Including Particular Biasing Arrangement Patents (Class 330/296)
  • Patent number: 11502647
    Abstract: Provided is an amplifier that includes a first transistor including a gate terminal to which an applied input signal is input, where a current depending on the applied input signal flows through the first transistor. A gate terminal of a second transistor is connected to a load section, and a current depending on a change in a voltage of the drain terminal of the first transistor flows through the second transistor. A source terminal of the first transistor and a drain terminal of the second transistor are connected in common to a first resistance, and the current from the first transistor and the current from the second transistor flow through the first resistance. A third transistor supplies a current approximately equal to the current of the second transistor. The current supplied by the third transistor is output from an output end.
    Type: Grant
    Filed: February 8, 2019
    Date of Patent: November 15, 2022
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Kazumasa Nishimura, Masahiro Ichihashi, Masayuki Katakura, Kenya Kondou, Tetsuya Tashiro, Boyang Hao, Kouzi Tsukamoto
  • Patent number: 11489493
    Abstract: A current control circuit controls a base current of a first transistor included in a bias circuit outputting a bias current to a power amplifier based on a base-collector voltage of the first transistor. The current control circuit includes a first circuit that outputs a signal associated with the base-collector voltage of the first transistor, and a second circuit that, based on the signal, provides electrical continuity between a base of the first transistor and a reference potential.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: November 1, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Mikiko Fukasawa, Kazuhiko Ishimoto
  • Patent number: 11482975
    Abstract: Power amplifiers with adaptive bias for envelope tracking applications are provided herein. In certain embodiments, an envelope tracking system includes a power amplifier that amplifies a radio frequency (RF) signal and that receives power from a power amplifier supply voltage, and an envelope tracker that generates the power amplifier supply voltage based on an envelope of the RF signal. The power amplifier includes a field-effect transistor (FET) for amplifying the RF signal, and a current mirror including an input that receives a reference current and an output connected to the power amplifier supply voltage. An internal voltage of the current mirror is used to bias the gate of the FET to compensate the FET for changes in the power amplifier supply voltage arising from envelope tracking.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: October 25, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Aleksey A. Lyalin, Huiming Xu, Shayan Farahvash, Georgios Palaskas
  • Patent number: 11469713
    Abstract: A power amplifier module includes first and second amplifiers, a first bias circuit, and an adjusting circuit. The first amplifier amplifies a first signal. The second amplifier amplifies a second signal based on an output signal from the first amplifier. The first bias circuit supplies a bias current to the first amplifier via a current path on the basis of a bias drive signal. The adjusting circuit includes an adjusting transistor having first, second, and third terminals. A first voltage based on a power supply voltage is supplied to the first terminal. A second voltage based on the bias drive signal is supplied to the second terminal. The third terminal is connected to the current path. The adjusting circuit adjusts the bias current on the basis of the power supply voltage supplied to the first amplifier.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: October 11, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Kenichi Shimamoto
  • Patent number: 11463060
    Abstract: The present disclosure provides a power amplifier circuit capable of suppressing the occurrence of noises while enabling control of an output power level. The power amplifier circuit includes a first transistor that amplifies a first signal; a bias circuit that supplies a bias current or voltage based on a control signal to the first transistor; a second transistor to which a control current based on the control signal is supplied, which has an emitter or a source thereof connected to a collector or a drain of the first transistor, and from which a second signal obtained by amplifying the first signal is output; and a first feedback circuit provided between the collector or the drain of the second transistor and the base or the gate of the second transistor.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: October 4, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yuri Honda, Fumio Harima, Yoshiki Kogushi, Shota Ishihara, Fuminori Morisawa
  • Patent number: 11456712
    Abstract: A power amplifier device includes: a first power supply terminal for inputting a first power supply voltage; a first transistor for power amplification that (i) includes a first gate to which a bias voltage is applied, and (ii) is supplied with power from the first power supply terminal; a second power supply terminal for inputting a second power supply voltage lower than the first power supply voltage; a second transistor for monitoring that (i) includes a second gate to which the bias voltage is applied, (ii) is supplied with power from the first power supply terminal or the second power supply terminal, and (iii) imitates an operation of the first transistor; and a bias circuit that is supplied with power from the second power supply terminal and generates and adjusts the bias voltage according to a drain current or a source current of the second transistor.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: September 27, 2022
    Assignee: NUVOTON TECHNOLOGY CORPORATION JAPAN
    Inventors: Takashi Saji, Kaname Motoyoshi, Shingo Matsuda
  • Patent number: 11456702
    Abstract: The invention relates to a broadband high power amplifier that comprises a signal input adapted to receive an input signal, at least one amplifier stage adapted to amplify the received input signal, a signal output adapted to output the signal amplified by the at least one amplifier stage as an output signal, a monitoring unit adapted to monitor signal characteristics of the input signal and the output signal and a control unit adapted to operate the at least one amplifier stage at an optimal operating point depending on the current signal characteristics monitored by said monitoring unit.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: September 27, 2022
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Thomas Witt, Florian Ohnimus, Uwe Dalisda, Wolfram Titze, Andreas Andrei, Raimon Göritz
  • Patent number: 11444576
    Abstract: Apparatus and methods for power amplifier bias modulation for multi-level supply envelope tracking are provided herein. In certain embodiments, an envelope tracking system includes a power amplifier that amplifies a radio frequency signal, a multi-level supply envelope tracker that generates a power amplifier supply voltage of the power amplifier based on an envelope signal indicating an envelope of the radio frequency signal, and a bias modulation circuit that modulates a bias of the power amplifier based on a voltage level of the power amplifier supply voltage.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: September 13, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Serge Francois Drogi, Philip John Lehtola, Florinel G. Balteanu
  • Patent number: 11424722
    Abstract: A communication device includes a power amplifier that generates power signals according to one or more operating bands of communication data, with the amplitude being driven and generated in output stages of the power amplifier. The final stage can include an output passive network that suppresses suppress an amplitude modulation-to-phase modulation (AM-PM) distortion. During a back-off power mode a bias of a capacitive unit of the output power network component can be adjusted to minimize an overall capacitance variation. A output passive network can further generate a flat-phase response between dual resonances of operation.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: August 23, 2022
    Assignee: INTEL CORPORATION
    Inventors: Jong Seok Park, Yanjie Wang, Stefano Pellerano, Christopher D. Hull
  • Patent number: 11418185
    Abstract: Disclosed herein are switching or other active FET configurations that implement a branch design with one or more interior FETs of a main path coupled in parallel with one or more auxiliary FETs of an auxiliary path. Such designs include a circuit assembly for performing a switching function that includes a branch with a plurality of auxiliary FETs coupled in series and a main FET coupled in parallel with an interior FET of the plurality of auxiliary FETs. The body nodes of the FETs can be interconnected and/or connected to a body bias network. The body nodes of the FETs can be connected to body bias networks to enable individual body bias voltages to be used for individual or groups of FETs.
    Type: Grant
    Filed: July 13, 2021
    Date of Patent: August 16, 2022
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Hailing Wang, Dylan Charles Bartle, Hanching Fuh, Jerod F. Mason, David Scott Whitefield, Paul T. DiCarlo
  • Patent number: 11394347
    Abstract: Apparatus and methods for bias switching of power amplifiers are provided herein. In certain configurations, a power amplifier system includes a power amplifier that provides amplification to a radio frequency (RF) signal, a power management circuit that controls a voltage level of a supply voltage of the power amplifier, and a bias control circuit that biases the power amplifier. The power management circuit is operable in multiple supply control modes, such as an average power tracking (APT) mode and an envelope tracking (ET) mode. The bias control circuit is configured to switch a bias of the power amplifier based on the supply control mode of the power management circuit.
    Type: Grant
    Filed: February 23, 2021
    Date of Patent: July 19, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Netsanet Gebeyehu, Srivatsan Jayaraman, Edward James Anthony
  • Patent number: 11387787
    Abstract: The invention relates to a signal amplifier circuit for amplifying a signal, in particular an audio amplifier circuit, includes at least one first amplifier transistor (Q1) and at least one second amplifier transistor (Q2), wherein the first amplifier transistor (Q1) and the second amplifier transistor (Q2) are connected to one another in a push-pull circuit and are fed by an amplifier voltage source (V+, V?); and one or more bias diodes (D1, D2) thermally coupled in each case to an associated amplifier transistor (Q1, Q2), wherein the bias diodes (D1, D2) are arranged in a parallel connection with respect to the amplifying transistors (Q1, Q2) to reduce or avoid a crossover distortion, wherein the bias diodes (D1, D2) are fed at least partly by a voltage source (UA) which is independent of the amplifier voltage source (V+, V?).
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: July 12, 2022
    Assignee: BURMESTER AUDIOSYSTEME GmbH
    Inventor: Ernst-Heinrich Westphal
  • Patent number: 11374440
    Abstract: A current sensing circuit and a minimum operating frequency for a wireless power transmission system is presented. A method of measuring current through a wireless power transmit coil, includes receiving a signal from a switching circuit into a sampling circuit; filtering the sampled signal from the sampling circuit; biasing the filtered sampled signal, wherein the biasing occurs only when the sampling circuit is active; and amplifying the biased signal to provide a transmit coil current signal. A method of measuring current through a wireless power transmit coil, includes receiving a signal from a switching circuit into a sampling circuit; filtering the sampled signal from the sampling circuit; biasing the filtered sampled signal, wherein the biasing occurs only when the sampling circuit is active; and amplifying the biased signal to provide a transmit coil current signal.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: June 28, 2022
    Assignee: Renesas Electronics America Inc.
    Inventor: Gustavo Mehas
  • Patent number: 11349437
    Abstract: A power amplifier circuit includes power amplifiers connected in stages to amplify a high-frequency input signal and to output an amplified high-frequency output signal, bias circuits each of which outputs a bias current to a corresponding one of the power amplifiers, and a bias control circuit configured to output a bias control current based on a second reference potential that varies in response to power of the high-frequency output signal and that is a potential of a portion in one bias circuit of the bias circuits to one or more bias circuits in a stage preceding the one bias circuit for increasing a bias current outputted from the one or more bias circuits in the stage preceding the one bias circuit.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: May 31, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Masatoshi Hase
  • Patent number: 11349446
    Abstract: An apparatus and method for using the known phenomena of quantum gate tunneling in semiconductor transistors to define the DC state of a charge-coupled amplifier is described. A first stage in which the tunneling current is bipolar (by pairing PMOS and NMOS transistors) in combination with a second stage with a controlled common mode voltage that can be used to control the first stage tunneling current, and thus the common mode voltage at the input. This can be done without the use of additional elements that may degrade performance or power consumption, since the input devices both process the input signal and maintain the DC operating point of the circuit. The approach may be advantageously used not only in charge-coupled amplifiers as described herein, but also in other capacitively coupled circuits such as charge balancing analog to digital converters (ADCs) and digital to analog converters (DACs).
    Type: Grant
    Filed: March 9, 2021
    Date of Patent: May 31, 2022
    Assignee: SiliconIntervention Inc.
    Inventor: A. Martin Mallinson
  • Patent number: 11335805
    Abstract: A switch device includes a P-type substrate, a first gate structure, a first N-well, a shallow trench isolation structure, a first P-well, a second gate structure, a first N-type doped region, a second P-well, and a second N-type doped region. The first N-well is formed in the P-type substrate and partly under the first gate structure. The shallow trench isolation structure is formed in the first N-well and under the first gate structure. The first P-well is formed in the P-type substrate and under the first gate structure. The first N-type doped region is formed in the P-type substrate and between the first gate structure and the second gate structure. The second P-well is formed in the P-type substrate and under the second gate structure. The second N-type doped region is formed in the second P-well and partly under the second gate structure.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: May 17, 2022
    Assignee: eMemory Technology Inc.
    Inventors: Chih-Hsin Chen, Shih-Chen Wang, Tsung-Mu Lai, Wen-Hao Ching, Chun-Yuan Lo, Wei-Chen Chang
  • Patent number: 11336242
    Abstract: A communication circuit, including a first supply modulator configured to provide a first supply voltage; a first power amplifier configured to generate a first output signal by amplifying a first input signal corresponding to a first operation frequency band; a second power amplifier configured to generate a second output signal by amplifying a second input signal corresponding to a second operation frequency band; and a switching circuit configured to selectively provide the first supply voltage from the first supply modulator to the second power amplifier based on a first switching signal according to an operation mode.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: May 17, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dongsu Kim, Junsuk Bang, Jiseon Paek, Youngho Jung
  • Patent number: 11323077
    Abstract: Components of a power amplifier controller may support lower voltages than the power amplifier itself. As a result, a surge protection circuit that prevents a power amplifier from being damaged due to a power surge may not effectively protect the power amplifier controller. Embodiments disclosed herein present an overvoltage protection circuit that prevents a charge-pump from providing a voltage to a power amplifier controller during a detected surge event. By separately detecting and preventing a voltage from being provided to the power amplifier controller during a surge event, the power amplifier controller can be protected regardless of whether the surge event results in a voltage that may damage the power amplifier. Further, embodiments of the overvoltage protection circuit can prevent a surge voltage from being provided to a power amplifier operating in 2G mode.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: May 3, 2022
    Assignee: Skyworks Solutions, Inc.
    Inventors: Wendy Ng, Wei Long, Kevin Cho
  • Patent number: 11316481
    Abstract: A radio frequency (RF) power transistor circuit includes a power transistor and a decoupling circuit. The power transistor has a control electrode coupled to an input terminal for receiving an RF input signal, a first current electrode for providing an RF output signal at an output terminal, and a second current electrode coupled to a voltage reference. The decoupling circuit includes a first inductive element, a first resistor, and a first capacitor coupled together in series between the first current electrode of the power transistor and the voltage reference. The decoupling circuit is for dampening a resonance at a frequency lower than an RF frequency.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: April 26, 2022
    Assignee: NXP USA, Inc.
    Inventors: Hussain H. Ladhani, Gerard J. Bouisse, Jeffrey K. Jones
  • Patent number: 11309841
    Abstract: An amplifier includes at least one amplification circuit through one of which a bias current flows, a first memory that stores control information to specify the bias current to be fed through the one of the at least one amplification circuit, a digital control circuit that generates a bias current setting to set the bias current in accordance with the control information, a second memory that stores correction information to correct the bias current setting, a correction circuit that corrects the bias current setting in accordance with the correction information, and a bias circuit that determines the bias current in the one of the at least one amplification circuit in accordance with the bias current setting, which has been corrected.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 19, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Nobuyasu Beppu
  • Patent number: 11281245
    Abstract: A radio frequency (“RF”) power device includes a RF power transistor, and a bias circuit coupled between a reference voltage input and an input terminal of the RF power transistor. The bias circuit includes an impedance control circuit that is configured to vary an impedance of the bias circuit at the input terminal of the RF power transistor responsive to a RF input signal provided to the input terminal, and/or a current control circuit that is configured to control a bias current provided to the input terminal of the RF power transistor responsive to variations in operating characteristics of the RF power transistor. Related RF power amplifiers and device packages are also discussed.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 22, 2022
    Assignee: WOLFSPEED, INC.
    Inventors: Christophe Joly, Sonoko Aristud
  • Patent number: 11271531
    Abstract: A power amplifier module includes a power amplifier including an amplifying unit including an amplifying transistor configured to amplify an input signal and output an output signal, and a bias unit including a bias transistor configured to provide a bias current to the amplifying transistor, and a sub bias transistor configured to provide a sub bias current to the amplifying transistor; and a control unit configured to provide a control current to the bias transistor and the sub bias transistor. The control unit is further configured to vary the control current according to the sub bias current, and a level of the sub bias current is lower than a level of the bias current.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 8, 2022
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Su Yeon Han
  • Patent number: 11264952
    Abstract: Provided is a power amplification circuit that includes: an amplifier that amplifies an input signal and outputs an amplified signal; a first bias circuit that supplies a first bias current or voltage to the amplifier; a second bias circuit that supplies a second bias current or voltage to the amplifier; a first control circuit that controls the first bias current or voltage; and a second control circuit that controls the second bias current or voltage. The current supplying capacity of the first bias circuit is different from the current supplying capacity of the second bias circuit.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: March 1, 2022
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Satoshi Tanaka, Tetsuaki Adachi, Kazuo Watanabe, Masahito Numanami, Yasuhisa Yamamoto
  • Patent number: 11245373
    Abstract: An amplifier includes a first circuitry, a second circuitry, and a plurality of amplifier circuitries. The first circuitry controls an enable signal. The second circuitry controls a bias signal. Circuitries which output signals are decided from among the plurality of circuitries based on the enable signal, and each of the circuitries which output the signals amplifies an input signal with a gain corresponding to the bias signal.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: February 8, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventor: Tong Wang
  • Patent number: 11189244
    Abstract: An output amplifier includes an input unit including first and second input transistors, and a first bias transistor between a connection node of a source of the first input transistor and a source of the second input transistor and a first voltage source, a first current mirror including first and second transistors connected in series at a first connection node and between a second voltage source and a second connection node, and third and fourth transistors connected in series at a third connection node and between the second voltage source and a fourth connection node, and a second current mirror including fifth and sixth transistors between a fifth connection node and the first voltage source and connected in series at a sixth connection node, and seventh and eighth transistors between a seventh connection node and the first voltage source.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: November 30, 2021
    Assignee: DB HiTek Co., Ltd.
    Inventors: Mun Gyu Kim, Kyoung Tae Kim, Jae Hong Ko
  • Patent number: 11190153
    Abstract: A packaged RF power amplifier (RFPA) configured to increase video bandwidth is disclosed as well is a process for implementing a RF power device to increase video bandwidth. The RF power device including at least one transistor; an output matching circuit coupled to an output lead and to the at least one transistor; at least one bias feed circuit coupled to the at least one transistor; and at least one coaxial resonator coupled between the at least one transistor and the at least one bias feed circuit.
    Type: Grant
    Filed: February 6, 2020
    Date of Patent: November 30, 2021
    Assignee: WOLF SPEED, INC.
    Inventor: David Michael Rice
  • Patent number: 11183978
    Abstract: An amplifier, e.g., a low-noise amplifier, includes a field-effect transistor having a one-dimensional channel. This channel includes a semiconductor material for conducting electrons along a main direction of the channel. This direction is perpendicular to a cross-section of the channel. Dimensions of this cross-section are, together with the semiconductor material, such that the channel exhibits quantized conduction of electrons along its main direction. The amplifier further includes an electrical circuit that is configured to operate the transistor at a value of gate-to-source voltage bias corresponding to a peak value of a peak of a transconductance of the channel with respect to gate-to-source voltage bias values.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: November 23, 2021
    Assignee: International Business Machines Corporation
    Inventors: Cezar Bogdan Zota, Lukas Czornomaz
  • Patent number: 11177801
    Abstract: A radio frequency switching device includes: a first series switching circuit connected between a first terminal and a second terminal; a first shunt switching circuit connected between one end of the first series switching circuit and a ground; a voltage generation circuit configured to generate a first gate voltage to be output to the first series switching circuit, to generate a second gate voltage to be output to the first shunt switching circuit, and to generate a bias voltage higher than the second gate voltage to control the first shunt switching circuit to enter an off state; a first resistance circuit connected between a signal line between the first terminal and the second terminal, and a bias voltage terminal of the voltage generation circuit; and a second resistance circuit connected between the bias voltage terminal of the voltage generation circuit and a ground terminal of the first shunt switching circuit.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: November 16, 2021
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Byeong Hak Jo, Hyun Paek, Jeong Hoon Kim
  • Patent number: 11177849
    Abstract: An apparatus is disclosed for transceiving signals in multiple modes. In example implementations, an apparatus includes a transceiver that includes a first amplifier; a mixer having at least one input node and at least one output node, with the at least one input node coupled to the first amplifier; and a second amplifier coupled to the at least one output node of the mixer. The transceiver also includes a first register coupled to the first amplifier and a second register coupled to the second amplifier. The transceiver further includes at least one memory realizing a lookup table. The at least one memory is coupled to the first register and the second register. The lookup table includes a first portion corresponding to a first mode of the transceiver and a second portion corresponding to a second mode of the transceiver.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: November 16, 2021
    Assignee: QUALCOMM Incorporated
    Inventors: Chuan Wang, Li Liu, Kevin Hsi-Huai Wang, Bhushan Shanti Asuri, Kang Yang, Shrenik Patel
  • Patent number: 11177781
    Abstract: Disclosed in the present invention are a radio frequency power amplifier based on current detection feedback and a chip. The radio frequency power amplifier comprises multiple stages of amplifier circuits and at least one current detection feedback circuit; the input end of the current detection feedback circuit is connected to the input end of a current stage of amplifier circuit among the multiple stages of amplifier circuits by means of a corresponding resistor, and the output end of the current detection feedback circuit is connected to the input end of at least one stage of amplifier circuit prior to the current stage of amplifier circuit. The current detection feedback circuit generates, according to the detected quiescent operating current of the current stage of amplifier circuit, a control voltage varying inversely with the quiescent operating current, so that the current detection feedback circuit outputs current varying positively with the control voltage.
    Type: Grant
    Filed: June 30, 2018
    Date of Patent: November 16, 2021
    Assignee: VANCHIP (TIANJIN) TECHNOLOGY CO., LTD.
    Inventors: Jinxin Zhao, Yunfang Bai
  • Patent number: 11146218
    Abstract: An amplification circuit includes an input terminal, an output terminal, a capacitor, a bias unit, an amplification unit, and an impedance unit. The input terminal receives a radio frequency signal. The capacitor is coupled to the input terminal and the bias unit. The bias unit includes a transistor for controlling the bias current. The transistor has a first terminal for receiving a system voltage, and a control terminal coupled to the reference voltage terminal. The amplification unit has an input terminal coupled to the capacitor and the bias unit, and an output terminal coupled to the output terminal of the amplification circuit. The impedance unit has a first terminal coupled to the bias unit, and a second terminal coupled to the input terminal of the amplification circuit and the capacitor. The impedance unit adjusts the amplifying linearity of the amplification circuit according to a selection signal.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: October 12, 2021
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Chang-Yi Chen
  • Patent number: 11139786
    Abstract: An amplifying device includes a current generating circuit, a bias amplifying circuit, and a compensation circuit. The current generating circuit is configured to generate an internal current based on an internal voltage. The bias amplifying circuit, connected to the current generating circuit, is configured to output a bias current generated by amplifying the internal current to a power amplifying circuit. The compensation circuit, connected to the current generating circuit, is configured to adjust the internal voltage based on a bias voltage of the power amplifying circuit.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: October 5, 2021
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Je Hee Cho, Kyu Jin Choi
  • Patent number: 11128264
    Abstract: A bias compensation circuit, coupled to an amplifying transistor, is disclosed. The bias compensation circuit comprises a voltage locking circuit, comprising a first terminal and a second terminal, wherein the first terminal is coupled to a third terminal the amplifying transistor, and the second terminal is coupled to a control terminal of the amplifying transistor; and a first resistor, coupled to the first terminal of the voltage locking circuit; wherein when the voltage locking circuit is conducted, a voltage difference between the first terminal and the second terminal is substantially constant.
    Type: Grant
    Filed: April 19, 2020
    Date of Patent: September 21, 2021
    Assignee: WIN Semiconductors Corp.
    Inventors: Po-Kie Tseng, Chih-Wen Huang, Jui-Chieh Chiu, Shao-Cheng Hsiao
  • Patent number: 11114982
    Abstract: A power amplifier circuit includes an amplifier transistor having a first terminal supplied with a power supply voltage that changes in accordance with an amplitude level of an input signal, and a second terminal supplied with the input signal and a bias current, an amplified signal obtained by amplifying the input signal being outputted from the first terminal, a bias circuit that outputs the bias current from an output terminal thereof in accordance with a reference current supplied to an input terminal thereof, and a regulation circuit that generates a regulation current for regulating the bias current in accordance with a change in the power supply voltage. The regulation current increases with an increase in the power supply voltage, and decreases with a decrease in the power supply voltage. The regulation circuit extracts the regulation current from at least one of the reference current or the bias current.
    Type: Grant
    Filed: March 17, 2020
    Date of Patent: September 7, 2021
    Assignee: MURATA MANUFACTURING CO. , LTD.
    Inventors: Satoshi Tanaka, Kazuo Watanabe, Satoshi Arayashiki
  • Patent number: 11043923
    Abstract: A bias circuit includes a bias current circuit and a temperature compensation circuit. The bias current circuit includes a first resistor and a first transistor, in a first current path connected between a current terminal of a reference current and a ground, and connected to each other in series, and a second transistor in a second current path connected between the current terminal and the ground, and having a base connected to a collector of the first transistor. The temperature compensation circuit includes a second resistor in the second current path, and connected between an emitter of the second transistor and a base of the first transistor and having a first thermal coefficient, and a third resistor included in the second current path, and connected between the base of the first transistor and the ground and having a second thermal coefficient, different from the first thermal coefficient.
    Type: Grant
    Filed: July 17, 2019
    Date of Patent: June 22, 2021
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Geun Yong Lee, Seong Geun Kim, Hyeon Seok Hwang, Seung Chui Pyo
  • Patent number: 11025256
    Abstract: A filter includes a filter circuit, a first processing circuit, and a second processing circuit. The filter circuit receives an input signal from an input node of the filter, and converts the input signal into a voltage output. The first processing circuit provides a first control voltage to an output node of the filter according to the voltage output, wherein the first control voltage is derived from an alternating current (AC) component of the voltage output. The second processing circuit provides a second control voltage to the output node of the filter according to the voltage output, wherein the second control voltage is derived from applying DC level shift to a direct current (DC) component of the voltage output.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: June 1, 2021
    Assignee: MediaTek Inc.
    Inventors: Yi-Chieh Huang, Sung-Lin Tsai
  • Patent number: 11005423
    Abstract: A bias circuit includes a first branch circuit, a second branch circuit, a current amplifier and a switch, wherein the first branch circuit is configured to shunt an inputted first current, and input a first branch current of the first current to a power supply ground; the second branch circuit is configured to shunt the inputted first current, and input a second branch current of the first current to the current amplifier; the current amplifier is configured to receive the second branch current of the first current and amplify the second branch current of the first current to serve as a bias current of a power amplifier connected to the bias circuit for outputting; and the switch is configured to switch different resistance values for a resistor in the first branch circuit and/or switch different resistance values for a resistor in the second branch circuit.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: May 11, 2021
    Assignee: SMARTER MICROELECTRONICS (SHANGHAI) CO., LTD.
    Inventors: Yongle Li, Qiang Su, Baiming Xu
  • Patent number: 10998871
    Abstract: A power amplifier circuit includes a first transistor that amplifies a first signal and outputs a second signal, a second transistor that amplifies a signal corresponding to the second signal and outputs a third signal, a third transistor that supplies a first bias current or voltage to a base of the first transistor, and a fourth transistor that supplies a second bias current or voltage to a base of the second transistor. A ratio of an emitter area of the third transistor to an emitter area of the first transistor is larger than a ratio of an emitter area of the fourth transistor to an emitter area of the second transistor.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: May 4, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Takashi Soga
  • Patent number: 10979004
    Abstract: A power amplifier circuit includes an amplifier transistor having a base, a collector, a bias circuit, and a first resistance element connected between the base of the amplifier transistor and the bias circuit. The bias circuit includes a voltage generation circuit, a first transistor having a base to which a first direct-current voltage is supplied, and an emitter from which the bias current or voltage is supplied, a second transistor having a base to which a second direct-current voltage is supplied, and an emitter connected to the emitter of the first transistor, a signal supply circuit disposed between the base of the amplifier transistor and the base of the second transistor, and an impedance circuit disposed between the base of the first transistor and the base of the second transistor.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: April 13, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yuri Honda, Fumio Harima, Satoshi Tanaka
  • Patent number: 10965264
    Abstract: A bias circuit generates a bias current to an RF power amplifier used for transmitting RF signals, and the amount of the bias current supplied to the RF power amplifier can be configured in multiple modes through transistor switches that are controlled by mode control signals, so that the bias current supplied to the RF power amplifier can be adjusted according to the required power level of the transmitting RF signals. In addition, the bias current can be turned off by another transistor switch that is controlled by a power control signal for saving power while the RF power amplifier is not transmitting RF signals.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: March 30, 2021
    Assignee: Rafael Microelectronics, Inc.
    Inventors: Chih-Wen Wu, Po Chang Lin, Chun Hua Tseng
  • Patent number: 10955489
    Abstract: Power conversion systems, disclosed examples include power conversion systems, ground fault detection apparatus and methods to detect and identify ground faults in a power conversion system using AC coupling to sense a system voltage to determine a leakage flux linkage, and to identify a faulted converter phase based on a phase shift angle of the leakage flux linkage.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: March 23, 2021
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Rangarajan M. Tallam, Jiangang Hu, Brian P. Brown
  • Patent number: 10951177
    Abstract: A radio frequency (RF) power limiter includes an input direct current (DC) block, an output DC block, a limiter diode, a RF choke, and a test diode. A first terminal of the limiter diode is coupled to a node between the input DC block and the output DC block, and a second terminal of the limiter diode is coupled to an electrical ground. A first terminal of the RF choke is coupled to the node between the input DC block and the output DC block so that the first terminal of the RF choke is coupled to the first terminal of the limiter diode. A first terminal of the test diode is coupled to the second terminal of the RF choke, and a second terminal of the test diode is coupled to the electrical ground.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: March 16, 2021
    Assignee: Rockwell Collins, Inc.
    Inventor: Byron J. Montgomery
  • Patent number: 10931239
    Abstract: An amplification circuit includes an input terminal for receiving a radio frequency input signal, an output terminal for outputting an amplified radio frequency signal, a bias circuit for providing a bias voltage, an impedance circuit, a transistor, and a filter circuit. The impedance circuit is coupled to the bias circuit and the input terminal, and provides a voltage drop between the first terminal and the second terminal of the impedance circuit. The first transistor has a first terminal coupled to the output terminal, a second terminal coupled to a first reference voltage terminal, and a control terminal coupled to the impedance circuit and for receiving the radio frequency input signal. The filter circuit is coupled to the first transistor and the impedance circuit, filters out a harmonic signal, and provides a feedback signal including a primary frequency signal of the amplified radio frequency signal to the impedance circuit.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: February 23, 2021
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Sheng Chen, Chang-Yi Chen
  • Patent number: 10924063
    Abstract: Bias networks for amplifiers are disclosed. An example bias network includes an adaptive bias circuit, configured to generate a bias signal for an amplifier, and further includes a coupling circuit, configured to couple the adaptive bias circuit to the amplifier. The coupling circuit is made adaptive in that its' impedance depends on a power level of an input signal to be amplified by the amplifier. By configuring the coupling circuit to have a variable impedance that depends on the power level of the input signal, the coupling circuit may adapt to the input power level and, thereby, may modify the bias signal to reduce/optimize at least some of the nonlinearity that may be introduced to the bias signal by the adaptive bias circuit.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: February 16, 2021
    Assignee: Analog Devices International Unlimited Company
    Inventor: Mohamed Esmael
  • Patent number: 10924067
    Abstract: A power amplifier circuit includes an amplifier transistor, a bias circuit that supplies a bias current or voltage to the amplifier transistor, and a resistance element connected between a base of the amplifier transistor and the bias circuit. The bias circuit includes a voltage generation circuit, a first transistor having a base to which a first direct-current voltage is supplied and an emitter from which the bias current or voltage is supplied, a second transistor having a base to which a second direct-current voltage is supplied and an emitter connected to the emitter of the first transistor, a signal supply circuit that supplies an input signal to the base of the second transistor, and an impedance circuit disposed between the base of the first transistor and the base of the second transistor.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: February 16, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yuri Honda, Kenji Mukai, Fumio Harima
  • Patent number: 10924072
    Abstract: A power amplification circuit includes an amplification transistor, a variable voltage power supply that supplies a variable voltage to a collector of the amplification transistor, a bias circuit that has a constant current amplification transistor outputting a DC bias current to a base of the amplifier transistor, and a current limiting circuit that limits the DC bias current. The current limiting circuit includes a current limiting transistor, a resistor element connected to a collector of the current limiting transistor and the variable voltage power supply, and a resistor element connected to a base of the current limiting transistor and a base of the constant current amplifying transistor.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: February 16, 2021
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kenji Tahara, Kenichi Shimamoto, Shigeru Tsuchida, Mitsunori Samata, Yoshiaki Sukemori
  • Patent number: 10917056
    Abstract: A power amplification system with shared common base biasing is disclosed. A method for power amplification at a controller of a power amplification system comprising a plurality of cascode amplifier sections can include receiving a band select signal indicative of one or more frequency bands of a radio-frequency input signal to be amplified and transmitted. The method may further include biasing a common base stage of each of the plurality of cascode amplifier sections, and biasing a common emitter stage of a subset of the plurality of cascode amplifier sections.
    Type: Grant
    Filed: June 29, 2019
    Date of Patent: February 9, 2021
    Assignee: Skyworks Solutions, Inc.
    Inventors: Philip John Lehtola, David Steven Ripley
  • Patent number: 10911007
    Abstract: High frequency amplifier circuitry includes a common-source first transistor to amplify a high-frequency input signal, a common-gate second transistor cascade-connected to the first transistor, to amplify a signal amplified by the first transistor to generate an output signal, a first inductor connected between a source of the first transistor and a first reference potential node, a second inductor connected between a drain of the second transistor and a second reference potential node, and non-linear compensation circuitry connected to a connection node of the first transistor and the second transistor, to compensate for non-linearity of the output signal to the high-frequency input signal. The non-linear compensation circuitry has first rectifier circuitry, a first resistor, a second resistor, second rectifier circuitry, first capacitor and second capacitor.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: February 2, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventors: Toshiki Seshita, Yasuhiko Kuriyama
  • Patent number: 10868503
    Abstract: There is provided a power amplifier and an integrated circuit including the power amplifier. The power amplifier includes a first amplifier configured to amplify a first signal; a phase shifter configured to invert the first signal; and a harmonic sinker connected between an output terminal of the phase shifter and an output terminal of the first amplifier, configured to amplify an output signal of the phase shifter, and configured to have a conduction angle narrower than a conduction angle of the first amplifier.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: December 15, 2020
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventor: Kyu Jin Choi
  • Patent number: 10826453
    Abstract: The present disclosure provides a power amplifier circuit capable of suppressing the occurrence of noises while enabling control of an output power level. The power amplifier circuit includes a first transistor that amplifies a first signal; a bias circuit that supplies a bias current or voltage based on a control signal to the first transistor; a second transistor to which a control current based on the control signal is supplied, which has an emitter or a source thereof connected to a collector or a drain of the first transistor, and from which a second signal obtained by amplifying the first signal is output; and a first feedback circuit provided between the collector or the drain of the second transistor and the base or the gate of the second transistor.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: November 3, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Yuri Honda, Fumio Harima, Yoshiki Kogushi, Shota Ishihara, Fuminori Morisawa