With Distributed Parameter Resonator Patents (Class 331/96)
  • Patent number: 8547181
    Abstract: An oscillator with adjustable oscillation frequency includes an active device showing a negative input resistance at a terminal, an oscillator circuit coupled to the terminal of the active device showing the negative input resistance, and an element with adjustable ohmic resistance by which the oscillation frequency of the oscillator is adjustable.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: October 1, 2013
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung E.V.
    Inventors: Rainer Weber, Ingmar Kallfass
  • Patent number: 8514027
    Abstract: A method of multi-stage substrate etching and a terahertz oscillator manufactured by using the method are provided. The method comprises the steps of forming a first mask pattern on any one surface of a first substrate, forming a hole by etching the first substrate using the first mask pattern as an etching mask, bonding, to the first substrate, a second substrate having the same thickness as a depth to be etched, forming a second mask pattern on the second substrate bonded, forming a hole by etching the second substrate using the second mask pattern as an etching mask, and removing an oxide layer having the etching selectivity between the first substrate and the second substrate.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: August 20, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chan Wook Baik, Jong Seok Kim, Seong Chan Jun, Sun Il Kim, Jong Min Kim, Chan Bong Jun, Sang Hun Lee
  • Publication number: 20130187721
    Abstract: An oscillation element includes an antenna for oscillation configured to oscillate electromagnetic waves, and multiple negative resistance elements electrically connected to the antenna in parallel, and the multiple negative resistance elements are disposed in only a place where the phases of electromagnetic waves oscillated therefrom are the common phase or opposite phase.
    Type: Application
    Filed: January 18, 2013
    Publication date: July 25, 2013
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: CANON KABUSHIKI KAISHA
  • Patent number: 8482357
    Abstract: A transverse acoustic wave resonator includes a base, a resonator component, a number of driving electrodes fixed to the base and a number of fixing portions connecting the base and the resonator component. The resonator component is suspended above a top surface of the base and is perpendicular to the base. The driving electrodes are coupling to side surfaces of the resonator component. The resonator component is formed in a shape of an essential regular polygon. The driving electrodes and the resonator component jointly form an electromechanical coupling system for converting capacitance into electrostatic force. Besides, a capacitive-type transverse extension acoustic wave silicon oscillator includes the transverse acoustic wave resonator and a method of fabricating the transverse acoustic wave resonator are also disclosed.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: July 9, 2013
    Assignee: Memsensing Microsystems Technology Co., Ltd
    Inventors: Bin Xiao, Ping Lv, Wei Hu, Jia-Xin Mei, Gang Li
  • Publication number: 20130141175
    Abstract: A push-push oscillator circuit with a first oscillation branch with a first active device and a first tank adapted to provide a signal having a fundamental frequency f0, a second oscillation branch with a second active device and a second tank symmetrical to the first oscillation branch and adapted to provide a signal having the fundamental frequency f0. Output branches are coupled to the first oscillation branch and the second oscillation branch to provide signals having the second harmonic frequency 2f0 of the fundamental signal based on the signals having the fundamental frequency f0 and/or to provide signals having the fundamental frequency f0; The push-push oscillator circuit further comprises at least one terminal branch with a terminal adapted to provide a component of a differential signal having the second harmonic frequency 2f0 or the fundamental frequency f0. The at least one terminal branch comprises a RF stub.
    Type: Application
    Filed: August 26, 2010
    Publication date: June 6, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Yi Yin, Hao Li, Saverio Trotta
  • Patent number: 8451069
    Abstract: An oscillator having a negative resistance device and a resonator includes: a transmission line connected to the negative resistance device, a three-terminal device including a first terminal connected to the signal line side of the transmission line at a terminal part, a second terminal connected to the grounding line side of the transmission line and a third terminal receiving a control signal applied thereto; a first regulation unit for regulating the control signal to be applied to the third terminal; and a second regulation unit for regulating the voltage to be applied to the second terminal, the first and the second regulation unit being adapted to regulate respectively the control signal and the voltage so as to make the characteristic impedance of the transmission line and the impedance between the first and the second terminal show an impedance matching. The power consumption rate of the stabilizing circuit can be reduced.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: May 28, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryota Sekiguchi, Takeaki Itsuji
  • Patent number: 8441193
    Abstract: A highly-reliable electronic frequency tuning magnetron comprises an anode for forming a resonant cavity which is segmented into a plurality of spaces in an inner periphery side of a cylindrical anode shell, a cathode provided at the center of the anode shell along its cylindrical axial direction and an exhausted structure having a coaxial central conductor which is connected to the inside of the cavity of the anode shell and is coupled thereto in a high-frequency manner, wherein the coaxial central conductor is externally led through a wall of the exhausted structure via a through-hole and the through-hole is covered by a dielectric portion placed between an external conductor for constituting the coaxial central conductor and the central conductor, wherein a portion of the led coaxial central conductor is conductively connected to a switching element.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: May 14, 2013
    Assignee: New Japan Radio Co., Ltd.
    Inventors: Hideyuki Obata, Kunihiko Takahashi
  • Patent number: 8427247
    Abstract: An oscillator includes: a plurality of free layers and a non-magnetic layer disposed between the plurality of free layers. Each of the plurality of free layers has perpendicular magnetic anisotropy or in-plane magnetic anisotropy. Magnetization directions of the free layers are periodically switched such that a signal within a given frequency band oscillates.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: April 23, 2013
    Assignee: Samsung Electronics Co, Ltd.
    Inventors: Sung-chul Lee, Sun-ae Seo, Young-jin Cho, Ung-hwan Pi, Kwang-seok Kim, Ji-young Bae
  • Patent number: 8421545
    Abstract: Oscillators and methods of operating the same, the oscillators include a pinned layer having a fixed magnetization direction, a first free layer over the pinned layer, and a second free layer over the first free layer. The oscillators are configured to generate a signal using precession of a magnetic moment of at least one of the first and second free layers.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-seok Kim, Sung-chul Lee, Kee-won Kim, Sun-ae Seo, Ung-hwan Pi
  • Patent number: 8410859
    Abstract: A microwave generator and/or methods thereof. A microwave generator may include a plurality of connected sequential sections in cascade. A microwave generator may include a first section and an output section. Each section may include an intermediate conductor, an upper conductor and a lower conductor. A first isolating material having a first thickness may be connected between an intermediate conductor and an upper conductor. A second isolating material having a second thickness may be connected between an intermediate conductor and a lower conductor. A switch may be connected between an intermediate conductor and an upper conductor and/or a lower conductor, forming a switched thickness and an unswitched thickness. The unswitched thickness of an output section is larger than the unswitched thickness of the first section and the increase in unswitched thickness from the first section to the output section includes a monotonic increase.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: April 2, 2013
    Inventor: Oved S.F. Zucker
  • Patent number: 8410858
    Abstract: Electronic circuitry comprising operational circuits of active switching type requiring timing signals, and conductive means for distributing said timing signals to the operational circuits, wherein the timing signal distribution means includes a signal path that has different phases of a drive signal are supplied via active means at different positions about the signal path where that path exhibits endless electro-magnetic continuity without signal phase inversion or has interconnections with another signal path having different substantially unidirectional signal flow where there is no endless electromagnetic continuity between those signal paths and generally has non-linear associated circuit means where the signal path is of a transmission line nature.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 2, 2013
    Assignee: Analog Devices, Inc.
    Inventor: John Wood
  • Publication number: 20130069731
    Abstract: A method of multi-stage substrate etching, includes forming a first mask pattern on one surface of a first substrate; forming a hole by etching the first substrate using the first mask pattern as an etching mask; forming a second mask pattern on one surface of a second substrate; forming a hole by etching the second substrate to a predetermined depth using the second mask pattern as an etching mask; bonding the first and second substrates together such that an etched surface of the first substrate faces an etched surface of the second substrate; forming a third mask pattern on the second substrate; and forming a hole passing through the second substrate by etching the second substrate using the third mask pattern as an etching mask, whereby it is prevented the occurrence of a radius of curvature in the bottom surface and the overhang structure occurring on a step surface.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 21, 2013
    Inventors: Chan Wook Baik, Seog Woo Hong, Jong Seok Kim, Seong Chan Jun, Sun IL Kim
  • Patent number: 8401512
    Abstract: A MMIC (microwave monolithic integrated circuit) based FET mixer and method for the same is provided. In particular, adjacent transistors, such as FETs (field effect transistors) share terminals reducing physical layout separation and interconnections. A smaller die size is realized with the improved system geometry herein provided.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: March 19, 2013
    Assignee: Viasat, Inc.
    Inventor: Kenneth V. Buer
  • Patent number: 8384486
    Abstract: A piezoelectric oscillator includes: a piezoelectric resonator element having a piezoelectric substrate and an excitation electrode formed on a surface of the piezoelectric substrate; a semiconductor circuit element provided with an oscillation circuit for oscillating the piezoelectric resonator element and having a first insulating film formed on a principal surface; a package for airtightly housing the semiconductor circuit element and the piezoelectric resonator element; and a protruding section having at least of a thin film circuit component formed on the first insulating film and connected to the oscillation circuit; and a second insulating film formed on the first insulating film and covering the thin film circuit component. In the oscillator, the piezoelectric resonator element is fixed to an upper surface of the protruding section.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: February 26, 2013
    Assignee: Seiko Epson Corporation
    Inventor: Shinji Nishio
  • Patent number: 8350629
    Abstract: A differential resonant ring oscillator (“DRRO*) circuit using a ring oscillator topology to electronically tune the oscillator over multi-octave bandwidths. The oscillator tuning is substantially linear, because the oscillator frequency is related to the magnetic tuning of a YIG sphere, which has a resonant frequency equal to a fundamental constant multiplied by the DC magnetic field. The simple circuit topology uses half turn or multiple half turn loops magnetic coupling methods connecting a differential pair of amplifiers into a feedback loop configuration having a four port YIG tuned filter, thus creating a closed loop ring oscillator. The oscillator may use SiGe bipolar junction transistor technology and amplifiers employing heterojunction bipolar transistor technology SiGe is the preferred transitor material as it keeps the transistor's 1/f noise to an absolute minimum in order to achieve minimum RF phase noise.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: January 8, 2013
    Inventors: Ronald A. Parrott, Allen A. Sweet
  • Patent number: 8334727
    Abstract: Apparatus comprising: a radio frequency (RF) Robinson oscillator comprising: a resonator comprising a sensor rhumbatron, the sensor rhumbatron comprising a cavity member, the cavity member having a re-entrant boss member, the re-entrant boss member being arranged to project into a cavity portion of the cavity member; a feedback element arranged to provide positive radio frequency (RF) feedback to the cavity member thereby to increase a quality factor Q of the cavity member, the feedback element having first and second terminals coupled to the cavity member, the apparatus being operable to cause the oscillator to oscillate at a resonant frequency; and an output arranged to provide a signal that varies according to a value of at least one electrical parameter of the oscillator, said at least one electrical parameter being selected from amongst an electromagnetic loss and a resonant frequency.
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: December 18, 2012
    Assignee: Isis Innovation Limited
    Inventors: John Francis Gregg, Mazhar Bari
  • Patent number: 8324975
    Abstract: A measurement system for capturing a transit time, phase, or frequency of energy waves propagating through a propagation medium (702) is disclosed. The measurement system comprises two different closed-loop feedback paths. The first path includes a transducer driver (726), a transducer (704), a propagation structure (702), a transducer (706), and a zero-crossing receiver (740). The series and parallel resonance of the transducer (704) does not overlap the series and parallel resonance of the transducer (706). A second path includes a transducer driver (1126), a transducer (1104), a propagation medium (1102), a reflecting surface (1106), and an edge-detect receiver (1140). Each positive closed-loop path maintains the emission, propagation, and detection of energy waves in the propagation medium (702, 1102). In either path, a propagation tuned oscillator maintains positive closed-loop feedback of the system that sustains detection, emission, and propagation of energy waves or pulses in a medium.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: December 4, 2012
    Inventor: Marc Stein
  • Patent number: 8319565
    Abstract: To provide a resonator that includes a resonant tunneling diode. A resistor layer provided in series with the resonant tunneling diode, a dielectric provided in contact with the resonant tunneling diode, and first and second conductors that are placed so that the resonant tunneling diode and the dielectric are sandwiched therebetween are provided. Further, a resonator area where the dielectric is sandwiched between the first and second conductors, and a resistor area where the resonant tunneling diode and the resistor layer are sandwiched between the first and second conductors are provided in parallel with each other.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: November 27, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryota Sekiguchi, Yasushi Koyama
  • Patent number: 8299861
    Abstract: The present invention comprises a modular microwave source comprising a novel electromagnetic oscillator based on a modified Blumlein architecture with an integrated antenna. In one or more embodiments, the invention comprises a triplate Blumlein in which the plates are configured and arranged to act as a waveguide and antenna. In one or more embodiments, high-permittivity dielectric materials are disposed between the center plate and one or both of the top and bottom plates to increase the energy storage and lengthen the duration of a damped sinusoid output. In one or more embodiments, photo-conductive semiconductor switches are disposed between the center plate and one or both of the top and bottom plates to act as high-speed switches. In one or more embodiments, a plurality of the modular microwave sources of the invention are arranged in an array, creating a compact, tunable, high-power microwave source suitable for mobile applications.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: October 30, 2012
    Assignee: Eureka Aerospace, Inc.
    Inventors: James Z. Tatoian, William Nunnally, Scott Tyo
  • Patent number: 8228130
    Abstract: An oscillator includes oscillator circuitry (8) including a transconductance stage (2) and a resonator (3). A comparator (10) produces first (CLK) and second (/CLK) clock signals which indicate the timing of positive and negative phases of a differential output signal (VIN+-VIN?) produced by the transconductance circuit in response to the resonator. A synchronous rectifier (14) converts the differential output signal to a current (IRECT) in response to the first and second clock signals. A switched capacitor notch filter (15) filters the current in response to the first and second clock signals. A control current (ICONTROL) which controls the transconductance of the transconductance circuit is generated in response to the notch filter. The resonator may be a MEMS resonator.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: July 24, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Vadim V. Ivanov, Michael J. Shay
  • Publication number: 20120169427
    Abstract: A Force-Mode Distributed Wave Oscillator (FMDWO) that provides accurate multiple phases of an oscillation, a Force Mode Distributed Wave Antenna as a radiating element, a Force-Mode Distributed Oscillator Amplifier (FMDOA) and an array of amplifiers capable of operating as a beam forming phased-array antenna driver. Two distinct force mode mechanisms, one delay-based and the other geometry-based, utilizing inverter amplifiers, inject an oscillation on independent conductor loops or rings via transmission lines forming a differential transmission medium for the oscillation wave. Once the oscillation wave is initiated through the forcing mechanisms, the oscillations continue uninterrupted independent of any external triggering.
    Type: Application
    Filed: December 31, 2010
    Publication date: July 5, 2012
    Inventors: Ahmed Emira, Ahmet Tekin, Damir Ismailov, Suat Utku Ay
  • Patent number: 8207806
    Abstract: According to one embodiment, magnetization directions of a magnetic free layer and a magnetic pinned layer are parallel to junction planes between the magnetic free layer and a spacer layer and between the magnetic pinned layer and the spacer layer. The magnetic free layer has a uniaxial magnetic anisotropy, and generates a magnetization oscillation when a current larger than an oscillation threshold current flows through the magnetic free layer. A magnetic field generator controls a magnitude and a direction of an external magnetic field to cancel a shift amount of an oscillation frequency caused by a diamagnetic field due to the magnetization oscillation and a shift amount of the oscillation frequency caused by a magnetic field due to the uniaxial magnetic anisotropy.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: June 26, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kiwamu Kudo, Koichi Mizushima, Tazumi Nagasawa, Rie Sato
  • Patent number: 8193870
    Abstract: The present invention is a method and system for compensation of frequency pulling in an all digital phase lock loop. The all digital phase lock loop can utilize a multi-phase oscillator including latches with substantially all of the latches paired with a corresponding dummy cell. The dummy cells can have impedance characteristics, such as variable capacitance values which correspond to the variable capacitance value of the latches such that the sum of the two variable capacitance values remains substantially constant, even when the polarity of the reference clock signal changes. The dummy cells can be, for example, variable capacitors or dummy latches. The phase lock loop can also include a multiplying unit. The multiplying unit can receive a reference clock signal and generate a frequency multiplied reference clock signal.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: June 5, 2012
    Assignee: Panasonic Corporation
    Inventors: Koji Takinami, Richard Strandberg, Paul Cheng-Po Liang
  • Patent number: 8188799
    Abstract: Provided is a microelectromechanical system (MEMS) that includes a first structure and second structure. The first structure and second structure may each include a first substrate and a second substrate. The first substrate of each structure may have first and second surfaces that face each other. The first substrate may include a via etching hole pattern penetrating the first surface and the second surface and a first non-via etching hole pattern penetrating the first surface. The second substrate of each structure may have third and fourth surfaces that face each other. The second substrate may include a second non-via etching hole pattern penetrating the third surface in a position corresponding to the via etching hole pattern of the first substrate. In the microelectromechanical system (MEMS) the second surface of the first substrate and the third surface of the second substrate may be bonded together.
    Type: Grant
    Filed: July 6, 2010
    Date of Patent: May 29, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chan-wook Baik, Seog-woo Hong, Hwan-soo Suh
  • Patent number: 8183943
    Abstract: When a direct-current voltage is applied from a power supply, a signal line generates a standing wave having the ¾ wavelength where a starting end of the signal line connected to the power supply is used as a node and a terminating end is used as an antinode. Strips are connected to a ground layer through switches, respectively. The switches switch connection and non-connection of the strips and the ground layer, under the control from a switch controller. By switching the connection and non-connection of the switches, the distance between the signal line and the ground layer is pseudo adjusted and the effective permittivity in a transmission line unit changes. Therefore, the frequency of the standing wave can be adjusted.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: May 22, 2012
    Assignee: Fujitsu Limited
    Inventor: Tszshing Cheung
  • Publication number: 20120112844
    Abstract: An oscillator having a negative resistance device and a resonator includes: a transmission line connected to the negative resistance device, a three-terminal device including a first terminal connected to the signal line side of the transmission line at a terminal part, a second terminal connected to the grounding line side of the transmission line and a third terminal receiving a control signal applied thereto; a first regulation unit for regulating the control signal to be applied to the third terminal; and a second regulation unit for regulating the voltage to be applied to the second terminal, the first and the second regulation unit being adapted to regulate respectively the control signal and the voltage so as to make the characteristic impedance of the transmission line and the impedance between the first and the second terminal show an impedance matching. The power consumption rate of the stabilizing circuit can be reduced.
    Type: Application
    Filed: September 3, 2010
    Publication date: May 10, 2012
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Ryota Sekiguchi, Takeaki Itsuji
  • Publication number: 20120098607
    Abstract: The present invention comprises a modular microwave source comprising a novel electromagnetic oscillator based on a modified Blumlein architecture with an integrated antenna. In one or more embodiments, the invention comprises a triplate Blumlein in which the plates are configured and arranged to act as a waveguide and antenna. In one or more embodiments, high-permittivity dielectric materials are disposed between the center plate and one or both of the top and bottom plates to increase the energy storage and lengthen the duration of a damped sinusoid output. In one or more embodiments, photo-conductive semiconductor switches are disposed between the center plate and one or both of the top and bottom plates to act as high-speed switches. In one or more embodiments, a plurality of the modular microwave sources of the invention are arranged in an array, creating a compact, tunable, high-power microwave source suitable for mobile applications.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Inventors: James Z. Tatoian, William Nunnally, Scott Tyo
  • Patent number: 8159307
    Abstract: In a logical element, supporting portions, and a beam supported by them at two ends are formed. The beam has a back side surface spaced apart from the top side surface of a substrate, creating a space between the facing surfaces of the beam and substrate. An excitation electrode is formed on one supporting portion, whereas an oscillation detecting electrode is formed on the other supporting portion.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: April 17, 2012
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hiroshi Yamaguchi, Imran Mahboob, Hajime Okamoto
  • Patent number: 8160518
    Abstract: A transceiver includes a harmonic termination circuit that receives a tunable harmonic voltage from a power amplifier control. The harmonic termination circuit includes a variable capacitor that is capable of adjusting its capacitance in response to the tunable harmonic termination voltage to achieve at least two modes of operation. The at least two modes of operation may be EDGE mode and GSM mode. In this embodiment, the harmonic termination circuit allows for linearity specifications of EDGE to be met, while not degrading the efficiency of the transceiver when operating in GSM mode. In one embodiment, the harmonic termination circuit further includes an inductive element in series with the variable capacitor.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: April 17, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Marcus R. Ray, Darrell G. Hill, Ricardo A. Uscola
  • Patent number: 8154354
    Abstract: Methods and apparatus for implementing stable self-starting and self-sustaining high-speed electrical nonlinear pulse (e.g., soliton, cnoidal wave, or quasi-soliton) oscillators. Chip-scale nonlinear pulse oscillator devices may be fabricated using III-V semiconductor materials (e.g., GaAs) to attain soliton pulse widths on the order of a few picoseconds or less (e.g., 1 to 2 picoseconds, corresponding to frequencies of approximately 300 GHz or greater). In one example, a nonlinear pulse oscillator is implemented as a closed loop structure that comprises a nonlinear transmission line and a distributed nonlinear amplifier arrangement configured to provide a self-adjusting gain as a function of an average voltage of the oscillator signal.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: April 10, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: David Ricketts, Donhee Ham, Xiaofeng Li
  • Patent number: 8149066
    Abstract: An integrated circuit distributed radio frequency oscillator comprises a semiconductor chip which includes a differential input transmission line, a differential output transmission line and, coupled in parallel between these transmission lines at spaced apart portions, a number of differential amplifier cells with adjustable delay. The output end of the output transmission line is coupled back to the input end of the input transmission line by a feedback link with a pair of on-chip capacitors. The delay introduced by the amplifier cells is variable in response to a tuning voltage applied to a differential tuning input, making the oscillator suitable for use as a distributed VCO in, e.g. a phase-locked loop circuit. The layout of the oscillator on a semiconductor chip includes the series-connected arrangement of the differential transmission lines in a rectilinear spiral path.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: April 3, 2012
    Assignee: Analogies, Inc.
    Inventors: George P. Bilionis, Alexios N. Birbas, Michael K. Birbas, John C. Kikidis
  • Patent number: 8115560
    Abstract: In one embodiment, a circuit topology for use in an n-phase voltage controlled oscillator (VCO) or injection-locked frequency divider includes a transmission line ring having n transmission line delay segments connected at n junctions, where n is an integer greater than or equal to 3. Each transmission line segment provides a 1/n wavelength signal delay between adjacent junctions. The transmission line ring is coupled to a first power supply node. Each of the junctions has a respective transistor coupled thereto, each transistor having a first source/drain terminal coupled to its respective junction, a second source/drain terminal coupled to a second power supply node, and a gate terminal, wherein the gate terminal is coupled to a signal that is ½ wavelength out-of-phase with respect to a signal at the first source/drain terminal of the transistor.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: February 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Shine Chung
  • Publication number: 20120025920
    Abstract: An oscillator with adjustable oscillation frequency includes an active device showing a negative input resistance at a terminal, an oscillator circuit coupled to the terminal of the active device showing the negative input resistance, and an element with adjustable ohmic resistance by which the oscillation frequency of the oscillator is adjustable.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 2, 2012
    Inventors: Rainer Weber, Ingmar Kallfass
  • Patent number: 8098105
    Abstract: This radio-frequency oscillator includes a magnetoresistive device in which an electric current is able to flow. The magnetoresistive device includes a first magnetic layer, known as a “trapped layer”, whereof the magnetization is of fixed direction. The magnetoresistive device further includes a second magnetic layer known as a “free layer” and a non-magnetic layer, known as an “intermediate layer”, interposed between the first and second layer, known as the intermediate layer. The oscillator further includes means capable of causing an electron current to flow in said layers constituting the aforementioned stack and in a direction perpendicular to the plane which contains said layers. One of the three layers constituting the magnetoresistive device includes at least one constriction zone of the electric current passing through it.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 17, 2012
    Assignee: Commissariat à I'Energie Atomique
    Inventors: Marie-Claire Cyrille, Bertrand Delaet, Jean-Francois Nodin, Veronique Sousa
  • Patent number: 8089322
    Abstract: An inductance enhanced rotary traveling wave oscillator is disclosed. Portions of the transmission line conductors are increased in length and run in parallel. Because the currents in these portions travel in the same direction, the inductance of these inductors is increased. By controlling the length of the transmission line conductors in these areas compared to the lengths in which the currents travel in opposite directions, the overall impedance of the oscillator can be increased. Increased impedance leads to lower power, higher Q, and lower phase noise for the oscillator. Additionally, the folded nature of the transmission line conductors permits a longer length of transmission line conductors to be routed in a smaller area. The folded nature also permits placement of the devices to take into account their switching delays. A folded circular version of the oscillator is possible, leading to improved access to phase taps on the oscillator.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: January 3, 2012
    Inventors: Stephen M Beccue, Anh D Pham
  • Patent number: 8058935
    Abstract: An apparatus comprises a structure, an array of oscillator units, a plurality of waveguides in the structure, and a synchronizing cavity located within the structure. The array of oscillator units has a plurality of rows and a plurality of columns associated with the structure. Oscillator units in a row within the array of oscillator units are directly coupled to each other. The plurality of waveguides is configured to couple the array of oscillator units to the synchronizing cavity. The synchronizing cavity is configured to cause the array of oscillator units to operate at substantially a common frequency.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: November 15, 2011
    Assignee: The Boeing Company
    Inventors: Jonathan James Lynch, Perry A. Macdonald
  • Patent number: 8018290
    Abstract: An output terminal 6 is provided at the connecting point 5 between the collector terminal of a transistor 1 and an open-ended stub 4 by connecting the open-ended stub 4 to the collector terminal of the transistor 1, the open-ended stub 4 having a line length equal to a quarter of the wavelength of a signal of frequency 2N·F0 or 2N times the oscillation frequency F0. In addition, an output terminal 9 is provided at a connecting point 8 located at a distance equal to a quarter of the wavelength of a signal of oscillation frequency F0 from the end of an open-ended stub 7 by connecting the open-ended stub 7 to the base terminal of the transistor 1, the open-ended stub 7 having a line length longer than a quarter of the wavelength of the signal of oscillation frequency F0.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: September 13, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hiroyuki Mizutani, Kazuhiro Nishida, Masaomi Tsuru, Kenji Kawakami, Morishige Hieda, Moriyasu Miyazaki
  • Patent number: 7940134
    Abstract: An active YIG oscillator driving device is comprised of: an YIG oscillator including a main coil, an FM coil, a frequency generator operating to generate an output frequency in response to a magnetic field generated from the FM coil; a phase locker setting the output frequency to a target frequency by controlling an amount of current provided into the FM coil and adjusting the output frequency; and a main coil controller regulating the amount of current provided into the main coil, if the output frequency varies out of a controllable range by the FM coil, and adjusting the output frequency. A time for setting the output frequency of the YIG oscillator is shortened to improve the stability of the output frequency thereof against environmental conditions.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: May 10, 2011
    Inventor: Jin-Joong Kim
  • Patent number: 7932788
    Abstract: The invention relates to micromechanical elements deflectable in an oscillating manner and to a method for the operation of such elements. In this respect, it is the object of the invention to be able to operate the micromechanical elements in a stable and simple manner on the oscillating deflection while taking account of the respective mechanical resonant frequency. A least one spring element is present on elements in accordance with the invention with which it is held. It is deflected between two reversal points using an electrical AC voltage. The one or more spring element(s) has/have non-linear spring characteristics so that a changed mechanical resonant frequency results in dependence on the respective deflection.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: April 26, 2011
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.v.
    Inventors: Harald Schenk, Alexander Wolter, Thilo Sandner, Christian Drabe, Thomas Klose
  • Patent number: 7898348
    Abstract: A terahertz oscillation device includes a first electrode placed on the semiconductor substrate; a second electrode placed via the insulating layer toward the first electrode, and opposes the first electrode to be placed on the semiconductor substrate; a MIM reflector formed between the first electrode and the second electrode by sandwiching the insulating layer; a resonator adjoining of the MIM reflector and is placed between the first electrode and the second electrode which oppose on the semiconductor substrate; an active element placed at the substantially central part of the resonator; a waveguide adjoining of the resonator and is placed between the first electrode and the second electrode which oppose on the semiconductor substrate; and a horn apertural area adjoining of the waveguide and is placed between the first electrode and the second electrode which oppose on the semiconductor substrate.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: March 1, 2011
    Assignee: Rohm Co., Ltd.
    Inventors: Toshikazu Mukai, Masahiro Asada, Safumi Suzuki, Kenta Urayama
  • Patent number: 7889015
    Abstract: To provide an oscillation device having a long oscillation wavelength in which wavelength variable width is relatively broad and wavelength sweep rate is relatively high. An oscillation device includes a gain medium having a gain with respect to an electromagnetic wave to be oscillated, cavity structures for resonating the electromagnetic wave, and energy injection means and for injecting pumping energy into the gain medium. The gain medium is sandwiched between a first negative permittivity medium and a second magnetic permittivity medium each of which real part of permittivity with respect to the electromagnetic wave is negative. Electric field application means is provided for at least one of the first negative permittivity medium and the second negative permittivity medium to apply an electric field for changing a depletion region formed at a boundary part with the gain medium.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: February 15, 2011
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryota Sekiguchi, Toshihiko Ouchi
  • Patent number: 7880551
    Abstract: Systems and methods for distributing a clock signal are disclosed. In some embodiments, systems for distributing a clock signal include a plurality of resonant oscillators, each comprising an inductor; and a differential clock grid that distributes the clock signal. The differential clock grid is coupled to the plurality of resonant oscillators and the clock signal, and the inductances of the inductors are configured such that a resonant frequency of the plurality of resonant oscillators is substantially equal to the frequency of the clock signal.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: February 1, 2011
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Steven Chan, Kenneth L. Shepard, Zheng Xu
  • Publication number: 20100308925
    Abstract: A micromachined air-cavity resonator, a method for fabricating the micromachined air-cavity resonator, and a band-pass filter and an oscillator using the same are provided. In particular, a micromachined air-cavity resonator including a current probe fabricated together when the air-cavity resonator is fabricated, and a groove structure for rejecting detuning effect when an external circuit of a package substrate is coupled to the current probe, a millimeter-wave band-pass filter using the same, and a millimeter-wave oscillator using the same are provided. The micromachined air-cavity resonator includes a cavity structure which comprises a current probe simultaneously formed through a fabrication process, and a groove structure; and a package substrate integrated with the cavity structure. Thus, the micromachined air-cavity resonator can be easily fabricated by etching a silicon substrate and easily integrated to the package substrate using the flip-chip bonding.
    Type: Application
    Filed: June 16, 2009
    Publication date: December 9, 2010
    Inventors: Sang Sub Song, Kwang Seok Seo
  • Patent number: 7808330
    Abstract: A high-frequency oscillator includes a high-frequency oscillation element having a magnetization pinned layer whose magnetization direction is pinned substantially in one direction, an oscillation layer formed of a magnetic material which generates a high-frequency oscillation phenomenon when a current is supplied, an intermediate layer provided between the magnetization pinned layer and the oscillation layer, the intermediate layer having an insulation layer and current paths which pass through the insulation layer in a thickness direction, and a pair of electrodes which supply a current perpendicularly to a plane of a stacked film including the magnetization pinned layer, the intermediate layer and the oscillation layer.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: October 5, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Hitoshi Iwasaki
  • Patent number: 7804374
    Abstract: A device has a resonator coupled to input and output nodes, the resonator being characterized by a transducer to drive the output node, and further characterized by a feedthrough capacitance such that portions of the input signal bypass the transducer to allow a spurious signal to reach the output node. The device includes a compensation capacitor coupled to the output node to define a compensation capacitance in accordance with the feedthrough capacitance. A phase inversion circuit is coupled to the compensation capacitance to generate a compensation signal and coupled to the output node such that the spurious signal is offset by the compensation signal. In some cases, a differential amplifier of the phase inversion circuit has the compensation capacitance in a feedback path to offset the feedthrough capacitance. In these and other cases, the compensation capacitance and the feedthrough capacitance may be unmatched to avoid overcompensation.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: September 28, 2010
    Assignee: Discera, Inc.
    Inventors: Andrew R. Brown, Wan-Thai Hsu, Kenneth R. Cioffi
  • Patent number: 7777583
    Abstract: A whispering gallery mode dielectric resonator includes a conductive enclosure comprising a top, a bottom and walls. The resonator also includes a dielectric element disposed in the enclosure and operative to support a desired resonant mode that is dependent on a shape and dimensions of the dielectric resonator; and a mode selective coupling structure disposed over the enclosure and configured to selectively couple electromagnetic energy of the desired mode and configured not to substantially couple electromagnetic energy of a spurious mode supported in a region between the enclosure and the dielectric element.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: August 17, 2010
    Assignee: Agilent Technologies, Inc.
    Inventors: Robert C. Taber, Curt Alan Flory
  • Patent number: 7760038
    Abstract: Provided is a voltage controlled oscillator having a new type of a resonator and a negative resistance part capable of finely tuning negative resistance. Thus, the voltage controlled oscillator has an excellent quality factor characteristic and can finely tune the negative resistance even after its fabrication is completed. The voltage controlled oscillator having an active element includes: a resonating unit for generating an oscillation frequency according to a resonance capacitance; a frequency tuning unit, connected to a source terminal of the active element, for tuning the oscillation frequency; and a negative resistance adjusting unit, connected to the frequency tuning unit, for generating a negative resistance to adjust the oscillation frequency, the negative resistance adjusting unit including a varactor diode for finely adjusting the negative resistance.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: July 20, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Yong-Deuk Lee, Cheol-Oh Jeong, Jong-Won Eun, Seong-Pal Lee, Ho-Jin Lee
  • Patent number: 7750748
    Abstract: A Method and an apparatus for distributing a clock signal are disclosed. The apparatus for distributing a clock signal includes a pair of flat plates, a variable inductor and a connection channel. The pair of flat plates includes a clock flat plate having at least one of clock signal extraction points and a reference flat plate arranged in parallel to the clock flat plate. The inductor is connected between the pair of flat plates, and the connection channel is configured to connect electrically the at least one of clock signal extraction points to an external circuit. The inductor may be adjusted to have an inductance for generating a resonance signal of a target frequency from the pair of flat plates.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: July 6, 2010
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Jongbae Park, Jeonghyeon Cho, Joungho Kim
  • Patent number: 7741921
    Abstract: A Trigger-Mode Distributed Wave Oscillator that provides accurate multiple phases of an oscillation and a method of use of the same. An auxiliary oscillator triggers an oscillation on independent conductor loops or rings forming a differential transmission medium for the oscillation wave. Once the oscillation wave is triggered, the auxiliary oscillator can be powered down to turn it off, and the wave can sustain itself indefinitely through active amplifying devices which can compensate for losses in the conductors.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: June 22, 2010
    Assignee: Waveworks, Inc.
    Inventor: Damir Ismailov
  • Patent number: 7728686
    Abstract: A digital-controlled oscillator (DCO) is utilized in an all-digital phase-locked loop for eliminating frequency discontinuities. The DCO includes a tank module and a negative gm cell. The tank module comprises a plurality of cells, at least a portion of the cells comprising a first tracking set and a second tracking set for respectively handling an odd bit or an even bit. The odd bit and the even bit are related to an integer signal, a fractional signal or a combination thereof, the fractional signal is indicated by a primary voltage inputted to the DCO. With the DCO, frequency discontinuities and undesired spurs are eliminated.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: June 1, 2010
    Assignee: Mediatek Inc.
    Inventors: Jing-Hong Conan Zhan, Ping-Ying Wang, Hsiang-Hui Chang