Including Balanced To Unbalanced Circuits And Vice Versa Patents (Class 330/301)
  • Patent number: 10044400
    Abstract: A radio frequency (RF) transmit-receive switch has an antenna port, first and second transmit differential ports and first and second receive differential ports. Transmit transistor switches are connected to the transmit differential ports. Primary and secondary windings of a transmit coupled inductor transformer are connected to the transmit transistor switches. Receive transistor switches are connected to the receive differential ports. Primary and secondary windings of a receive coupled inductor transformer are connected to the receive transistor switches. A first balun inductive winding is connected to the antenna port, and a second balun inductive winding is connected to the transistor switches.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: August 7, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: Lisette L. Zhang, Oleksandr Gorbachov
  • Patent number: 10044385
    Abstract: Provided is a transmitter. The transmitter includes a signal combiner configured to amplify a first differential radio frequency (RF) signal modulated to be transmitted through a first frequency band and a second differential RF signal modulated to be transmitted through a second frequency band non-adjacent to the first frequency band and summate the amplified first differential RF signal and the amplified second differential RF signal in a current mode to generate an RF signal and a power amplifier configured to amplify the generated RF signal.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: August 7, 2018
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Dong Woo Kang, Cheon Soo Kim, Jang Hong Choi
  • Patent number: 9948248
    Abstract: An amplifier for converting a single-ended input signal to a differential output signal. The amplifier comprises a first transistor, a second transistor, a third transistor and a fourth transistor. The first transistor, configured in common-source or common-emitter mode, receives the single-ended input signal and generates a first part of the differential output signal. The second transistor, also configured in common-source or common-emitter mode, generates a second part of the differential output signal. The third and fourth transistors are capacitively cross-coupled. The amplifier further comprises inductive degeneration such that a source or emitter of the first transistor is connected to a first inductor and a source or emitter of the second transistor is connected to a second inductor.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: April 17, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Pete Sivonen, Jarkko Jussila, Sami Vilhonen
  • Patent number: 9685698
    Abstract: Multi-tap switchable antenna apparatus for use with mobile devices and other applications, and methods of utilizing the same. In one embodiment, the multi-tap switchable antenna apparatus includes a main radiator coupled to an antenna feed or source. Galvanically connected to the main radiator is a plurality of switchable antenna radiators which are in turn connected to an nPmT switch. The output of the nPmT switch can be connected to a variety of differing electronic component impedances. By altering the state of the nPmT switch, the operational length of the antenna (and hence, the operational frequency band of the antenna) can be varied. Performance characteristics associated with a given implementation of the multi-tap switchable apparatus are also disclosed.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: June 20, 2017
    Assignee: PULSE FINLAND OY
    Inventor: Prasadh Ramachandran
  • Patent number: 9647638
    Abstract: A method and apparatus for minimizing transmit signal interference is provided. The method includes the steps of: receiving a signal and amplifying the received signal. The received signal is then mixed with an intermediate frequency signal to obtain a baseband modulated signal. The baseband modulated signal is first filtered in an RC filter. The resulting signal is then divided by a preselected amount and the first divided portion is sent to a main path of a biquad filter, which produces a first stage biquad filtered signal. The second portion of the divided signal is sent to an auxiliary path of the biquad filter, and produces a second filtered signal. The first and second signals are then recombined and sent to the second stage of the biquad filter, where further filtering takes place.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: May 9, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Mohammad Bagher Vahid Far, Cheng-Han Wang, Jesse Aaron Richmond, Thinh Cat Nguyen, Abbas Komijani, Yashar Rajavi, Alireza Khalili
  • Patent number: 9614498
    Abstract: An active balun circuit includes a CG transistor having a source terminal thereof connected to an input terminal and a gate terminal thereof grounded, a CS transistor having a gate terminal thereof connected to the input terminal and a source terminal thereof grounded, an asymmetrical transformer, a first output terminal, and a second output terminal. The asymmetrical transformer includes a primary coil and a secondary coil. The primary coil includes a first inductor connected to the CG transistor and a second inductor connected to the CS transistor. The secondary coil includes a third inductor associated with the first inductor and a fourth inductor associated with the second inductor. The first output terminal outputs a first signal generated at the third inductor, and the second output terminal outputs a second signal generated at the fourth inductor.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: April 4, 2017
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Ryosuke Takeuchi, Koji Tsutsumi, Takayuki Nakai, Eiji Taniguchi
  • Patent number: 9565505
    Abstract: The excursion of a loudspeaker cone is estimated using a reference signal in one example, a primary signal, produced by a cone of a loudspeaker, is received and a reference signal produced simultaneously with the primary signal by the loudspeaker cone is received. The reference signal causes an excursion of the loudspeaker cone that is amplitude modulated by the excursion caused by the primary signal. An amplitude modulation of the reference signal is determined and an excursion of the loudspeaker cone is determined using the determined amplitude modulation.
    Type: Grant
    Filed: June 17, 2015
    Date of Patent: February 7, 2017
    Assignee: INTEL IP CORPORATION
    Inventors: Richard Ronig, Markus Hammes, Christian Kranz
  • Patent number: 9503053
    Abstract: An active balun uses two inverters to produce a differential output from a single-ended input. A current source supplies current to both inverters and a current sink sinks current from both inverters. The inverters include bias resistors coupled between their inputs and outputs. A coupling capacitor couples the output of the first inverter to the input of the first inverter. Values of the bias resistors and the coupling capacitor may selected to assure stability of the active balun. The values may be programmable, for example, based on a desired operating frequency. The current source may be biased by a common-mode feedback circuit based on the common-mode voltage of the differential output.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: November 22, 2016
    Assignee: QUALCOMM INCORPORATED
    Inventors: Sunyoung Kim, Cheng-Han Wang
  • Patent number: 9300337
    Abstract: A device includes, a reconfigurable baseband filter configured to receive a communication signal having a first carrier and a second carrier, the first carrier and the second carrier having non-contiguous respective frequencies, the reconfigurable baseband filter having a first filter portion and a second filter portion, the first filter portion and the second filter portion each comprising respective first and second amplification stages, and a plurality of switches associated with the first filter portion and the second filter portion, the plurality of switches for configuring the reconfigurable baseband filter into a plurality of sub-filters, each configured to generate at least one of a low pass filter output and a bandpass filter output.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: March 29, 2016
    Assignee: Qualcomm Incorporated
    Inventors: Aleksandar Miodrag Tasic, Klaas van Zalinge, Gurkanwal Singh Sahota, Jeremy Darren Dunworth
  • Patent number: 9281787
    Abstract: Some aspects of the present disclosure relate to a low-noise amplifier (LNA) having a balun configuration. The LNA includes a DC current path coupling a first DC supply node to a second DC supply node. First and second output nodes and first and second input nodes are spaced apart along a length of the DC current path. A single-ended radio frequency (RF) input terminal is configured to deliver a single-ended RF signal to the first and second input nodes. A differential RF output terminal is made up of the first and second output nodes. The first and second output nodes are configured to cooperatively establish a differential output signal based on the single-ended RF signal. Other devices and methods are also disclosed.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: March 8, 2016
    Assignee: Intel Deutschland GmbH
    Inventor: Vadim Issakov
  • Patent number: 9263998
    Abstract: A low-noise amplifier accepts a single-ended input signal at an input port and provides a differential output signal at an output port. Each of a pair of transistors in the amplifier has a pair of input terminals and a pair of output terminals that share a common terminal. A feedback circuit is electrically connected between the non-common output terminal and the non-common input terminal of a closed-loop one of the transistors and is electrically disconnected from any two terminals of an open-loop one of the transistors. The input port has a signal-carrying input terminal electrically connected to the non-common input terminal of both of the transistors and a ground terminal. The output port has a positive terminal electrically connected to the common terminal of the open-loop transistor and a negative terminal electrically connected to non-common output terminal of the closed-loop transistor.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: February 16, 2016
    Assignee: MStar Semiconductor, Inc.
    Inventor: Hung-Chuan Pai
  • Patent number: 9093978
    Abstract: A balun is disclosed that includes a main tank circuit, and at least one auxiliary tank circuit. The main tank circuit includes a primary winding and a secondary winding. The auxiliary tank circuit, which includes an auxiliary winding magnetically coupled to the primary and secondary windings and terminated in a capacitor, is electrically isolated from the main tank circuit and from an output port of the balun. The frequency responses of the main tank circuit and the auxiliary tank circuit may combine to result in a composite frequency response that is wider than the frequency response of the main tank circuit. The auxiliary tank circuit may be formed within an interior area of the primary and secondary windings of the main tank circuit.
    Type: Grant
    Filed: April 29, 2013
    Date of Patent: July 28, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Alborz Jooyaie, Shervin Moloudi
  • Patent number: 9054648
    Abstract: The present invention provides a wideband active balun LNA topology with narrow-band filtering and noise cancelling. The amplifier includes three transconductance stages, a feedback network, and a load. The first and second transconductance stages are connected in parallel to receive the input signal. The differential output of the first transconductance stage is fed back to voltage input through a differential-to-single-end-end feedback network, while the output of the first transconductance, passing through the third transconductance, is added to the output of the second transconductance stage in proper phase. The present invention accomplish both wideband low-noise amplification and narrow-band filtering without inserting interface stages, thereby improving the linearity and noise performance of the whole circuit. Noise cancellation technique is implemented in differential way to ensure the low noise figure.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: June 9, 2015
    Assignees: MONTAGE TECHNOLOGY (SHANGHAI) CO., LTD., SUZHOU MONTAGE MICROELECTRONIC TECHNOLOGY CO., LTD.
    Inventor: Jun Xu
  • Patent number: 9048789
    Abstract: Some aspects of the present disclosure relate to a low-noise amplifier (LNA) having a balun configuration. The LNA includes a DC current path coupling a first DC supply node to a second DC supply node. First and second output nodes and first and second input nodes are spaced apart along a length of the DC current path. A single-ended radio frequency (RF) input terminal is configured to deliver a single-ended RF signal to the first and second input nodes. A differential RF output terminal is made up of the first and second output nodes. The first and second output nodes are configured to cooperatively establish a differential output signal based on the single-ended RF signal. Other devices and methods are also disclosed.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 2, 2015
    Assignee: Intel Mobile Communications GmbH
    Inventor: Vadim Issakov
  • Patent number: 9042844
    Abstract: A transceiver includes: a power amplifying circuit arranged to generate differential output signals during a transmitting mode of the transceiver; a balance-unbalance circuit arranged to convert the differential output signals into a single-ended output signal; a switchable matching circuit arranged to receive the single-ended output signal on a signal port of the transceiver during the transmitting mode, and to convert a single-ended receiving signal on the signal port into a single-ended input signal during a receiving mode of the transceiver; and a low-noise amplifying circuit arranged to convert the single-ended input signal into a low-noise input signal during the receiving mode. The power amplifying circuit, the Balun, the switchable matching circuit, and the low-noise amplifying circuit are configured as a single chip.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: May 26, 2015
    Assignee: MediaTek Singapore Pte. Ltd.
    Inventors: Ti-Ku Yu, Sang Won Son, Chia-Hsin Wu, Tsung-Ming Chen, Wei-Chia Chan
  • Publication number: 20150137892
    Abstract: A polarity-switching amplifier circuit includes: a first amplifying transistor and a second amplifying transistor, a transformer which includes a primary winding and a secondary winding, and a polarity-switching controller. An unbalanced input signal is input to the first amplifying transistor and the second amplifying transistor. The transformer receives an output signal of the first amplifying transistor and an output signal of the second amplifying transistor as a balanced signal input to the primary winding, and outputs a signal from the secondary winding. The polarity-switching controller turns on one of the first amplifying transistor and the second amplifying transistor and turns off the other thereof.
    Type: Application
    Filed: March 20, 2014
    Publication date: May 21, 2015
    Applicant: Panasonic Intellectual Property Management Co., Lt d.
    Inventors: Isao Imazeki, Masaki Kanemaru
  • Patent number: 9030262
    Abstract: An input receiver circuit including a single-to-differential amplifier and a semiconductor device including the input receiver circuit are disclosed. The input receiver circuit includes a first stage amplifier unit and a second stage amplifier unit. The first stage amplifier unit amplifies a single input signal in a single-to-differential mode to generate a differential output signal, without using a reference voltage. The second stage amplifier unit amplifies the differential output signal in a differential-to-single mode to generate a single output signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 12, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Chul Cho, Yoon-Joo Eom, Young-Jin Jeon, Yong-Cheol Bae
  • Publication number: 20150109059
    Abstract: A system includes a differential circuit, multiple cross-coupled transconductance circuits. In some implementations, the differential circuit may include an inductor coil in a balun or transformer. The cross-coupled transconductance circuits may act to reduce the internal resistance of the differential circuit to increase the quality factor of the differential circuit. The cross-coupled transconductance circuit may be connected at differential points along the differential circuit and be engaged and disengaged to linearize the quality factor of the differential circuit.
    Type: Application
    Filed: December 10, 2013
    Publication date: April 23, 2015
    Applicant: Broadcom Corporation
    Inventor: Ali Afsahi
  • Patent number: 8975965
    Abstract: A differential signal correction circuit is disclosed. The differential signal correction circuit may comprise a first single-ended-to-differential converter and a second single-ended-to-differential converter. Each one of the two converters may comprise an input port and two output ports. The converters may be configured to perform a first phase correction for a pair of differential signals and output a first output signal and a second output signal. The first output signal is fed back to the first converter through one of the output ports of the first converter, and the second output signal is fed back to the second converter through one of the output ports of the second converter so as to perform phase correction and amplitude correction for the first output signal and the second output signal.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: March 10, 2015
    Assignee: National Taiwan University
    Inventors: Shuo-Chun Chou, Hsi-Han Chiang, Chorng-Kuang Wang, Shen-Iuan Liu
  • Patent number: 8970305
    Abstract: An amplifier circuit including an amplifier, a first feedback path, and a second feedback path. The amplifier is configured to amplify an input signal in accordance with a gain. The first feedback path includes a first capacitance, and responsive to the input signal being within in a first frequency range, the first feedback path configured to provide feedback from the output of the amplifier to an inverting input of the amplifier. The second feedback path includes a first resistance connected in series with a second capacitance, and responsive to the input signal being within in a second frequency range, the second feedback path is configured to provide feedback from the output of the amplifier to the inverting input of the amplifier. The second frequency range is less than the first frequency range, and the gain of the amplifier levels off according to a value of the second capacitance.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: March 3, 2015
    Assignee: Marvell International Ltd.
    Inventor: Farbod Aram
  • Publication number: 20150042340
    Abstract: The present invention provides an apparatus and a method for amplifying a radio-frequency signal and an MRI system comprising the apparatus.
    Type: Application
    Filed: February 20, 2013
    Publication date: February 12, 2015
    Inventors: Keqiu Zeng, Yong Liu, Tao Wang
  • Publication number: 20150035609
    Abstract: An electronic apparatus comprises a first stage that functions as a single-ended to differential converter for signals in a low frequency range and a second stage that is electrically connected to the first stage and functions as a single-ended to differential converter for signals in a high frequency range.
    Type: Application
    Filed: August 30, 2011
    Publication date: February 5, 2015
    Inventor: Neil Adams
  • Patent number: 8912788
    Abstract: System and methods for detecting substances such as explosives via the nuclear quadrupole resonance effect. We observe that the nuclear quadrupole resonances of explosives located within a cavity portal involve continuous Rabi transitions which are nonlinear processes since stimulated emission occurs. In other words, where there are no resonances caused by the presence of an explosive, high average power and low average power measurements should be identical. However, when resonances are stimulated by the system, the difference between these two conditions can be compared to determine a correction to measurements made when a person located in the cavity has explosive material on their person, without the need for separate empty portal or elaborate calibration procedures.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: December 16, 2014
    Assignee: AMI Research & Development, LLC
    Inventors: John T. Apostolos, Judy Feng, William Mouyos, Benjamin McMahon
  • Patent number: 8860507
    Abstract: An amplifier includes a transformer and a first stage gain circuit. The transformer includes a primary coil and a secondary coil. The primary coil is utilized for receiving an input signal. The first stage gain circuit has a first input port, which is coupled to the primary coil. The first stage gain circuit is utilized for gaining the input signal so as to generate a first output.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 14, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventors: Hsien-Ku Chen, Chia-Jun Chang, Ka-Un Chan, Ying-Hsi Lin
  • Publication number: 20140266469
    Abstract: Some aspects of the present disclosure relate to a low-noise amplifier (LNA) having a balun configuration. The LNA includes a DC current path coupling a first DC supply node to a second DC supply node. First and second output nodes and first and second input nodes are spaced apart along a length of the DC current path. A single-ended radio frequency (RF) input terminal is configured to deliver a single-ended RF signal to the first and second input nodes. A differential RF output terminal is made up of the first and second output nodes. The first and second output nodes are configured to cooperatively establish a differential output signal based on the single-ended RF signal. Other devices and methods are also disclosed.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Inventor: Vadim Issakov
  • Patent number: 8786372
    Abstract: This application reduces the power of series combined transformers and of parallel combined transformers while maintaining efficiency. In one embodiment, a series combined transformer is provided with a switch between a first primary inductor and a second primary inductor, in order to provide at least two modes. In a high power mode, the switch is open and the series combined transformer operates normally. In a low power mode, the switch is closed, one amplifier from a first differential amplifier pair is shut down, one amplifier from a second differential pair is shut down, and the series combined transformer operates efficiently in a low power mode.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: July 22, 2014
    Assignee: RF Micro Devices, Inc.
    Inventors: Wayne D. Tattershall, David E. Jones
  • Patent number: 8742851
    Abstract: A CMOS distributed amplifier with distributed active input balun is disclosed. Each gm cell within the distributed amplifier employs dual-output two-stage topology that improves gain and linearity without adversely affecting bandwidth and power.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: June 3, 2014
    Assignee: The Regents of The University of California
    Inventors: Amin Jahanian, Payam Heydari
  • Patent number: 8711831
    Abstract: A new design configuration of an RF-transceiver front end is proposed. The Power Amplifier (PA) output stage of the transceiver comprises a cascode circuitry of N-type transistors with open-drain-configuration. The cascode-transistor is acting as a common-gate-transistor, whose gate is controlled to block the transmitting-(TX) path. The Low Noise Amplifier (LNA) input stage uses a common-gate configuration of a p-channel MOS-transistor that is controlled by the voltage at the bulk terminal. Lifting the bulk potential of this PMOS-transistor above its source potential disables the receiving-(RX)-path. This design allows low cost implementation for TDMA-RF-transceivers especially for Bluetooth-Solutions. The number of external components is reduced. No additional TX/RX switch is required. The same port and the same matching elements for the antenna's bandwidth adaptation are used for both the TX-path and the RX-path.
    Type: Grant
    Filed: January 30, 2009
    Date of Patent: April 29, 2014
    Assignee: Maxim Integrated Products, Inc.
    Inventor: Rahim Akbari
  • Patent number: 8633771
    Abstract: There is provided a power amplifier including an amplifying unit having at least two cascode amplifiers connected in parallel to amplify an input signal; and a bias supply unit supplying bias power to a common gate node of the two cascode amplifiers, and removing a signal of a pre-set frequency band corresponding to a baseband at the common gate node by controlling impedance of the common gate node.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: January 21, 2014
    Assignees: Samsung Electro-Mechanics Co., Ltd., Korea Advanced Institute of Science and Technology
    Inventors: Bon Hoon Koo, Byeong Hak Jo, Ki Yong Son, Yoo Sam Na, Song Cheol Hong
  • Patent number: 8604882
    Abstract: A circuit for single ended to differential conversion is disclosed. The circuit comprises a source for providing a single ended signal; and a transformer for receiving the single ended signal. The transformer includes first and second inductors. The first and second inductors are mutually coupled. When the operating frequency changes, a phase difference of currents flowing through the inductors changes, and therefore a phase difference between effective impedance of the first and second inductors changes to maintain a substantially 180 degree phase difference due to the mutual coupling.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 10, 2013
    Assignee: Ralink Technology Corporation
    Inventor: Eric Chiyuan Lu
  • Patent number: 8587381
    Abstract: An amplifier and a method are provided for converting a single ended signal to an amplified differential signal. The amplifier comprises an input configured to receive a single ended signal, a differential amplifier that outputs an amplified differential signal based on the single ended signal, and a compensator coupled to the differential amplifier and configured to inject an adjusted distortion compensating signal based on the even order distortion signal to compensate for a distortion in the amplified differential signal. The method comprises receiving a single ended signal, converting the single ended signal to an amplified differential signal, and generating a distortion compensating signal to substantially cancel an even order distortion signal injected to the differential signal by the converting.
    Type: Grant
    Filed: July 12, 2011
    Date of Patent: November 19, 2013
    Assignee: Marvell International Ltd.
    Inventors: Danilo Manstretta, Fernando DeBernardinis
  • Patent number: 8576008
    Abstract: An RF receiver is described comprising a common gate common source LNA with a variable resistor in the source of the common gate transistor, a variable resistor in the source of the common source transistor, and a variable resistor in the RF input. A Smart Gain Control varies the resistance in the resistors to produce linear amplification in the LNA while maintaining input matching. Further, a broad dynamic range RSSI is described that implements a feedback control loop to maintain signal power within a sensitivity range of the power detector in the RSSI.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: November 5, 2013
    Assignee: SiTune Corporation
    Inventors: Saeid Mehrmanesh, Vahid Mesgarpour Toosi
  • Patent number: 8576012
    Abstract: A single-to-differential conversion circuit includes a first transistor, a second transistor, and a transforming unit. Each of the first and second transistors has first, second and third terminals. The transforming unit has first, second, and third induction elements. The first induction element has a first inductive terminal coupled to the second terminal of the first transistor, and a second inductive terminal coupled to a voltage source. The second induction element has a first inductive terminal to be coupled to the voltage source, and a second inductive terminal coupled to the second terminal of the second transistor. The third induction element has a first inductive terminal coupled to the first terminals of the first and second transistors, and a second inductive terminal coupled to ground. The third induction element electrically couples to the first and the second induction elements according to first and second coupling parameters, respectively.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: November 5, 2013
    Assignee: Realtek Semiconductor Corp.
    Inventor: Hsien-Ku Chen
  • Patent number: 8576005
    Abstract: An integrated circuit is disclosed, including a balun, a transistor pair, and a degeneration inductor winding. The balun has an outer boundary, and comprises a primary winding and a secondary winding. The primary winding is adapted to receive an input signal. The secondary winding is magnetically coupled to the primary winding, and adapted to convert the input signal into a differential form. The transistor pair is connected to the secondary winding and adapted to amplify the input signal. The degeneration inductor winding is connected to the transistor pair and located within the outer boundary of the balun.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: November 5, 2013
    Assignee: Mediatek Inc.
    Inventor: Chih-Fan Liao
  • Patent number: 8547185
    Abstract: An electronic balun circuit is provided for converting a single-ended signal into a differential signal and vice versa, comprising a center-tapped inductor having a first node, a center-tap coupled to a constant voltage source, and a second node. A first impedance circuit is coupled with the first node and with a line carrying single-ended signal to and from the first node. A second impedance circuit is coupled with the second node. The first node receives the single-ended signal to produce a differential signal at the first and second nodes. The first and second nodes receive the differential signal to produce the single-ended signal at the first node. Both first and second impedance circuits have an impedance of 2RL, resulting in a total effective impedance of Rin for achieving an impedance match between the line and the first node. Furthermore, a passive network is added to balance the balun.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: October 1, 2013
    Assignee: Mindtree Limited
    Inventor: Manoj Shridhar Soman
  • Publication number: 20130207721
    Abstract: An envelope tracking power amplifier uses signal cancellation techniques to provide isolation between RF signals and envelope signals, without the use of filters. In this manner, the envelope tracking power amplifiers are capable of operating with envelope signals that are at or near the frequency of the corresponding RF signals. In at least one embodiment, a double balanced power amplifier is provided that includes a balanced RF input port, a balanced RF output port, and a balanced envelope input port. The balanced nature of the amplifier results in ports of the amplifier forming virtual grounds with respect to signals at other ports. In some other embodiments, a single balanced amplifier is provided that provides isolation between ports thereof.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 15, 2013
    Applicant: AURIGA MEASUREMENT SYSTEMS, LLC
    Inventor: AURIGA MEASUREMENT SYSTEMS, LLC
  • Patent number: 8497739
    Abstract: There is provided a single-differential converting circuit that can reduce the variations in the input voltage of an operational amplifier sufficiently, made by changes in the voltages input from the exterior, while maintaining the function as the amplifier. The single-differential converting circuit is configured to include: an operational amplifier 104 provided with an inverting input terminal 104a and a noninverting input terminal 104c, for respectively receiving an input signal and a signal indicative of a reference voltage, a noninverting output terminal 104b and an inverting output terminal 104d having opposite polarities to each other; and a positive feedback impedance element 103a connected between one of the two input terminals and one, of the output terminals, having a same polarity with the above one of the two input terminals.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: July 30, 2013
    Assignee: Asahi Kasei Microdevices Corporation
    Inventor: Kazuo Koyama
  • Patent number: 8476980
    Abstract: A power amplifier includes an amplifying circuit, and first through third transmission lines. The amplifying circuit amplifies an input signal having a fundamental frequency to generate a first amplified signal and a second amplified signal whose phase is opposed to the first amplified signal. The first transmission line adds a first group of phases, different in correspondence with a frequency, to the first amplified signal by using a left-handed material to generate a first transmission signal. The second transmission line adds a second group of phases, different in correspondence with a frequency, to the second amplified signal by using a right-handed material to generate a second transmission signal. The third transmission line overlaps the first and the second transmission signals to generate an output signal. The first and the second group of phases include a phase difference configured to weaken a second harmonic and a third harmonic.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: July 2, 2013
    Assignee: NEC Corporation
    Inventor: Akio Wakejima
  • Patent number: 8476981
    Abstract: A differential amplifier including an input of a balanced type relative to a reference potential; a balanced output; first and second bipolar transistors mounted in common emitter configuration, emitters of the first and second transistors linked by two feedback impedances in series; and a perfect current generator, wherein an impedance Zg at the terminals of the current generator is connected between a common point of the two feedback impedances and the reference potential, the input is connected to a base of the first transistor, a base of the second transistor is linked to the reference potential to form, with a base of the first transistor, the unbalanced input, the balanced output is produced by collectors of the first and second transistors through an impedance matching stage of the output, a correction feedback impedance Zcorr, wherein Zcorr=2·Zg, connects the collector of the second transistor and the base of the first transistor.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: July 2, 2013
    Assignee: Thales
    Inventors: Remi Corbiere, Bruno Louis, Vincent Petit
  • Publication number: 20130135029
    Abstract: This invention relates to an open wireless architecture (OWA) radio frequency (RF) transceiver architecture including RF front-end system. Specifically, the invention relates to an OWA RF front-end utilizing non-broadband RF hardware to support wide range frequency bands and broad transmission bandwidth for future wireless communications.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Inventors: LIMEI XU, WEI LU
  • Patent number: 8421541
    Abstract: Techniques for designing a highly differential single-ended-to-differential converter for use in, e.g., communications receivers. In an exemplary embodiment, an auxiliary current path including cascomp transistors is coupled to a main current path including input transistors and cascode transistors. The transistors are biased such that inter-modulation products generated by the auxiliary current path cancel out inter-modulation products generated by the main current path. In another exemplary embodiment, current source transistors for the main current path are adaptively biased depending on the level of the input signal received. In an exemplary embodiment, the techniques may be applied to designing a converter for interfacing a single-ended low-noise amplifier (LNA) output voltage with a differential mixer input in a communications receiver.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: April 16, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Susanta Sengupta, Kenneth C. Barnett
  • Patent number: 8410856
    Abstract: The noise figure of a low noise amplifier (LNA) is reduced without sacrificing performance such as gain, IIP3, and wideband impedance matching. Embodiments include configuring a control module of the LNA to sum and scale an output from a current-sensing branch of the LNA and an output from a voltage sensing branch of the LNA into one or more summed and scaled outputs. The control module also feeds the one or more summed and scaled outputs back to at least one of the outputs of the branches of the LNA.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: April 2, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Ching Kuo, Yi-Shing Shih, Shih-Hao Tarng
  • Patent number: 8391927
    Abstract: An antenna structure includes first and second antennas. The first antenna has a first geometry corresponding to a first frequency. The second antenna has a second geometry corresponding to a second frequency. The second antenna is proximal to the first antenna and utilizes electrical-magnetic properties of the first antenna to transceive signals at the second frequency.
    Type: Grant
    Filed: June 12, 2010
    Date of Patent: March 5, 2013
    Assignee: Broadcom Corporation
    Inventors: Jesus Alfonso Castaneda, Franco De Flaviis, Ahmadreza (Reza) Rofougaran
  • Patent number: 8368464
    Abstract: The balanced output signal generator uses four interconnected plus-type second-generation current conveyors, a couple of load resistors and a single input resistor that can provide both current- and voltage-mode outputs. No matching conditions are required.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: February 5, 2013
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Muhammad Taher Abuelma'atti
  • Patent number: 8362841
    Abstract: A differential amplifier showing a suppressed output offset is disclosed. The differential amplifier includes a pair of differential transistors, a pair of cascode transistors, and a reference generator. One of differential transistors receives an AC signal, while, the other of differential transistors receives an average voltage of the AC signal. The reference generator receives the average voltage of the AC signal and outputs a bias commonly provided to the cascode transistor. The bias is raised by a substantially constant level from the average voltage, which compensates the output offset of the differential amplifier.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: January 29, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Makoto Ito, Sosaku Sawada
  • Patent number: 8362835
    Abstract: A wide bandwidth planar four port MMIC transformer is provided by input diplexers which divide up the incoming signal into a high band and a low band, with the resulting signals coupled to high band and low band four port transformers implemented in one embodiment using spiral inductors and coupled lines, the outputs of which are combined using two output diplexers to provide a decade bandwidth transformer.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: January 29, 2013
    Assignee: Gradual Tech Software L.L.C.
    Inventor: David E. Meharry
  • Patent number: 8358991
    Abstract: Embodiments of an RF receiver front-end are presented herein. In an embodiment, the RF receiver front-end comprises a transconductance LNA, a passive mixer, and a gm-enhanced common-gate buffer. The transconductance LNA is configured to convert an RF voltage signal to an RF current signal and provide the RF current signal at an output. The passive mixer is coupled to the output of the transconductance LNA and is configured to mix the RF current signal with a local oscillator signal to produce a frequency translated current signal. The gm-enhanced common-gate buffer is configured to receive the frequency translated current signal at an input and convert the frequency translated current signal to a frequency translated voltage signal. In an embodiment, the input of the gm-enhanced common-gate buffer is configured to provide a low input impedance to limit a voltage swing of the frequency translated current signal.
    Type: Grant
    Filed: January 26, 2010
    Date of Patent: January 22, 2013
    Assignee: Broadcom Corporation
    Inventors: Xinyu Chen, Calvin (Shr-Lung) Chen, John Leete
  • Patent number: 8339203
    Abstract: An on-chip power amplifier includes first and second variable capacitors connected in parallel with first and second windings, respectively, of an on-chip balun. The first balun winding connects between the differential outputs of an on-chip differential amplifier. Varying the first variable capacitor changes the imaginary part of the load impedance of the differential amplifier, while varying the second variable capacitor changes the real part of the load impedance of the differential amplifier. In one embodiment, the first and second variable capacitors are generally orthogonal, such that the first and second variable capacitors are less than 25% correlated. As a result, varying the first variable capacitor has little impact on the real part of the load impedance, and varying the second variable capacitor has little impact on the imaginary part of the load impedance. In this way the load impedance can be tuned to the optimum performance.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: December 25, 2012
    Assignee: ST-Ericsson SA
    Inventors: Hendrik Visser, Roeland Heijna, Norbert Van Den Bos
  • Patent number: 8324968
    Abstract: An amplifier circuit is provided to be switchable between a single end output configuration and a differential output configuration without increasing a circuit area. When first and fourth switches are turned off and a second switch is turned on, a load circuit functions as an active load on a differential pair and a first output terminal is internally disconnected. The amplifier circuit is provided with a single end output configuration and differentially amplifies input voltages inputted to input terminals and outputs an imbalanced signal from a second output terminal. When the first and fourth switches are turned on and the second switch is turned off, the load circuit functions as a load on the differential pair and the first output terminal is internally connected. The amplifier circuit is provided with a differential output configuration and differentially amplifies the input voltages inputted to the input terminals and outputs balanced signals from the output terminals.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: December 4, 2012
    Assignee: DENSO CORPORATION
    Inventors: Kazutaka Honda, Tetsuya Makihara, Masakiyo Horie
  • Patent number: 8310311
    Abstract: According to an embodiment, a semiconductor integrated circuit device includes an amplifier and a feedback circuit. The amplifier includes an input terminal receiving an input signal and an output terminal outputting an output signal. The feedback circuit includes a first transistor generating a bias current. The feedback circuit is configured to operate based on the bias current. The feedback circuit is configured to receive the output signal to supply a feedback signal to the input terminal. A signal having a reverse phase to the output signal is input to a gate of the first transistor.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: November 13, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Junji Wadatsumi