With Frequency Adjusting Means Patents (Class 331/177R)
  • Patent number: 5438299
    Abstract: A PLL circuit comprising a phase comparator unit which forms a differentiation signal based upon both edges of an external signal, outputs an early pulse only during a period in which the differentiation signal is overlapped on a period from the leading edge to the trailing edge of a reference signal, and outputs a late pulse only during a period in which the differentiation signal is overlapped on a period from the trailing edge to the leading edge thereof, a charge pump unit which calculates and compares the amounts of integration of the early pulse and the late pulse, lowers the output voltage when the amount of the late pulse is larger than the amount of the early pulse and raises the output voltage when it is smaller, and a VCO which outputs a corrected reference signal of which the frequency decreases or increases accompanying the increase or decrease in the output voltage of the charge pump unit, wherein the VCO is controlled by the output voltage of the charge pump unit and by the early pulse and the
    Type: Grant
    Filed: March 30, 1994
    Date of Patent: August 1, 1995
    Assignees: Shinko Electric Industries, Co., Ltd., Fujitsu Limited
    Inventors: Toshizi Shimada, Yasunori Kanai, Yoshio Watanabe
  • Patent number: 5434545
    Abstract: A fully differential voltage controlled oscillator having a large common mode rejection ratio is disclosed with a first and a second phase detector disposed between the output of a differential comparator and the input of a differential triangle wave generator to insure 180 degree out of phase operation.
    Type: Grant
    Filed: October 21, 1994
    Date of Patent: July 18, 1995
    Assignee: Cyrix Corporation
    Inventor: Mark E. Burchfield
  • Patent number: 5428318
    Abstract: A voltage controlled ring oscillator whose frequency does not depend on the number of stages in the ring oscillator. The inventive voltage controlled ring oscillator comprises N inverters connected in series with the output of the Nth inverter being coupled into the input of the first inverter. The output of each inverter is connected to a transconductance amplifier. The outputs of all transconductance amplifiers are summed. The oscillation period of the circuit is 2t.sub.d, (where t.sub.d is the delay of one inverter) which is independent of the number of inverters in the ring oscillator.
    Type: Grant
    Filed: February 15, 1994
    Date of Patent: June 27, 1995
    Assignee: AT&T Corp.
    Inventor: Behzad Razavi
  • Patent number: 5426398
    Abstract: A differential mode voltage controlled oscillator (VCO) includes an odd number of delay cells. Each delay cell has a pair of input terminals and a pair of output terminals with the input terminals of each delay cell being connected to the output terminals of a preceding delay cell in a ring. Each delay cell has a delay time for inverting a complementary pair of signals from which a clock signal is derived. A positive temperature coefficient voltage-to-current converter receives the control voltage of the VCO and controls the maximum currents (and therefore the delays) of the delay cells. A pair of cross-coupling transistors in each delay cell keeps the signals on the output terminals out of phase (complementary). The cross-coupling transistors have sizes which maximize gain of the delay cells at the threshold voltages of the cross-couple transistor and thereby increase output voltage swing at high frequencies.
    Type: Grant
    Filed: August 19, 1994
    Date of Patent: June 20, 1995
    Assignee: National Semiconductor Corporation
    Inventor: James R. Kuo
  • Patent number: 5426384
    Abstract: A voltage controlled oscillator (VCO) (23) includes a periodic signal generator (30) such as a comparator (42)followed by a latch (43), and a logic gate such as a NAND gate (31) connected to the output of the latch (43) to adjust for asymmetries in the output signals from the latch (43). In one embodiment, the NAND gate (31) includes two pullup transistors (80, 81) receiving first and second output signals from the latch and connected between a first power supply voltage terminal and an output node (86). Two switching branches (82, 83 and 84, 85) each including two transistors are connected between the output node (86) and a second power supply voltage terminal. The order of the input signals received by the two transistors is reversed between the two switching branches (82, 83 and 84, 85) to compensate for any duty cycle asymmetries. A frequency divider (32) divides the output of the NAND gate (31) to complete the duty cycle adjustment.
    Type: Grant
    Filed: December 27, 1993
    Date of Patent: June 20, 1995
    Assignee: Motorola, Inc.
    Inventor: Michael R. May
  • Patent number: 5420547
    Abstract: A ring oscillator giving oscillation with a high, stable Q value. The ring oscillator is constituted by gain-stages connected by lowpass filters consisting of a resistance element and a capacitive element connected in series and is provided with transconductance circuits including transistors parallel to the capacitive elements of the lowpass filters. By passing currents proportional to signal voltages differing .theta. in phase, it is possible to operate the low pass filters as bandpass filters. By this, oscillation with a high, stable Q value is obtained. The ring oscillator can be modified to a voltage controlled oscillator by using variable current sources.
    Type: Grant
    Filed: June 17, 1994
    Date of Patent: May 30, 1995
    Assignee: Sony Corporation
    Inventor: Hidekazu Kikuchi
  • Patent number: 5420550
    Abstract: Common mode errors may be sensed and corrected by receiving an output signal 105-106 and comparing the output signal 105-106 with a predetermined signal level. When the output signal 105-106 is in a first relationship with respect to the predetermined signal level a source current is provided to a integrating element 110. If, however, the output 105-106 is in a second relationship with respect to the predetermined signal level, a sink current is provided to the integrating circuit element 110. Regardless of whether a sink or source current is provided to the integrating circuit element 110, the integrating circuit element 110 generates a common mode information signal 123 which is used to correct for common mode errors.
    Type: Grant
    Filed: June 27, 1994
    Date of Patent: May 30, 1995
    Assignee: Motorola, Inc.
    Inventor: Michael R. May
  • Patent number: 5418497
    Abstract: BiCMOS technology is used in the design of a VCO (200) to improve low DC operation. The VCO (200) includes two coupled oscillator circuits (201,219) tuned to different fixed frequencies such that the oscillator resonant frequencies define the tuning range of the VCO (200). The oscillator circuits (201, 219) are coupled such that the frequency of oscillation of the VCO (200) is adjustable via variable resistors (206, 214) by manipulating the bias currents to the two oscillator circuits (201,219). A biasing circuit (208) along with variable resistors (206 and 214) provide the DC bias to the oscillator circuits (201 and 219). The biasing circuit (208) maintains the sum of the biasing currents to the oscillator circuits constant. The oscillator circuits (201, and 219) are interconnected utilizing an RF coupling circuit (211). The VCO (200) is capable of operating at voltages as low as 1.8 volts DC.
    Type: Grant
    Filed: July 5, 1994
    Date of Patent: May 23, 1995
    Assignee: Motorola, Inc.
    Inventor: Frederick L. Martin
  • Patent number: 5418499
    Abstract: A ring oscillator wherein an inverter group includes five inverters (G1 to G5) connected in series, the output of the inverter (G3) is connected to the input of the first inverter (G1) through a transfer gate (TF1), and the output of the inverter (G5) is connected to the input of the inverter (G1) through a transfer gate (TF2). The ring oscillator is adapted such that, when a switching signal (S3) is "L", the CMOS transfer gates (TF1) and (TF2) are on and off, respectively, and the three inverters (G1 to G3) are connected in a loop whereas the inverters (G4, G5) function as buffers receiving the output of the inverter (G3), to provide an oscillation signal (S2) produced by the three inverters (G1 to G3) forming the loop from an output terminal (2) and such that, when the switching signal (S3) is "H", the oscillation signal (S2) produced by the five inverters (G1 to G5) forming the loop is provided, whereby the oscillation signal has a wide range of variable oscillation frequency bands.
    Type: Grant
    Filed: July 12, 1994
    Date of Patent: May 23, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Kenji Nakao
  • Patent number: 5414392
    Abstract: An electrical circuit comprising means for receiving an input signal for encoding or modulating and amplification. Multiple amplification stages including at least one transconductance amplifier are provided. There are means for having the input signal modulate the oscillator constituted by the multiple amplification stages to provide a 360.degree. phase-shifted signal at a predetermined frequency. Gain control means are also provided for developing level for permitting oscillation under conditions including at least the conditions of turn on of the circuit and other operating conditions. The gain control means includes a transistor and resistor network for adjusting the gain to sustain the oscillation. The transistor and resistor also regulate amplification of an intermediate stage of the amplifier. The preamplifier directly converts an EKG and/or other signals to linearized control currents which modulate the oscillator.
    Type: Grant
    Filed: August 26, 1993
    Date of Patent: May 9, 1995
    Assignee: MedCom Electronics
    Inventor: Leonard Schupak
  • Patent number: 5410277
    Abstract: A frequency synthesizer, which controls the fluctuation of frequency not only of a long period but also a short period, ensures a wide frequency control range and can be realized at a low cost, can be obtained.
    Type: Grant
    Filed: June 15, 1994
    Date of Patent: April 25, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Hideki Asao, Yutaka Ozaki, Tetsu Owada, Hideyuki Oh-Hashi
  • Patent number: 5399994
    Abstract: A programmable VCO circuit (300, 700) and method of use are provided whereby a current proportional to the strength of the NMOS process used to fabricate the circuit may be subtracted from the control current derived at the circuit's input, to compensate for process variations. Also, a programmable VCO circuit (300) and method of use are provided whereby a current developed from one-half the supply voltage for the VCO circuit may be subtracted from the control current derived at the circuit's input, in order to cause programmed gain changes to occur about the center of the control voltage range, and minimize output "jitter" when the VCO is used in a phase-locked loop. A gain compensation circuit (800) is also provided to linearize the gain of the programmable VCO circuit (300) for higher control voltage levels and thereby extend the VCO's effective operating range.
    Type: Grant
    Filed: September 30, 1993
    Date of Patent: March 21, 1995
    Assignee: Texas Instruments Incorporated
    Inventors: Patrick P. Siniscalchi, William R. Krenik
  • Patent number: 5394117
    Abstract: A direct digitally synthesizer-based, injection locked oscillator includes a direct digital synthesizer for generating a digitally synthesized signal at frequency f.sub.0, an analog oscillator circuit for generating an analog signal at frequency f.sub.1 and a filter coupled to the direct digital synthesizer for filtering the digitally synthesized signal to provide a signal at frequency Nf.sub.0. N may be an integer from 1 to 10. Also included is a coupler to couple the filtered, digitally synthesized signal into the analog oscillator to lock the frequency of the analog output signal to the frequency of the digitally synthesized signal such that the frequency f.sub.1 is equal to the frequency Nf.sub.0. The coupler also electrically couples the analog signal from the analog oscillator circuit to a second filter to filter the analog signal. An amplifier electrically coupled to the second filter amplifies the filtered signal to provide an analog oscillator output signal.
    Type: Grant
    Filed: May 28, 1993
    Date of Patent: February 28, 1995
    Assignee: AIL Systems, Inc.
    Inventor: Leonard D. Cohen
  • Patent number: 5394116
    Abstract: A ring oscillator has a plurality of oscillator outputs, each of which carries an oscillating signal of a given frequency and thus repetition period but with a phase shift of a predetermined fraction of the repetition period from any one of the oscillator outputs to a next oscillator output in a predetermined repetitive sequence. The inputs of a selector are each connected to a respective one of the oscillator outputs. The selector includes a number of individually actuatable selector switches that are so actuated as to establish a connection between the selector output and only any selected one of the selector inputs at any time. The actuation is accomplished in a first mode, in which the selector switches maintain the connection, or in a second mode in which the selector switches intermittently index the connection in the predetermined repetitive sequence among the selector inputs.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: February 28, 1995
    Assignee: AT&T Corp.
    Inventor: Sanjay Kasturia
  • Patent number: 5384554
    Abstract: An integrated voltage controlled oscillator (VCO) circuit which utilizes the relative capacitance ratio between capacitors and the relative resistance ratio between resistors in an integrated circuit (IC) to output a signal having a predictable frequency for a given control signal voltage. The VCO output frequency will not vary more than 3.0% from one IC chip implementing the VCO circuit, to the next. This low variance between IC chips is derived from the phenomenon whereby the respective ratios of capacitance and resistance between capacitors and resistors in the IC will not vary more than .+-.1.5% from the ratios of like capacitors and resistors on other IC chips. The integrated VCO circuit includes a control signal subcircuit, integrator subcircuit, filter subcircuit, and comparator unit subcircuit.
    Type: Grant
    Filed: December 8, 1993
    Date of Patent: January 24, 1995
    Assignee: CalComp Inc.
    Inventor: Brian Abernethy
  • Patent number: 5365204
    Abstract: A variable frequency digital ring oscillator which can be formed in a small area for use in testing of chips employs a ring oscillator formed of CMOS inverters, transmission gates and capacitors and CMOS logic as a voltage controlled ring oscillator. A wide range of frequency of oscillation is achieved with small number of components. The ring oscillator circuit's oscillator frequency is controlled only by DC voltages, such as may be provided by (but not limited to) a manufacturing chip tester. The output signal of the oscillator swings between Vdd and Vss and does not need additional level translation circuits to drive CMOS logic. The ring oscillator can be composed of an odd number of CMOS inverters connected in cascade to form a loop. We provide a CMOS transmission gate with PMOS and NMOS transistor device inserted between each adjacent inverter and a MOS capacitor connected between the output of each transmission gate and the Vss supply of the ring oscillator circuit (conventionally ground).
    Type: Grant
    Filed: October 29, 1993
    Date of Patent: November 15, 1994
    Assignee: International Business Machines Corporation
    Inventors: John M. Angiulli, Arun K. Ghose, Richard R. Konian, Samuel R. Levine, David Meltzer, Wen-Yuan Wang, Leon L. Wu
  • Patent number: 5359298
    Abstract: The voltage controlled oscillator in a phase-locked loop comprises a voltage-current converter (62) and a current frequency converter (34). The voltage-current converter (62) comprises a voltage differential-current converter (64), a current-current converter (66) and a current adder-subtracter (68). In the voltage differential-current converter (64), only the voltage fluctuation or difference .DELTA.V.sub.CN with respect to one half a power supply voltage V.sub.DD /2, and not the absolute value of a control voltage V.sub.CN, undergoes current conversion as a control current I.sub.CN. Therefore, the center frequency of the oscillation frequency is not a factor of control voltage V.sub.CN and is controlled only by an offset voltage V.sub.B2. Accordingly, the center frequency can be independently set by changing offset voltage VB.sub.2. This is particularly significant in zone bit recording, which requires a wide frequency band.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: October 25, 1994
    Assignee: Seiko Epson Corporation
    Inventor: Akira Abe
  • Patent number: 5357220
    Abstract: An emitter-coupled oscillator circuit suitable for monolithic integration.
    Type: Grant
    Filed: January 21, 1993
    Date of Patent: October 18, 1994
    Assignee: Gennum Corporation
    Inventor: John R. Francis
  • Patent number: 5352993
    Abstract: A voltage controlled surface acoustic wave oscillator includes an integrated circuit and a two port resonator connected as a feedback element around the integrated circuit. The integrated circuit includes a phase shifting network and an amplifier directly connected to the phase shifting network.
    Type: Grant
    Filed: September 30, 1992
    Date of Patent: October 4, 1994
    Assignee: Telefonaktiebolaget L M Ericsson
    Inventor: Heinz B. Mader
  • Patent number: 5349311
    Abstract: A voltage controlled oscillator (VCO) operating as a variable length, variable delay, ring oscillator having a current starved inverter and an anti high-gain circuit for each stage. A VCO feedback signal is compared with a reference frequency obtained, for example, from a system crystal oscillator. A phase and frequency detector monitors these two input signals and issues "up" or "down" commands to a digital counter. This digital counter delivers select signals via a decoder and also drives a Digital to Analog Converter ("DAC"). The digital select signal from the counter chooses an operational stage from the multi-stage, tandem-connected VCO. A broadband operation for the VCO is achieved by overlapping the individual frequency ranges associated with each of the individual stages. The DAC moves the operation along each selected frequency range associated with a selected stage until a system lock between the VCO output and the crystal references is achieved.
    Type: Grant
    Filed: November 23, 1992
    Date of Patent: September 20, 1994
    Assignee: National Semiconductor Corporation
    Inventor: Ray A. Mentzer
  • Patent number: 5347238
    Abstract: A voltage controlled oscillator provides a fixed amplitude output at an adjustable frequency. The voltage controlled oscillator includes a first transistor including an emitter, a base, and a collector. A first capacitor is connected between the emitter and the base of the first transistor. An inductance simulating device generates a controllable impedance and includes second and third transistors each with a base, an emitter, and a collector. The second and third transistors are connected between the base and the collector of the first transistor. The controllable impedance includes an inductive reactance component related to a quiescent bias current flowing through the third transistor. A current source connected to the third transistor generates the quiescent bias current to vary the inductive reactance component. The inductive reactance component and the first capacitor vary the adjustable frequency of oscillation.
    Type: Grant
    Filed: July 6, 1993
    Date of Patent: September 13, 1994
    Assignee: TRW Inc.
    Inventor: Kevin W. Kobayashi
  • Patent number: 5347237
    Abstract: A tuneable crystal oscillator arrangement includes a piezo-electric, e.g. quartz, crystal and drive current means therefor. A reactance is arranged in series with the crystal and is fed with a current corresponding to the crystal drive current. The corresponding voltage developed across the impedance is fed via a variable gain amplifier back to the crystal. The reactance comprises a number of impedances, there being current steering means for dividing the current between the impedances. This determines the effective value of the reactance and provides a control or adjustment of the crystal frequency.
    Type: Grant
    Filed: August 16, 1993
    Date of Patent: September 13, 1994
    Assignee: Northern Telecom Limited
    Inventor: George H. S. Rokos
  • Patent number: 5347235
    Abstract: An optically controlled oscillator circuit having an oscillator field eff transistor (FET) and having a separate light sensing quench FET. The optically controlled oscillator circuit includes, a light source, a control connected to the light source, an optic fiber having an end coupled to the light source, a quench field effect transistor (FET) coupled to a second end of the optic fiber, an oscillator FET, each FET being a GaAs multi-finger FET having drains and sources and gates, and a circuit connected in series circuit through the drains and sources of the quench FET and oscillator FET across a source of positive voltage.
    Type: Grant
    Filed: November 2, 1992
    Date of Patent: September 13, 1994
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Thomas P. Higgins, Dana J. Sturzebecher
  • Patent number: 5345196
    Abstract: A variable frequency oscillator (19) and method of producing an oscillating signal are provided in which a current mirror (12) receives a control current and generates a mirrored current. A capacitor (20) is coupled to the current mirror (12) and charges and discharges through the current mirror (12) based on the direction of the mirrored current. A trigger (22) is coupled to the capacitor (20) and outputs a first voltage level when the capacitor (20) charges to a first voltage threshold and outputs a second voltage level when the capacitor (20) discharges to a second voltage threshold. A switch (14) is coupled to the current mirror (12) and the trigger (22) for changing the direction of the mirrored current based on the output voltage of the trigger (22).
    Type: Grant
    Filed: July 7, 1993
    Date of Patent: September 6, 1994
    Assignee: Texas Instruments Incorporated
    Inventors: John W. Fattaruso, Shivaling S. Mahant-Shetti
  • Patent number: 5343170
    Abstract: A voltage controlled oscillator (VCO) including a negative feedback circuit operates in response to a negative feedback signal generated during active transistor region operation of transistors in transconductance amplifying stages coupled thereto. As a result, harmonic distortion and problems of noise and unstable frequency oscillation are obviated or significantly reduced. The VCO includes first and second variable transconductance (gm) amplifying stages whose non-inverting (+) and inverting (-) terminals are respectively grounded and a first condenser connected between an output terminal of the first transconductance (gm) amplifying stage and a non-inverting (+) terminal of the second transconductance (gm) amplifying stage. A negative-resistive circuit is used to provide a negative feedback.
    Type: Grant
    Filed: January 8, 1993
    Date of Patent: August 30, 1994
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Junseong Lee
  • Patent number: 5341113
    Abstract: A voltage controlled oscillator (VCO) (2) provides an output signal which has a 50% duty cycle and a frequency which depends on the voltage of a control signal (V) supplied thereto. The VCO (2) comprises first (C.sub.L) and second (C.sub.R) capacitors and first (3) and second (5) circuits. Each of the first and second circuits comprises a current supply arrangement (10, 12, 14, or 18, 20, 22) coupled to a respective one of the capacitors (C.sub.L or C.sub.R) and to receive the control signal (V), and a Schmitt trigger (6 or 16) coupled to the respective current supply arrangement and to the other capacitor, which is not coupled to the respective current supply arrangement. Each current supply arrangement of the first and second circuits alternately charges and discharges the respective capacitor, in dependence on the switching of the respective Schmitt trigger, so that the VCO (2) oscillates between the charging of the first and the charging of the second capacitor.
    Type: Grant
    Filed: June 30, 1993
    Date of Patent: August 23, 1994
    Assignee: Motorola, Inc.
    Inventors: Nathan Baron, Judah L. Adelman
  • Patent number: 5331293
    Abstract: A digital frequency synthesizer circuit with spur compensation includes a demodulator circuit (118) for demodulating the output signal (116) of the synthesizer's accumulator (108). Demodulator (118) also inverts the signal, and provides an inverted demodulated output signal (142) which is then coupled to the synthesizer clock (124) after passing through a gain stage (122) in order to modulate the synthesizer clock (124) with a compensation signal (146). The compensated clock signal (140) is then sent to accumulator (108) in order to substantially cancel out any jitter in the accumulator's output signal (116). The modulation signal (MOD IN) which is digitally applied to accumulator (108) is applied in analog fashion to the gain stage (122) in order to prevent the desired modulation signal (MOD IN) from being canceled in the output signal (116).
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: July 19, 1994
    Assignee: Motorola, Inc.
    Inventors: Wayne P. Shepherd, Joseph P. Heck
  • Patent number: 5309118
    Abstract: A hyperfrequency generator comprising a source element (5) of negative resistance adjacent to a cylindrical resonant cavity (2) closed at opposite ends by two transversal closure plates (4, 7) for the purpose of tuning over a frequency band. The source element (5) is installed directly in the resonant cavity (2) such that there is a direct coupling between the source element (5) and the resonant cavity (2). One of the closure plates (7) is movable toward and away from the other for rough tuning.
    Type: Grant
    Filed: May 29, 1992
    Date of Patent: May 3, 1994
    Assignee: Sadis Bruker Spectrospin Societe Anonyme de Diffusion de l'Instrumentation Scientifique Bruker Spectrospin (Societe Anonyme a Directoire)
    Inventors: Victor Ringeisen, Laurent Martinache
  • Patent number: 5302920
    Abstract: An electrically controlled oscillator circuit having multi-phase outputs with programmable frequency. The circuit includes a ring oscillator having a plurality of inverting stages. Each stage has an output which is connected to a switch that can be programmed to select one of a plurality of capacitors with different values to change the frequency range of the oscillator. Controlled current is fed to the stages to vary the frequency of the oscillator within a selected frequency range. Using capacitors to change the frequency range of the oscillator reduces variations of the oscillator output frequency.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: April 12, 1994
    Assignee: NCR Corporation
    Inventor: Ricky F. Bitting
  • Patent number: 5302919
    Abstract: The voltage-controlled oscillator in a phase-locked loop comprises a voltage-current converter (62) and a current frequency converter (34). The voltage-current converter (62) comprises a voltage differential-current converter (64), a current-current converter (66) and a current adder-subtracter (68). In the voltage differential-current converter (64), only the voltage fluctuation or difference .DELTA.V.sub.CN with respect to one-half a power supply voltage V.sub.DD /2, and not the absolute value of a control voltage V.sub.CN, undergoes current conversion as a control current I.sub.CN. Therefore, the center frequency of the oscillation frequency is not a factor of control voltage V.sub.CN and is controlled only by an offset voltage V.sub.B2. Accordingly, the center frequency can be independently set by changing offset voltage V.sub.B2. This is particularly significant in zone bit recording, which requires a wide frequency band.
    Type: Grant
    Filed: August 20, 1992
    Date of Patent: April 12, 1994
    Assignee: Seiko Epson Corporation
    Inventor: Akira Abe
  • Patent number: 5300898
    Abstract: A differential inverter such as may be used in an oscillator circuit. The differential inverter is connected between first and second current sources. The differential inverter includes first and second single signal CMOS inverters connected in parallel between the first and second controlled current sources. Each of the current sources is a MOS transistor. A bias circuit is connected to the control gates of the MOS transistors and provides bias signals thereto, the bias circuit includes a variable current source with bias signals being generated in response to the current flow in the variable current source.
    Type: Grant
    Filed: July 29, 1992
    Date of Patent: April 5, 1994
    Assignee: NCR Corporation
    Inventors: Dao-Long Chen, Robert D. Waldron
  • Patent number: 5298870
    Abstract: A voltage controlled oscillator comprises a plurality of differential amplification stages each arranged to introduce a phase shift between its differential input signal and its differential output signal. The frequency at which the desired phase shift occurs can be controlled by adjusting the control signal Vc. The stages are arranged such that the output of one amplifier becomes the input to the next amplifier, making the phase shift additive. Further, a phase shift of 180.degree. may be introduced by inverting the output from one stage before inputting it to the next stage. The total phase shift introduced by the stages is 360.degree.. In this way, an oscillating signal of varying phase shift is produced at the output of each stage. Each stage comprises a standard differential amplifier, well known in the art, having a matched pair of p-channel transistors and a matched pair of n-channel transistors.
    Type: Grant
    Filed: July 6, 1992
    Date of Patent: March 29, 1994
    Assignee: Inmos Limited
    Inventors: Christopher Cytera, Andrew M. Hall
  • Patent number: 5294896
    Abstract: This invention relates to an arrangement for driving a high-frequency oscillating tool arrangement (1) which includes, inter alia, a device (1a) whose form changes with a change in voltage, utilizing an electric drive circuit (2) constructed to generate alternating voltage which can be connected to the device and the frequency of which is adapted, through a first control circuit (7), to a value (C1, L1) which momentarily corresponds to the resonance frequency of the reactive element which varies during a working operation. The first control circuit (7) is constructed to control momentary frequency in dependence on momentary phase difference between the current and voltage values of the alternating voltage.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: March 15, 1994
    Assignee: Diprofil AB
    Inventors: Jan Kjellander, deceased, Thord Nilsson, Jan Lundberg
  • Patent number: 5285173
    Abstract: A ring-type oscillator with a plurality of delay cells including differential pairs of MOS transistors. Current sources supply current to each pair, and the magnitude of the current supplied is variable by a control voltage to alter the delay of the MOS devices, thereby to alter the frequency of oscillation. Each delay cell MOS device is connected in series with another MOS device biased into its linear region to act as a load resistance. This load is variable by the control voltage so as to tend to maintain the gain of the delay cells constant with changes in frequency of oscillation.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: February 8, 1994
    Assignee: Analog Devices, Inc.
    Inventor: David C. Reynolds
  • Patent number: 5272453
    Abstract: A method and apparatus for switching between gain curves of a switched gain voltage controlled oscillator (VCO) 52, 52' or 52". In one form, the present invention uses a switched gain voltage controlled oscillator (VCO) 52, 52' or 52" which utilizes a ring oscillator. A Gain Control signal is used to select between using a high gain curve and using a low gain curve. The low gain curve is produced by selecting a high resistance path to either power or ground. The high gain curve is produced by selecting a low resistance path to either power or ground.
    Type: Grant
    Filed: August 3, 1992
    Date of Patent: December 21, 1993
    Assignee: Motorola Inc.
    Inventors: Kevin M. Traynor, Hengwei Hsu, Kenneth R. Burch
  • Patent number: 5258726
    Abstract: A voltage controlled oscillator (VCO) circuit (10) for operating at low supply voltages has been provided. The VCO circuit includes an oscillation stage which utilizes a negative resistance technique for oscillation and includes a first inductor (38) for allowing the oscillation stage to operate at low supply voltages. The VCO circuit also includes an output stage which includes a second inductor (52) and a first capacitor (51) for allowing the output resistance of the VCO circuit to be adjusted for maximum output drive capability.
    Type: Grant
    Filed: October 29, 1992
    Date of Patent: November 2, 1993
    Assignee: Motorola, Inc.
    Inventor: Phuc C. Pham
  • Patent number: 5239274
    Abstract: Differential buffers are used in a voltage-controlled oscillator to provide pairs of complementary phase signals. The preferred arrangement includes a ring of the differential buffers. Each differential buffer has a current control input, and the current control inputs of the buffers are all connected to a control voltage input to simultaneously adjust the propagation delay of each of the buffers. In contrast to a conventional ring oscillator, which has an odd number of stages, a ring oscillator made of differential buffers can have an even number of buffers to provide a number of phases that is a multiple of four. The differential buffer preferably includes a pair of CMOS inverters sharing a common PMOS current sourcing transistor and a common NMOS current sinking transistor.
    Type: Grant
    Filed: May 26, 1992
    Date of Patent: August 24, 1993
    Assignee: Digital Equipment Corporation
    Inventor: Kuang K. Chi
  • Patent number: 5223802
    Abstract: An optically controlled resonant tunnel diode oscillator assembly having a esonant tunnel diode (RTD) which, when voltage biased, oscillates at a free running frequency; an optical signal delivery system, such as a light intensity modulator connected to optical fibers; and other oscillator circuitry which one skilled in the art could readily adapt to the concepts of the present invention. In operation, the free running oscillation of the RTD can be frequency modulated or can be intensity locked to the intensity modulated optical signal delivered via the optical signal delivery system.
    Type: Grant
    Filed: April 1, 1992
    Date of Patent: June 29, 1993
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: James F. Harvey, Robert A. Lux, Thomas P. Higgins, Arthur Paolella, Dana J. Sturzebecher
  • Patent number: 5216390
    Abstract: An oscillator comprising a first and a second transistor having their sources interconnected via a capacitor and in which each gate is connected to the drain of the other transistor and each drain is connected to a load circuit. A load circuit in the form of a resistor produces a non-linear transfer characteristic. By arranging each load circuit in the form of a parallel combination of two transistors of which a first gate is connected to the drain of the first transistor and of which a second gate is connected to the drain of the second transistor, an oscillator presenting a more linear transfer characteristic is obtained. With different frequency adjusting circuits this transfer characteristic can be realized in a first-order approximation or can even be totally independent of the threshold voltage of the transistors used.
    Type: Grant
    Filed: January 14, 1992
    Date of Patent: June 1, 1993
    Assignee: U.S. Philips Corporation
    Inventors: Franciscus G. Erftemeijer, Wouter M. Boeke
  • Patent number: 5212459
    Abstract: The present invention provides a linearized and delay compensated all CMOS voltage controlled oscillator. A transconductance converter receives a control voltage input and provides a control current to a current controlled ramping circuit that is responsible for providing two ramping voltage outputs to the positive inputs of two comparators. These comparators compare the ramping voltages to a threshold voltage and provide pulses to a latch when the ramping voltages cross the threshold voltage. The latch provides the oscillating output of the circuit which is fed back to the current controlled ramping circuit for switching purposes. A compensation loop receives both the oscillating output of the latch and the control current as inputs and provides the threshold voltage to the comparators. The compensation loop contains a similar current controlled ramping circuit which provides ramping outputs identical to those of the first current controlled ramping circuit.
    Type: Grant
    Filed: October 13, 1992
    Date of Patent: May 18, 1993
    Assignee: Silicon Systems, Inc.
    Inventors: Shunsaku Ueda, Kwai-Kwong Lam, Craig Robertson
  • Patent number: 5206609
    Abstract: A current controlled ring oscillator use a plurality of serial amplifier stages with the output of the last stage connected to the input of the first stage. The ring oscillator maintains a linear output frequency over the control range by using a control circuit to compensate for variation in gate-source voltage of output clamping transistors. Moreover, switching nonlinearities can be removed by increasing the minimum value and decreasing the maximum value of the output waveform of each amplifier stage so as to compensate for time lost during the transition of the deadzone.
    Type: Grant
    Filed: May 15, 1992
    Date of Patent: April 27, 1993
    Assignee: Motorola, Inc.
    Inventor: Dejan Mijuskovic
  • Patent number: 5204642
    Abstract: An apparatus is disclosed for generating an output signal in response to an input signal having a variable input level. The output signal has an output frequency which varies to represent variations in the input level. The apparatus comprises a processing circuit for implementing a digital signal processing algorithm to generate control signals in response to the input signal, which control signals are representative of the variable input level, and an oscillator circuit for generating the output signal in response to the control signals. The control signals include a first control signal representing a first output frequency, a second control signal representing a second output frequency, and at least one intermediate control signal representing output frequencies intermediate the first and second output frequencies.
    Type: Grant
    Filed: September 2, 1992
    Date of Patent: April 20, 1993
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Safdar M. Asghar, Alfredo R. Linz
  • Patent number: 5200713
    Abstract: YIG oscillator apparatus comprises both an FET-based YIG oscillator circuit and a bipolar transistor-based YIG oscillator circuit inside a single magnetic structure. Both YIG spheres are disposed in the single air gap of the magnetic structure, which is defined by a pole piece which is tapered to an elongated pole surface which is only slightly larger than necessary to cover both YIG spheres. A band reject filter is included inside the housing for rejecting second harmonics of desired oscillation frequencies only.
    Type: Grant
    Filed: May 18, 1992
    Date of Patent: April 6, 1993
    Assignee: Wiltron Company
    Inventors: Martin I. Grace, Richard E. Simmons
  • Patent number: 5198784
    Abstract: A frequency modulation oscillator circuit includes an oscillator stage having two emitter-coupled transistor pairs, each being fed from at least one controllable current source, and at least one trigger stage for triggering the controllable current sources for the two transistor pairs.
    Type: Grant
    Filed: April 20, 1992
    Date of Patent: March 30, 1993
    Assignee: Siemens Aktiengesellschaft
    Inventor: Josef Fenk
  • Patent number: 5196811
    Abstract: A coupled resonator filter oscillator having an impedance matching network coupled between an amplifier and a filter. The impedance value of the amplifier varies due to amplifier gain compression. The network maintains a constant impedance to the filter when said amplifier's impedance changes to preserve the filter's original transfer function.
    Type: Grant
    Filed: October 18, 1991
    Date of Patent: March 23, 1993
    Assignee: Sawtek, Inc.
    Inventor: Jorgen W. Andersen
  • Patent number: 5194831
    Abstract: A fully-differential relaxation-type voltage controlled oscillator (VCO) (30) includes an operational transconductance amplifier (OTA) (31) for receiving a differential input voltage. The OTA (31) provides a charging current to a capacitor (33) proportional to the differential input voltage during a first phase of an output signal, and provides a discharging current to the capacitor (33) proportional to the differential input voltage during a secon d phase of the output signal. A comparator having hysteresis (34) detects the charge on the capacitor. A latching portion (35) latches the output of the comparator (34) to provide non-overlapping clock signals.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: March 16, 1993
    Assignee: Motorola, Inc.
    Inventor: H. Spence Jackson
  • Patent number: 5191301
    Abstract: A highly stable, high frequency voltage controlled oscillator (VCO) for phase locked loops is adapted to be fully integrated on a single silicon chip and is operable over a wide frequency range without using off-chip capacitors. The VCO is a fully differential ring oscillator with fully differential voltage control. The VCO is constructed from basic blocks made of differential emitter coupled transistor pairs. Voltage control is provided by differential d.c. amplifiers which vary the capacitive load seen by the logic blocks.
    Type: Grant
    Filed: May 12, 1992
    Date of Patent: March 2, 1993
    Assignee: International Business Machines Corporation
    Inventor: Allan L. Mullgrav, Jr.
  • Patent number: 5187450
    Abstract: An embodiment of the present invention is a voltage controlled oscillator (VCO) comprised of a differential pair of transistors that have respective positive feedback paths with phase-lead networks cross-coupled. Each positive feedback path on each side has two different phase-lead branches. The two phase-lead branches have the same phase differences on each side of the differential pair, in order to maintain a symmetry that improves common-mode noise rejection on a voltage control differential input. Current-steering is used to control the mixture of currents that arrive at the bases of the differential transistor pair from the respective two different phase-lead branches, and thereby changing the frequency of the VCO.
    Type: Grant
    Filed: March 13, 1992
    Date of Patent: February 16, 1993
    Assignee: Trimble Navigation Limited
    Inventors: Gary L. Wagner, Eric B. Rodal, Chung Y. Lau
  • Patent number: 5185584
    Abstract: A phase locked loop (PLL) circuit comprises a phase comparator, a low-pass filter, an error amplifier, and a voltage controlled oscillator (VCO) circuit which includes a current mirror circuit section and oscillator circuit section to provide an oscillation frequency based on the output current of the current mirror circuit section. To vary the oscillation over a wide range, a fixed reference voltage circuit is connected to the current mirror circuit, and either a source follower circuit made of a MOSFET or a FET or an emitter follower circuit made of a bipolar transistor is included is also connected to the current mirror circuit to selectively varying the output current of the current mirror circuit section upon application of a control voltage applied to the follower circuit.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: February 9, 1993
    Assignee: Seiko Epson Corporation
    Inventor: Kesatoshi Takeuchi
  • Patent number: 5175884
    Abstract: An apparatus (200) and method for adjusting the bias current of the oscillating device (320) in a VCO (202) in response to changes in the tuning voltage of the VCO to achieve reduced sideband noise.
    Type: Grant
    Filed: June 1, 1990
    Date of Patent: December 29, 1992
    Assignee: Motorola, Inc.
    Inventor: Jose I. Suarez