With Clock Input Patents (Class 327/212)
-
Patent number: 12113528Abstract: An output driver includes a first pre-driver circuit, a first driver circuit, a second pre-driver circuit, a second driver circuit, and a feedback network. The first pre-driver circuit pre-drives a first data input signal to generate a first pre-driving output signal. The first driver circuit drives the first pre-driving output signal to generate a first data output signal. The second pre-driver circuit pre-drives a second data input signal to generate a second pre-driving output signal, wherein the first data input signal and the second data input signal are a differential input of the output driver. The second driver circuit drives the second pre-driving output signal to generate a second data output signal. The feedback network performs a latching operation upon the first pre-driving output signal and the second pre-driving output signal according to the first data output signal and the second data output signal.Type: GrantFiled: July 19, 2022Date of Patent: October 8, 2024Assignee: Airoha Technology Corp.Inventor: Huan-Sheng Chen
-
Patent number: 11983030Abstract: A clock transmission circuit includes a clock driver circuit suitable for transmitting a clock and adjusting a driving force thereof in response to a boosting signal; a low-pass filter circuit suitable for receiving the clock and outputting an initialization signal; and a boosting signal generating circuit suitable for generating the boosting signal that is activated in response to the initialization signal and deactivated in response to the clock.Type: GrantFiled: October 28, 2022Date of Patent: May 14, 2024Assignee: SK hynix Inc.Inventors: Heon Ki Kim, Dae Ho Yang
-
Patent number: 11967955Abstract: A clocked storage element comprises a first latch having an input data node, a clock input node and a first latch output data node, and a second latch having an input connected to the first latch output data node, a clock input node and a second latch output data node. The first and second latches can have a clocked pull-up current path consisting of two p-channel transistors between their respective output data nodes and the VDD supply line, and a clocked pull-down current path consisting of two n-channel transistors between their respective output data nodes and the VSS supply line.Type: GrantFiled: January 12, 2023Date of Patent: April 23, 2024Assignee: SambaNova Systems, Inc.Inventor: Vojin G. Oklobdzija
-
Patent number: 11923854Abstract: Provided is a logic circuit including a first circuit including a static D flip-flop and a second circuit including a dynamic D flip-flop. The first circuit receives a clock signal and a first reset signal. The first circuit outputs a second reset signal generated by synchronizing the first reset signal with the clock signal. The second circuit receives the clock signal and a signal based on the second reset signal.Type: GrantFiled: April 12, 2022Date of Patent: March 5, 2024Assignee: CANON KABUSHIKI KAISHAInventors: Kohichi Nakamura, Yasuhiro Oguro
-
Patent number: 11789075Abstract: A method includes generating a functional clock signal, a scan clock signal, and a delayed clock signal based on a control clock signal and a scan enable signal. The method includes precharging or predischarging a differential pair of nodes in a first latch using the delayed clock signal and a voltage on a first power supply node and controlling a second latch using the delayed clock signal. The method includes latching data input by the first latch using the functional clock signal in a functional mode of operation and latching scan data by the first latch using the scan clock signal in a scan mode of operation.Type: GrantFiled: June 29, 2022Date of Patent: October 17, 2023Assignee: Advanced Micro Devices, Inc.Inventors: Nur Mohammad Baksh, Michael Q. Co, Vibhor Mittal, Kedar Karthykeyan
-
Patent number: 11456734Abstract: A comparator includes: a first stage circuit, configured to receive a voltage signal to be compared and a reference voltage signal Vref, and to generate and output a first amplifying signal and a second amplifying signal based on the voltage signal to be compared and the reference voltage signal Vref; a second stage circuit, connected with the first stage circuit, configured to generate and latch a first output signal and a second output signal based on the first amplifying signal and the second amplifying signal; wherein the first stage circuit and/or the second stage circuit include(s) a first pair of cross-coupled transistors.Type: GrantFiled: August 21, 2021Date of Patent: September 27, 2022Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.Inventor: Xiaofei Chen
-
Patent number: 11387819Abstract: The disclosure relates to a latch including a first inverter with a first pair of field effect transistors (FETs) configured with a first channel width to length ratio (W/L), and a second inverter with a second pair of FETs configured with a second W/L different than the first W/L. Another latch includes first and second inverters; a first negative feedback circuit including first and second FETs coupled between first and second voltage rails, the input of the first inverter coupled between the first and second FETs, and the first and second FETs including gates coupled to an output of the first inverter; and a second negative feedback circuit including third and fourth FETs coupled between the first and second voltage rails, the input of the second inverter coupled between the third and fourth FETs, and the third and fourth FETs including gates coupled to an output of the second inverter.Type: GrantFiled: December 10, 2020Date of Patent: July 12, 2022Assignee: QUALCOMM INCORPORATEDInventor: Hari Rao
-
Patent number: 11328771Abstract: A sense amplifier circuit implements a sense scheme using sense amplifier feedback control to disconnect the bit lines from the sense circuit during the read operation after the bit line signals are sensed. In this manner, read disturbance during the read operation is prevented. In some embodiments, the sense amplifier circuit includes a pair of pass gates to couple a pair of differential bit lines to a sense circuit. The sense amplifier circuit further includes a feedback control circuit to open the pair of pass gates in response to at least one of the sensed signals at the sense circuit changing logical state. The pair of pass gates are opened to disconnect the pair of differential bit lines from the sense circuit.Type: GrantFiled: January 6, 2021Date of Patent: May 10, 2022Assignee: Integrated Silicon Solution, (Cayman) Inc.Inventor: Seong-Jun Jang
-
Patent number: 10505767Abstract: Disclosed herein are related to a system and a method for high speed communication. In one aspect, the system includes a set of slicers configured to generate a slicer output signal digitally indicating a level of an input signal received by the set of slicers. The system includes a speculative tap coupled to the set of slicers, where the speculative tap is configured to select bits of the slicer output signal based on selected bits of a prior slicer output signal. The system includes a decoder coupled to the speculative tap, where the decoder is configured to decode the selected bits of the slicer output signal in a first digital representation into a second digital representation. The system includes a feedback generator coupled to the decoder, where the feedback generator is configured to generate a feedback signal according to the decoded bits of the slicer output signal.Type: GrantFiled: December 28, 2018Date of Patent: December 10, 2019Assignee: Avago Technologies International Sales Pte. LimitedInventors: Heng Zhang, Jaehun Jeong, Bo Zhang, Arvindh Iyer, Kumar Thasari, Ullas Singh, Namik Kocaman
-
Patent number: 10497335Abstract: A display device comprises: a pixel array including pixels connected to gate lines; a gate driver that sequentially supplies scan signals to the gate lines by using a plurality of stages connected in cascade; and a driving voltage generator that supplies first and second driving voltages to the gate driver and inverts the first and second driving voltages of opposite phases at given intervals, wherein an nth stage (n is a natural number), among the stages of the gate driver, comprises: a start controller that charges a Q1 node in a period when an (n?1)th scan signal and a first clock signal are synchronized, and charges a Q1B node in a period when an (n?1)th carry signal, opposite in phase to the (n?1)th scan signal, and the first clock signal are synchronized; a first node controller that charges a Q2 node or a Q2B node in response to a voltage at the Q1 node; a first output control transistor that outputs an nth scan signal through a Q node in response to a voltage at the Q2 node; and a second output controType: GrantFiled: November 14, 2017Date of Patent: December 3, 2019Assignee: LG Display Co., Ltd.Inventors: Seok Noh, Injune Kim, Kimin Son
-
Patent number: 10338820Abstract: A system architecture conserves memory bandwidth by including compression utility to process data transfers from the cache into external memory. The cache decompresses transfers from external memory and transfers full format data to naive clients that lack decompression capability and directly transfers compressed data to savvy clients that include decompression capability. An improved compression algorithm includes software that computes the difference between the current data word and each of a number of prior data words. Software selects the prior data word with the smallest difference as the nearest match and encodes the bit width of the difference to this data word. Software then encodes the difference between the current stride and the closest previous stride. Software combines the stride, bit width, and difference to yield final encoded data word. Software may encode the stride of one data word as a value relative to the stride of a previous data word.Type: GrantFiled: June 7, 2016Date of Patent: July 2, 2019Assignee: NVIDIA CORPORATIONInventors: Rouslan Dimitrov, Jeff Pool, Praveen Krishnamurthy, Chris Amsinck, Karan Mehra, Scott Cutler
-
Patent number: 10019958Abstract: A display panel includes a substrate, a plurality of pixels, a plurality of scan lines, a pull-down control circuit, and a gate driving circuit. The pixels are disposed on a display area of the substrate. The scan lines are disposed on the substrate and respectively coupled to the corresponding pixels. The pull-down control circuit is disposed on a peripheral area of the substrate, receives a plurality of clock signals, and has a plurality of pull-down units to provide a plurality of pull-down signals. The gate driving circuit is disposed on the peripheral area and has a plurality of shift registers. The shift registers are coupled to the scan lines to provide a plurality of gate driving signals and pull down the gate driving signals in sequence according to the pull-down signals. The pull-down control circuit and the gate driving circuit are arranged along a side of the display area.Type: GrantFiled: July 26, 2016Date of Patent: July 10, 2018Assignee: Chunghwa Picture Tubes, LTD.Inventors: Wei-Lung Li, Chih-Wen Lai
-
Patent number: 9893721Abstract: An edge detector includes a differential signal generator, a sense amplifier and a latch. The differential signal generator delays an input signal to generate a first differential signal and inverts the input signal to generate a second differential signal. The sense amplifier amplifies a difference between the first differential signal and the second differential signal to generate a first amplification signal and a second amplification signal at a first edge of a test clock signal and resets the first amplification signal and the second amplification signal at a second edge of the test clock signal. The latch generates an edge signal corresponding to edge information of the input signal in response to the first amplification signal and the second amplification signal.Type: GrantFiled: July 11, 2016Date of Patent: February 13, 2018Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Dong-Seok Lee, Woo-Seok Kim, Jae-Jin Park, Dong-Hyuk Lim, Dae-Young Chung
-
Patent number: 9837036Abstract: A gate driving circuit including: a plurality of stages outputting signals to gate lines, the stages includes a first transistor of which one end and a control terminal are connected, one end and the control terminal are connected with a first input terminal, and the other end is connected to a second node, a second transistor including a control terminal connected to a first node, connected with a clock input terminal, and the other end connected to a first output terminal, a first capacitor of which one end is connected to the first node, the other end is connected to the other end of the second transistor and the first output terminal, and a third transistor of which one end is connected to the other end of the first transistor, the other end is connected with the first node, and a control terminal is connected to a third node.Type: GrantFiled: September 23, 2015Date of Patent: December 5, 2017Assignee: Samsung Display Co., Ltd.Inventors: Tadashi Amino, Jong Hee Kim, Masataka Kano, Jun Hyun Park
-
Patent number: 9530371Abstract: The present invention relates to a GOA circuit for tablet display and a display device. The GOA circuit comprises cascaded plurality of GOA units, the GOA unit comprises a pull-up control part 400 and a transfer part 500; the transfer part 500 comprises a first thin film transistor T22, the gate thereof is connected with the gate signal point Q(n), the drain and the source are respectively input the clock signal CK(n) and output the turn-on signal ST(n); the pull-up control part comprises: a second thin film transistor T11, the gate thereof is input the turn-on signal ST(n?2), the drain and the source are respectively connected with the horizontal scan line G(n?2) and the gate signal point Q(n); a third tin film transistor T12, the gate thereof is connected with the horizontal scan line G(n?1), the drain and the source are respectively connected with the horizontal scan line G(n?1) and the gate signal point Q(n). The present invention also provides a related display device.Type: GrantFiled: January 3, 2014Date of Patent: December 27, 2016Assignee: Shenzhen China Star Optoelectronics Technology Co., LtdInventors: Xiaojiang Yu, Wenying Li, Changyeh Lee, Tzuchieh Lai
-
Patent number: 9424894Abstract: A signal transfer circuit includes a signal input unit suitable for generating an input signal corresponding to a first voltage level and a second voltage level, a transfer control unit suitable for controlling a driving path of a transfer node in response to a control signal and selectively driving the transfer node to the second voltage level or a third voltage level, which is higher than the first voltage level, based on the driving path in response to the input signal, and an output control unit suitable for outputting an output signal by driving an output node based on a voltage level of the transfer node or maintaining a previous voltage level of the output node in response to the control signal.Type: GrantFiled: October 2, 2014Date of Patent: August 23, 2016Assignee: SK Hynix Inc.Inventors: Youk-Hee Kim, Yong-Ju Kim
-
Patent number: 9324715Abstract: A semiconductor device includes a substrate including PMOSFET and NMOSFET regions. First and second gate electrodes are provided on the PMOSFET region, and third and fourth gate electrodes are provided on the NMOSFET region. A connection contact is provided to connect the second gate electrode with the third gate electrode, and a connection line is provided on the connection contact to cross the connection contact and connect the first gate electrode to the fourth gate electrode.Type: GrantFiled: October 1, 2014Date of Patent: April 26, 2016Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Raheel Azmat, Rwik Sengupta, Chulhong Park, Kwanyoung Chun
-
Patent number: 9324288Abstract: The present invention provides a self-compensating gate driving circuit which comprises a plurality of GOA units which are cascade-connected, and a Nth GOA unit controls charge to a Nth horizontal scanning line G(n) in a display area. The Nth GOA unit comprises a pull-up controlling part, a pull-up part, a transmission part, a first pull-down part, a bootstrap capacitor part and a pull-down holding part. The pull-up part, the first pull-down part, the bootstrap capacitor part and the pull-down holding part are respectively coupled to a Nth gate signal point Q(N) and the Nth horizontal scanning line G(n), and the pull-up controlling part and the transmission part are respectively coupled to the Nth gate signal point Q(N), and the pull-down holding part is inputted with a DC low voltage VSS.Type: GrantFiled: August 14, 2014Date of Patent: April 26, 2016Assignee: Shenzhen China Star Optoelectronics Technology Co., LtdInventor: Chao Dai
-
Patent number: 9300506Abstract: A clock synchronization circuit is configured to capture an input data bit according to an input clock signal, and to synchronize and output the input data bit. The clock synchronization circuit includes a clock buffer for generating an internal clock signal according to the input clock signal and transmitting the internal clock signal to a clock line. The clock synchronization circuit further includes a D flip-flop for capturing and outputting the input data bit at an edge timing of the internal clock signal. The clock buffer includes an inverter core portion and an electric current suppressing portion. The inverter core portion is configured to generate the internal clock signal through alternately supplying an electric current to the clock line and drawing the electric current from the clock line according to the input clock signal. The electric current suppressing portion is configured to suppress an amount of the electric current.Type: GrantFiled: January 8, 2015Date of Patent: March 29, 2016Assignee: LAPIS SEMICONDUCTOR CO., LTDInventor: Kenji Arai
-
Patent number: 9130555Abstract: A circuit including: an input stage that includes a first input unit into which input data is input and a pair of first output units and is driven by a first power-supply voltage; a pair of first gate elements that includes first transistors, and is driven by a clock that includes a second power-supply voltage that is lower than the first power-supply voltage; a first latch circuit that includes a pair of second input units, and is driven by the first power-supply voltage; a pair of second gate elements that includes second transistors, and is driven by an inverted clock of the clock; and a second latch circuit that includes a pair of third input units, and a third output unit that outputs one of a pair of pieces of data, and is driven by the first power-supply voltage.Type: GrantFiled: March 6, 2014Date of Patent: September 8, 2015Assignee: FUJITSU LIMITEDInventors: Satoshi Tanabe, Kenichi Kawasaki
-
Publication number: 20150130524Abstract: A particular method includes receiving a retention signal. In response to receiving the retention signal, the method includes retaining state information in a non-volatile stage of a retention register and reducing power to a volatile stage of the retention register. The non-volatile stage may be powered by an external voltage source. The volatile stage may be powered by an internal voltage source.Type: ApplicationFiled: January 26, 2015Publication date: May 14, 2015Inventors: Ramaprasath Vilangudipitchai, Prayag Bhanubhai Patel
-
Patent number: 9018976Abstract: In an embodiment of the invention, a dual-port positive level sensitive reset preset data retention latch contains a clocked inverter and a dual-port latch. Data is clocked through the clocked inverter when clock signal CKT goes high, CLKZ goes low, preset control signal PRE is low, rest control signal REN is high and retention control signal RET is low. The dual-port latch is configured to receive the output of the clocked inverter, a second data bit D2, the clock signals CKT and CLKZ, the retain control signals RET and RETN, the preset control signal PRE and the control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, PRE, REN, SS and SSN determine whether the output of the clocked inverter or the second data bit D2 is latched in the dual-port latch. Control signals RET and RETN determine when data is stored in the dual-port latch during retention mode.Type: GrantFiled: November 14, 2013Date of Patent: April 28, 2015Assignee: Texas Instruments IncorporatedInventors: Steven C. Bartling, Sudhanshu Khanna
-
Publication number: 20150102847Abstract: An example embodiment discloses a flip-flop including a first inverter configured to invert first data, first and second transistors connected to each other in series and configured to receive the inverted first data and a first clock, respectively, a third transistor and a first gate configured to perform a logic operation on the first data and the first clock, the third transistor configured to receive an output of the logic operation. The second transistor and the third transistor are connected to a first node.Type: ApplicationFiled: July 24, 2014Publication date: April 16, 2015Inventors: Rahul SINGH, Min-Su KIM, Chung-Hee KIM
-
Patent number: 9007091Abstract: In an embodiment of the invention, a dual-port positive level sensitive preset data retention latch contains a clocked inverter and a dual-port latch. Data is clocked through the clocked inverter when clock signal CKT goes high, CLKZ goes low, preset control signal PRE is low and retention control signal RET is low. The dual-port latch is configured to receive the output of the clocked inverter, a second data bit D2, the clock signals CKT and CLKZ, the retain control signals RET and RETN, the preset control signal PRE and the control signals SS and SSN. The signals CKT, CLKZ, RET, RETN, PRE, SS and SSN determine whether the output of the clocked inverter or the second data bit D2 is latched in the dual-port latch. Control signals RET and RETN determine when data is stored in the dual-port latch during retention mode.Type: GrantFiled: November 14, 2013Date of Patent: April 14, 2015Assignee: Texas Instruments IncorporatedInventors: Steven C. Bartling, Sudhanshu Khanna
-
Patent number: 9007113Abstract: According to one aspect of the present disclosure, there is provided a flip flop circuit, comprising a first input circuit configured to receive a clock input signal and input data and comprising a first node. The flip-clop circuit further comprises a second input circuit configured to receive the input data and an inverse of the clock signal and comprising a second node. The first and second input circuits are configured such that the first node and the second node are pre-charged to respective complementary states when the clock signal is at a first level and, dependent on a value of the input data, one of said first and second nodes changes state to a state complementary to its pre-charged state when the clock signal transitions from the first level to a second level.Type: GrantFiled: January 7, 2014Date of Patent: April 14, 2015Assignee: NVIDIA CorporationInventors: Stephen Felix, Stéphane Badel
-
Publication number: 20150077162Abstract: A transistor with excellent electrical characteristics (e.g., on-state current, field-effect mobility, or frequency characteristics) is provided. The transistor includes an oxide semiconductor layer including a channel formation region, a first gate electrode, a second gate electrode, a source electrode, and a drain electrode. The oxide semiconductor layer is between the first gate electrode and the second gate electrode. The oxide semiconductor layer has a pair of side surfaces in contact with the source electrode and the drain electrode and includes a region surrounded by the first gate electrode and the second gate electrode without the source electrode and the drain electrode interposed therebetween.Type: ApplicationFiled: September 8, 2014Publication date: March 19, 2015Inventors: Shunpei Yamazaki, Masahiro Katayama, Kenichi Okazaki, Jun Koyama
-
Patent number: 8975934Abstract: A particular method includes receiving a retention signal. In response to receiving the retention signal, the method includes retaining state information in a non-volatile stage of a retention register and reducing power to a volatile stage of the retention register. The non-volatile stage may be powered by an external voltage source. The volatile stage may be powered by an internal voltage source.Type: GrantFiled: March 6, 2013Date of Patent: March 10, 2015Assignee: QUALCOMM IncorporatedInventors: Ramaprasath Vilangudipitchai, Prayag Bhanubhai Patel
-
Patent number: 8957718Abstract: A flip-flop circuit has a master latch circuit and a slave latch circuit. In the flip-flop circuit, the master latch circuit and the slave latch circuit share at least a pair of transistors. In response to the clock signal, the signal held in the master latch circuit can be output at higher speed as the output signal via the intermediate node, the slave latch circuit and the output circuit. The flip-flop circuit can be reduced in cell size and improved in processing speed.Type: GrantFiled: July 29, 2013Date of Patent: February 17, 2015Assignee: Kabushiki Kaisha ToshibaInventor: Muneaki Maeno
-
Patent number: 8957717Abstract: A scan flip-flop may include a selector outputting a data signal or a scan input signal in response to a scan enable signal, and a flip-flop that latches an output signal of the selector or the data signal, based on a clock signal and a low voltage signal.Type: GrantFiled: September 17, 2013Date of Patent: February 17, 2015Assignee: Samsung Electronics Co., Ltd.Inventor: Min Su Kim
-
Patent number: 8952740Abstract: A pulsed latching apparatus and a method for generating a pulse signal are provided. The pulsed latching apparatus consists of a pulsed latch and a pulse signal generator. A data input terminal of the pulsed latch receives input data, the pulsed latch latches the input data according to a pulse signal, and transmits the latched input data through the data output terminal to serve as output data. The pulse signal generator duplicates a data transmission delay between the data input terminal and the data output terminal of the pulsed latch to obtain a duplicated delay. The pulse signal generator receives a clock signal, and processes the clock signal according to the duplicated delay to generate the pulse signal.Type: GrantFiled: September 6, 2013Date of Patent: February 10, 2015Assignee: Industrial Technology Research InstituteInventor: Shien-Chun Luo
-
Patent number: 8941428Abstract: A latching circuit has an input for receiving the data value, an output for outputting a value indicative of the data value, a clock signal input for receiving a clock signal; and a pass gate. A feedback loop has two switching circuits arranged in parallel between two inverting devices, a first of the two switching circuits is configured to be off and not conduct in response to a control signal having a predetermined control value and a second of the two switching circuits is configured to be on and conduct in response to the control signal having the predetermined control value. A control signal controlling the two switching circuits is linked such that the switching devices switch their conduction status and the access control device act together to update the data value within the feedback loop.Type: GrantFiled: April 9, 2014Date of Patent: January 27, 2015Assignee: ARM LimitedInventors: Virgile Javerliac, Yannick Marc Nevers, Laurent Christian Sibuet, Selma Laabidi
-
Publication number: 20150003177Abstract: Disclosed herein is a device includes a command generation circuit that activates first and second command signals, an internal circuit that includes a plurality of transistors that are brought into a first operation state when at least one of the first and second command signals is activated, and an output gate circuit that receives a first signal output from the internal circuit, the output gate circuit being configured to pass the first signal when the second command signal is deactivated and to block the first signal when the second command signal is activated.Type: ApplicationFiled: June 26, 2014Publication date: January 1, 2015Inventor: Keisuke Fujishiro
-
Patent number: 8917800Abstract: A mechanism is provided for dynamically adjusting DC offset at the time of deviation from DC balance ½ (DC level) in a data pattern including long-period consecutive bits generating DC offset in a section of data. A receiver circuit unit of an LSI having a serializer/deserializer arrangement for performing high-speed serial transmission includes an offset adjusting circuit. The offset adjusting circuit calculates DC balance in an arbitrary section of data by averaging received serial data. Based on comparison between a DC level and the DC balance obtained by averaging the received data, offset is shifted toward the H side when the DC balance exists on the H side from the DC level, and shifted toward the L side when the DC balance exists on the L side.Type: GrantFiled: August 10, 2013Date of Patent: December 23, 2014Assignee: Hitachi, Ltd.Inventors: Akira Matsumoto, Naoki Mori, Takashi Yagi
-
Patent number: 8901973Abstract: A multi-band frequency multiplier configured to generate frequencies and multiplied frequencies in an integrated system. The multi-band frequency multiplier includes a multi-band multiplier core with a multiplier core differential amplifier configured to receive a multiplier input signal. A switchable load impedance connects to the multiplier core differential amplifier, and includes n multiplier sections. Each multiplier section includes a section impedance and a section switch. The multiplier core differential amplifier generates an output signal having a frequency substantially equal to k times the input frequency in a range of a selected one of n critical frequencies when a selected one of the section switches corresponding to the selected one of the n critical frequencies is triggered.Type: GrantFiled: April 19, 2013Date of Patent: December 2, 2014Assignee: Keysight Technologies, Inc.Inventors: Eric R. Ehlers, Bobby Yubo Wong
-
Patent number: 8878585Abstract: A slicer includes a first latch. The first latch includes an evaluating transistor configured to receive a first clock signal. The first latch further includes a developing transistor configured to receive a second clock signal, wherein the first clock signal is different from the second clock signal. The first latch further includes a first input transistor configured to receive a first input. The first latch further includes a second input transistor configured to receive a second input, wherein the first and second input transistors are connected with the developing transistor. The first latch further includes at least one pre-charging transistor configured to receive a third clock signal, wherein the at least one pre-charging transistor is connected to a first output node and a second output node. The slicer further includes a second latch connected to the first and second output nodes and to a third output node.Type: GrantFiled: January 8, 2014Date of Patent: November 4, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ming-Chieh Huang, Chan-Hong Chern, Tao Wen Chung, Chih-Chang Lin, Tsung-Ching Huang, Derek C. Tao
-
Publication number: 20140312950Abstract: A circuit including: an input stage that includes a first input unit into which input data is input and a pair of first output units and is driven by a first power-supply voltage; a pair of first gate elements that includes first transistors, and is driven by a clock that includes a second power-supply voltage that is lower than the first power-supply voltage; a first latch circuit that includes a pair of second input units, and is driven by the first power-supply voltage; a pair of second gate elements that includes second transistors, and is driven by an inverted clock of the clock; and a second latch circuit that includes a pair of third input units, and a third output unit that outputs one of a pair of pieces of data, and is driven by the first power-supply voltage.Type: ApplicationFiled: March 6, 2014Publication date: October 23, 2014Applicant: FUJITSU LIMITEDInventors: Satoshi TANABE, Kenichi KAWASAKI
-
Publication number: 20140306745Abstract: A method of operating a circuit includes receiving a first data signal at a first node. The first node is coupled to a second node to couple the first data signal to the second node. After coupling the first node to the second node, an inversion is enabled from the second node to a third node. An inversion from the third node to the fourth node is provided. After the enabling the inversion from the second node to the third node, the first node is decoupled from the second node. After the enabling the inversion from the second node to the third node, the second node is coupled to the third node. An inversion from the fourth node to the third node is enabled and the second node is decoupled from the fourth node.Type: ApplicationFiled: June 26, 2014Publication date: October 16, 2014Applicant: FREESCALE SEMICONDUCTOR INC.Inventors: RAVINDRARAJ RAMARAJU, Prashant U. Kenkare
-
Publication number: 20140306744Abstract: Signal value storage circuitry 2 is provided which includes a first transistor stack, a second transistor stack and a third transistor stack. The signal value storage circuitry is controlled by a single clock signal. Keeper transistors and isolation transistors serve to permit static operation of the signal value storage circuitry (i.e. the clock signal may be stopped without losing state) and to prevent contention within the circuitry.Type: ApplicationFiled: April 11, 2013Publication date: October 16, 2014Inventor: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
-
Patent number: 8860484Abstract: Embodiments of a logic path are disclosed that may allow for a reduction in switching power. The logic path may include a storage circuit, a comparison circuit, and a clock gating circuit. The storage circuit may be configured to store received data responsive to a local clock signal. The comparison circuit may be operable to compare the received data to data previously stored in the storage circuit. The clock gating circuit may be configured to generate the local clock signal dependent on a global clock signal, and de-activate the local clock signal dependent upon the results of the comparison performed by the comparison circuit.Type: GrantFiled: March 15, 2013Date of Patent: October 14, 2014Assignee: Oracle International CorporationInventors: Ha M Pham, Jin-uk Shin
-
Publication number: 20140253197Abstract: A particular method includes receiving a retention signal. In response to receiving the retention signal, the method includes retaining state information in a non-volatile stage of a retention register and reducing power to a volatile stage of the retention register. The non-volatile stage may be powered by an external voltage source. The volatile stage may be powered by an internal voltage source.Type: ApplicationFiled: March 6, 2013Publication date: September 11, 2014Applicant: QUALCOMM IncorporatedInventors: Ramaprasath Vilangudipitchai, Prayag Bhanubhai Patel
-
Patent number: 8829965Abstract: A system and method to perform scan testing using a pulse latch with a blocking gate is disclosed. In a particular embodiment, a scan latch includes a pulse latch operable to receive data while a pulse clock signal has a first logical clock value and a blocking gate coupled to an output of the pulse latch. The blocking gate is operable to propagate the data from the output of the pulse latch while the pulse clock signal has a second logical clock value.Type: GrantFiled: August 1, 2012Date of Patent: September 9, 2014Assignee: QUALCOMM IncorporatedInventors: Venkatasubramanian Narayanan, Kashyap R. Bellur
-
Patent number: 8816741Abstract: A state retention power gated (SRPG) cell includes an input control circuit having an input coupled to an input signal and an output. The input control circuit includes has transistors configured as a first inverter transmission gate. The transistors also connect in series at least one transistor controlled by a power gating signal. A first latch has an input coupled to the output of the input control circuit and an output. A transmission gate has an input coupled to the output of the first latch and an output that is an output of the SRPG cell. A second latch has an input coupled to the output of the transmission gate and an output that also is an output of the SRPG cell. A second inverter transmission gate has an input coupled to the output of the second latch.Type: GrantFiled: August 13, 2013Date of Patent: August 26, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Yifeng Liu, Zhe Chen, Shayang Zhang, Jian Zhou
-
Publication number: 20140218081Abstract: A semiconductor device includes a latch circuit. The latch circuit includes a sampling section that latches a differential input signal applied from a differential input node to the gates of a differential pair of transistors, a common adjusting section that adjusts a common potential of the differential input signal by adjusting based on a current control signal the amount of current that is drawn from the differential input node, and a common control section that controls the current control signal so that the differential pair of transistors operate in a saturated region, and supplies the controlled current control signal to the common adjusting section.Type: ApplicationFiled: April 3, 2014Publication date: August 7, 2014Applicant: PANASONIC CORPORATIONInventor: Akinori SHINMYO
-
Patent number: 8797077Abstract: A master-slave flip-flop circuit includes: a master circuit to receive input data in a first state of a reference clock and hold the input data in a second state of the reference clock to output intermediary data; and a slave circuit to receive the intermediary data in the second state and hold the intermediary data in the first state to output data, wherein the master circuit includes: a feedback two-input NOR gate to receive an output of the master circuit and a first clock; an input three-input NOR gate to receive the input data, a second clock, and a third clock; and a synthesis two-input NOR gate to receive an output of the input three-input NOR gate and an output of the feedback two-input NOR gate.Type: GrantFiled: June 19, 2013Date of Patent: August 5, 2014Assignee: Fujitsu LimitedInventor: Ryuhei Sasagawa
-
Patent number: 8786345Abstract: One embodiment of the present invention sets forth a technique for capturing and storing a level of an input signal using a single-trigger low-energy flip-flop circuit that is fully-static and insensitive to fabrication process variations, The single-trigger low-energy flip-flop circuit presents only three transistor gate loads to the clock signal and none of the internal nodes toggle when the input signal remains constant, The output signal Q is set or reset at the rising clock edge using a single- trigger sub-circuit. A set or reset may be armed while the clock signal is low, and the set or reset is triggered at the rising edge of the clock.Type: GrantFiled: March 28, 2013Date of Patent: July 22, 2014Assignee: NVIDIA CorporationInventors: Jonah M. Alben, William J. Dally
-
Patent number: 8786344Abstract: A storage cell having a pulse generator and a storage element is proposed. The storage element input is connected to receive a data input signal. The storage element output is connected to provide a data output signal. The storage element is operable in one of a data retention state and a data transfer state in response to a storage control signal received from the pulse generator. The pulse generator is connected to receive a clock signal with rising and falling clock signal edges and is adapted to provide control pulses in the storage control signal. Each control pulse has a leading edge and a trailing edge. The control pulses have a polarity suited to invoke the data transfer state on their leading edges. The novel feature is that the pulse generator is adapted to initiate a rising-edge control pulse when receiving a rising clock signal edge and to initiate a falling-edge control pulse when receiving a falling clock signal edge.Type: GrantFiled: March 15, 2010Date of Patent: July 22, 2014Assignee: Oticon A/SInventor: Jakob Salling
-
Patent number: 8760208Abstract: An apparatus may include a storage circuit that may have a first terminal and a second terminal and may have two cross-coupled inverters. The apparatus may include a feedback circuit coupled to the first terminal. The feedback circuit may include electronic logic elements to determine if the storage circuit is in a metastable state. The feedback circuit may couple at least one of the first and second terminals to one of a voltage reference and a voltage source if determined that the storage circuit is in a metastable state.Type: GrantFiled: March 30, 2012Date of Patent: June 24, 2014Assignee: Intel CorporationInventors: Charles E. Dike, Mark E. Schuelein
-
Patent number: 8742804Abstract: A semiconductor device with low power consumption and a small area is provided. By using a transistor including an oxide semiconductor for a channel as a transistor included in a flip-flop circuit, a divider circuit in which the number of transistors is small, power consumption is low, and the area is small can be achieved. By using the divider circuit, a semiconductor device which operates stably and is highly reliable can be provided.Type: GrantFiled: May 17, 2012Date of Patent: June 3, 2014Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Masashi Fujita, Yukio Maehashi
-
Patent number: 8736334Abstract: A current mode logic latch may include a first hold stage transistor coupled at its drain terminal to the drain terminal of a first sample stage transistor. A second hold stage transistor is coupled at its drain terminal to the drain terminal of a second sample stage transistor, coupled at its gate terminal to the drain terminal of the first hold stage transistor, and coupled at its drain terminal to a gate terminal of the first hold stage transistor. A first hold stage current source is coupled to a source terminal of the first hold stage transistor. A second hold stage current source is coupled to a source terminal of the second hold stage transistor. The hold stage switch is coupled between the source terminal of the first hold stage transistor and the source terminal of the second hold stage transistor.Type: GrantFiled: June 13, 2012Date of Patent: May 27, 2014Assignee: Fujitsu LimitedInventors: Shuo-Chun Kao, Nikola Nedovic
-
Patent number: 8730404Abstract: In an embodiment, the present invention includes a latch circuit having a first input to receive a data signal and a second input to receive a clock signal. This latch circuit may have a first pair of transistors including a first transistor gated by the data signal and a second transistor gated by an inverted data signal and a second pair of transistors including third and fourth transistors gated by the clock signal. The first transistor may be coupled to the third transistor at a first inter-latch node and the second transistor coupled to the fourth transistor at a second inter-latch node. A reset circuit may be coupled to the latch circuit to maintain the first and second inter-latch nodes at a predetermined voltage level when the clock signal is inactive.Type: GrantFiled: May 31, 2012Date of Patent: May 20, 2014Assignee: Silicon Laboratories Inc.Inventors: Clayton Daigle, Abdulkerim L. Coban