P. Masleid
  • Publication number: 20140077855
    Abstract: A master-slave flip-flop circuit includes: a master circuit to receive input data in a first state of a reference clock and hold the input data in a second state of the reference clock to output intermediary data; and a slave circuit to receive the intermediary data in the second state and hold the intermediary data in the first state to output data, wherein the master circuit includes: a feedback two-input NOR gate to receive an output of the master circuit and a first clock; an input three-input NOR gate to receive the input data, a second clock, and a third clock; and a synthesis two-input NOR gate to receive an output of the input three-input NOR gate and an output of the feedback two-input NOR gate.
    Type: Application
    Filed: June 19, 2013
    Publication date: March 20, 2014
    Inventor: Ryuhei SASAGAWA
  • Patent number: 8670520
    Abstract: A shift register has a first latch and a second latch and a first output circuit and a second output circuit. The first latch and the second latch are series-connected. The latches are implemented to take over a signal state applied to their data inputs in a transparent state and to maintain the taken-over signal state in a non-transparent operating state. Clock inputs of the latches are switched such that the second latch is in the transparent operating state when the first latch is in the non-transparent operating state and vice versa. The first output circuit is implemented to provide a predetermined level independent of the signal state existing in the first latch at a first shift register output of the shift register in the transparent operating state and to provide a level depending on the signal state stored in the first latch in the non-transparent operating state of the first latch.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: March 11, 2014
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V.
    Inventors: Matthias Oberst, Johann Hauer
  • Patent number: 8618856
    Abstract: A latch device is provided with a driver and a shadow latch. The driver has an input to accept a binary driver input signal, an input to accept a clock signal, and an input to accept a shadow-Q signal. The driver has an output to supply a binary Q signal equal to the inverse of the driver input signal, in response to the driver input signal, the shadow-Q signal, and the clock signal. The shadow latch has an input to accept the driver input signal, and an input to accept the clock signal. The shadow latch has an output to supply the shadow-Q signal equal to the inverted Q signal, in response to the driver input signal and clock signal.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: December 31, 2013
    Assignee: Applied Micro Circuits Corporation
    Inventors: Alfred Yeung, Hamid Partovi, John Ngai, Ronen Cohen
  • Patent number: 8604854
    Abstract: Disclosed herein is a pseudo single-phase flip-flop. The master section includes a pre-dissipation stage and a first keeper. The pre-dissipation stage discharges the first keeper to the mDb second binary value, and selectively charges the first keeper with the mDb first binary value in the master pass mode. The pre-dissipation stage selectively prevents the first keeper from charging to the mDb first binary value in response to one of the clock phases. The slave section includes a pre-charge stage, a second keeper, a post-dissipation stage, and a third keeper. The second keeper maintains a first binary value in a slave pass mode when the mDb signal has a second binary value. The second keeper supports the second binary value in the slave pass mode when the mDb signal has the first binary value. The third keeper maintains the Q signal binary value during the slave hold mode.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: December 10, 2013
    Assignee: Applied Micro Circuits Corporation
    Inventors: Hamid Partovi, Alfred Yeung, Luca Ravezzi, John Ngai
  • Patent number: 8570085
    Abstract: The present disclosure relates to a low consumption flip-flop circuit with data retention, comprising at least one flip-flop and at least one retention cell connected to the output of the flip-flop and configured so that during normal operation of the flip-flop circuit, the retention cell transmits the data or logic state present on the output terminal of the flip-flop to its own output terminal, while during low consumption operation of the flip-flop circuit a latch circuit of the retention cell suitable to memorize data or a logic state corresponding to the last data or logic state present on the output terminal of the flip-flop is activated.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: October 29, 2013
    Assignees: STMicroelectronics S.r.l., STMicroelectronics International NV
    Inventors: Andrea Mario Veggetti, Abhishek Jain, Pankaj Rohilla
  • Patent number: 8552765
    Abstract: Adaptive scaling digital techniques attempt to place the system close to the timing failure so as to maximize energy efficiency. Rapid recovery from potential failures is usually by slowing the system clock and/or providing razor solutions (instruction replay.) These techniques compromise the throughput. We present a technique to provide local in-situ fault resilience based on dynamic slack borrowing. This technique is non-intrusive (needs no architecture modification) and has minimal impact on throughput.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 8, 2013
    Assignees: STMicroelectronics International N.V., STMicroelectronics SA
    Inventors: Chittoor Parthasarathy, Nitin Chawla, Kallol Chatterjee, Pascal Urard
  • Patent number: 8536918
    Abstract: Provided is a flip-flop circuit which a small-sized test circuit with hold free and can perform test in an actual operating frequency. A Pos-type F/F includes a master latch (Low level latch) that selectively receives data or scan test data in synchronization with a rising edge of a clock signal, and a slave latch (High level latch) that receives the data from the master latch. In a scan shift operation, the master latch captures scan data signal input SIN in a Low period of a scan shift clock signal SCLK1 and outputs the data to the slave latch. The slave latch captures the output of the master latch in a High period of a scan shift clock signal SCLK2 having a different edge position from the SCLK1 and outputs the data to Q.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: September 17, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yuya Nishioka, Yoshinobu Irie
  • Patent number: 8525565
    Abstract: A multibit combined multiplexer and flip-flop circuit has a plurality of bit circuits. Each bit circuit includes and input section, a flip-flop section and a per bit control section. The input sections have inputs for plural of input signals and corresponding input pass gates. The outputs of the input pass gates are connected to the input of the flip-flop section. Each per bit control section includes an inverter for each input terminal. There is a combined control section receiving a clock signal and a control signals for selection of only one of the input signals. The combined control section include a logical AND for each input signal combining the clock signal and the selection signal. The output of each logical AND is connected to the input of a corresponding inverter of each per bit control circuit. The input pass gate are controlled by a corresponding logical AND and said corresponding inverter.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: September 3, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Mujibur Rahman, Timothy D. Anderson, Alan Hales
  • Publication number: 20130222031
    Abstract: A method and circuits for implementing power saving self powering down latch operation, and a design structure on which the subject circuit resides are provided. A master slave latch includes a virtual power supply connection. At least one connection control device is coupled between the virtual power supply connection and a voltage supply rail. A driver gate applies a power down signal driving the at least one connection control device to control the at least one connection control device during a self power down mode. The driver gate combines a self power down input signal and a latch data output signal to generate the power down signal.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach
  • Patent number: 8513999
    Abstract: A semiconductor device includes: a first master-slave flip-flop having a first master latch which receives and latches first data signal in synchronism with first clock and a first slave latch which receives and latches the first data signal from the first master latch in synchronism with second clock; and a second master-slave flip-flop disposed side by side with the first master-slave flip-flop and having a second master latch which receives and latches second data signal in synchronism with third clock and a second slave latch which receives and latches the second data signal from the second master latch in synchronism with fourth clock, and wherein the second slave latch of the second master-slave flip-flop is disposed adjacent to the first master latch of the first master-slave flip-flop and the second master latch of the second master-slave flip-flop is disposed adjacent to the first slave latch of the first master-slave flip-flop.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: August 20, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Taiki Uemura
  • Publication number: 20130207705
    Abstract: A power distribution system includes the use of a master digital signal processor (DSP) and two slave DSPs connected to the master DSP. The slaves DSPs may be connected to each of a plurality of solid state power channels (SSPC) controlling power distribution functions to each of the channels. A power control strategy may use one power supply for the master DSP, a second power supply shared between the slave DSPs, and a third power supply shared between each of the SSPC channels.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: PRASHANT PURUSHOTHAM PRABHUK, NARENDRA RAO, EZEKIEL A., VINOD KUNNAMBATH, RANDY FULLER, DAVID LAZAROVICH, ZHENNING LIU