Tilt, Imbalance, Or Overload Patents (Class 340/440)
  • Patent number: 9452657
    Abstract: Ride height for use in an adaptive suspension damping system, tiltable headlamp systems, or other systems is determined for first and second wheels which are mounted to first and second suspensions having first and second control arms coupled between the respective wheels and a frame of the vehicle. An anti-roll system is coupled between the control arms. A mechanical height sensor is coupled to the first wheel to directly sense a first height associated with the first wheel. A strain sensor is coupled to the anti-roll system to generate a strain signal in response to a strain in the anti-roll system. A controller converts the strain signal to a second height associated with the second wheel. Thus, ride heights for both wheels on opposite sides of the vehicle are obtained using only one direct height measurement.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: September 27, 2016
    Assignee: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Kevin S. Giaier, Edmund S. Anderson
  • Patent number: 9437055
    Abstract: When calculating an angle of articulation between two portions of an articulated vehicle such as a tractor-trailer combination, a camera-based articulation angle measuring system comprises camera(s) mounted on the tractor and/or trailer that observe their counterpart and/or features on the other portion of the vehicle. The angles or locations of the counterpart features are measured in the image(s) produced by the camera(s). A geometric model is employed to convert the location and/or angular measurements into a corresponding articulation and/or roll angle for the tractor-trailer combination.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: September 6, 2016
    Assignee: BENDIX COMMERCIAL VEHICLE SYSTEMS LLC
    Inventors: Andreas U Kuehnle, Marton Gyori
  • Patent number: 9434307
    Abstract: A rollover meter device is disclosed that prevents vehicle rollover and minimizes the harm and damage caused if a rollover occurs. The rollover meter device comprises a meter housing component and a digital display component that displays the current angle of the vehicle. The meter housing component comprises microelectromechanical sensors (MEMS), such as a gyro component and two tri-axial accelerometer components which are mounted on a printed circuit board (PCB), along with LED warning lights, which is then secured behind the digital display inside the meter housing component. Furthermore, the meter housing component can be in electrical communication with a vehicle's gas supply, ignition, blade rotation, Power Take Off (PTO), and/or wireless device.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: September 6, 2016
    Inventor: Thomas Richard Alexander
  • Patent number: 9323802
    Abstract: Processing data includes profiling data from a data source, including reading the data from the data source, computing summary data characterizing the data while reading the data, and storing profile information that is based on the summary data. The data is then processed from the data source. This processing includes accessing the stored profile information and processing the data according to the accessed profile information.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: April 26, 2016
    Assignee: AB INITIO TECHNOLOGY, LLC
    Inventors: Joel Gould, Carl Richard Feynman, Paul Bay
  • Patent number: 9303953
    Abstract: A system for detecting tamper events in a digital circuit by having a Critical Path Replica (CPR) circuit operable in parallel with the circuit being monitored, and adjusted to generate a timing violation if the operating parameters of the circuit change to be outside the normal operating parameters. The critical path replica circuit is adjusted to generate a timing violation before the actual circuit being monitored fails due to the changed operating parameters.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: April 5, 2016
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: William C Wallace, Alok Anand, Ravi Srivaths, Chillara Kiran Kumar, Aruna Koityar
  • Patent number: 9275008
    Abstract: An active device of a vehicle, for example a seat belt tensioner, is triggered by reference to an estimated vehicle roll rate exceeding a threshold roll rate. The estimated vehicle roll rate may be conditioned according to vehicle speed, and is determined from inputs of vehicle lateral acceleration, steering wheel angle, and steering wheel speed.
    Type: Grant
    Filed: March 29, 2012
    Date of Patent: March 1, 2016
    Assignee: Jaguar Land Rover Limited
    Inventor: Paul Bunker
  • Patent number: 9201766
    Abstract: Embodiments of a producer graph oriented programming framework with scenario support have been presented. In one embodiment, a request to evaluate potential impacts by a change on an application program is received. The application program includes a set of producers, each having at least an instance and a method associated with the instance. Responsive to the request, the application program may be simulated with the change while the existing states and existing outputs of the producers are preserved.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 1, 2015
    Assignee: MUREX S.A.S.
    Inventors: Elias Edde, Fady Chamieh
  • Patent number: 9046570
    Abstract: A method and apparatus for limiting access to an integrated circuit (IC) upon detection of abnormal conditions is provided. At least one of abnormal voltage detection, abnormal temperature detection, and abnormal clock detection are provided with low power consumption. Both abnormally low and abnormally high parameter values (e.g. abnormally low or high voltage, temperature, or clock frequency) may be detected. Abnormal clock detection may also detect a stopped clock signal, including a clock signal stopped at a low logic level or at a high logic level. Furthermore, abnormal clock detection may detect an abnormal duty cycle of a clock signal. A sampled bandgap reference may be used to provide accurate voltage and current references while consuming a minimal amount of power. Upon detection of an abnormal parameter value, one or more tamper indications may be provided to initiate tampering countermeasures, such as limiting access to the IC.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: June 2, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Alfredo Olmos, James R. Feddeler, Miten H. Nagda, Stefano Pietri
  • Publication number: 20150145665
    Abstract: A system is disclosed for communicating tactile messages to a user, such as a racecar driver, yacht crewmember, or other athlete. The system can include a tactile vest having tactile activators for conveying tactile messages to the user, including real time messages for helping the user assess and improve physical performance. The messages may be generated based on various types of sensor data, including, for example, data collected by vehicle sensors of a racecar or yacht.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 28, 2015
    Inventor: Peter Hill
  • Patent number: 9026310
    Abstract: A predictive method of detecting the depth of water ahead of a wading vehicle comprises providing a wading sensor and an attitude sensor on the vehicle, and using this information to estimate the depth of water at a location ahead of the direction of vehicle movement. Corresponding apparatus is disclosed.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Jaguar Land Rover Limited
    Inventors: Thuy-Yung Tran, Edward Hoare, Nigel Clarke
  • Patent number: 8981918
    Abstract: A warning system for a vehicle having an air suspension system can include an indicator, an event data recorder, and a controller. The controller can be configured to determine a load on a front axle and a rear axle when the vehicle is in a static condition and compare the determined load on the front and rear axles to a predetermined load threshold for each of the front and rear axles. A warning signal can be provided to the indicator indicative of at least one of the determined loads exceeding the corresponding predetermined load threshold upon the controller determining one of the determined loads exceeds the corresponding predetermined load threshold. Data indicative of at least one of the determined loads exceeding the corresponding predetermined threshold can be communicated to the event data recorder.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: March 17, 2015
    Assignee: Chrysler Group LLC
    Inventor: Satish Panse
  • Patent number: 8983722
    Abstract: A rollover avoidance method may include determining tire loading for at least two tires of a vehicle. A stability of the vehicle with regard to rolling over may be predicted based at least on the determined tire loading. The vehicle may be controlled at least on the basis of the predicted stability.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: March 17, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Nikolai K. Moshchuk, Shih-Ken Chen, Flavio Nardi
  • Publication number: 20150048936
    Abstract: A level indicator device is disclosed for use in conjunction with a road vehicle such as a caravan, trailer, motor home or mobile crane and which comprises an electrically energised level sensor that is arranged to provide an output signal that is representative of a prevailing level of the sensor, a signal generator associated with the sensor and arranged in use to generate a signal that is representative of a substantially horizontal level when that level is sensed to prevail by the sensor. A radiofrequency signal transmitter is located in circuit with the signal generator and is arranged to transmit a radiofrequency signal that is modulated by the signal generated by the signal generator, and a remote receiver is provide and is arranged to receive and demodulate the radiofrequency signal. In one embodiment of the level indicator device the level sensor comprises a MEMS accelerometer that measures G-force in plural axes.
    Type: Application
    Filed: March 21, 2013
    Publication date: February 19, 2015
    Applicant: Level Systems PTY Ltd
    Inventors: Anthony Carpani, Gary Gleeson
  • Patent number: 8947253
    Abstract: The invention relates to an immersive vehicle multimedia system that that is affected by vehicle sensors and collected data concerning environmental. The immersive vehicle multimedia system includes a vehicle, at least one sensor or other vehicle component gathering input as data from an external and internal vehicle environment, an immersive multimedia device connected to each sensor, and media content run through the multimedia device. The media content includes a primary script and a secondary script, the secondary script depending on the gathered input.
    Type: Grant
    Filed: July 15, 2009
    Date of Patent: February 3, 2015
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: David Bloom, Jeff Zabel
  • Patent number: 8924116
    Abstract: A vehicle motion control device providing good trace performance with a simple configuration for performing a rollover prevention control involving suppressing rollover of a vehicle by applying a braking force to a front wheel located on the radially outer of the turning locus and a rear wheel located on the radially outer of the turning locus, comprises a braking control unit configured to restrict the application of the braking force to the front wheel located on the radially outer of the turning locus until a predetermined limit time elapses since the application of the braking force to the rear wheel located on the radially outer of the turning locus is started when the braking force is applied to the front wheel located on the radially outer of the turning locus and the rear wheel located on the radially outer of the turning locus as the rollover prevention control.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: December 30, 2014
    Assignee: Advics Co., Ltd.
    Inventors: Tetsuya Yamada, Hideaki Koto
  • Patent number: 8902055
    Abstract: A rollover warning system for a vehicle includes: a base control inertial measurement unit with a plurality of sensors and a computer. The plurality of sensors measures a plurality of vehicle measurements. The plurality of vehicle measurements include at least two of: a longitudinal acceleration measurement; a lateral acceleration measurement; a vertical acceleration measurement; a roll rate measurement; a yaw rate measurement; and combinations thereof. Optionally, a pitch rate gyro for pitch measurement can be added for additional functionality, such as a vertical slope warning, or it can also be input into the predictive algorithm for defining additional vehicle hazardous operation states and conditions. The computer calculates a Rollover Risk Estimate based on the plurality of vehicle measurements taken by the plurality of sensors in the inertial measurement unit.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: December 2, 2014
    Assignee: MSI Defense Solutions, LLC
    Inventors: Todd J. Holbert, David J. Holden, David C. Nelson, Mark A. Nelson, James M. Wyler
  • Patent number: 8890670
    Abstract: A trailer is provided with various parametric sensors. Trailer operating characteristics obtained from the sensors are conveyed to an attached tow vehicle. The tow vehicle is configured to respond to trailer operating conditions or characteristics and/or warn the tow vehicle operator of trailer conditions. The tow vehicle's operation can also be changed responsive to an attached trailer.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Continental Automotive Systems, Inc.
    Inventors: Thomas A. Brey, Don Peterson
  • Patent number: 8874329
    Abstract: A method for monitoring a stability parameter of a loading crane mounted on a vehicle supported on the ground by wheels and by support elements separate from the wheels includes calculating, using a processor, the stability parameter of the loading crane mounted on the vehicle supported on the ground by the wheels and the support elements, and comparing the magnitude of the stability parameter to at least one predetermined limit value. The calculating includes detecting contributions to a magnitude of the stability parameter of the wheels of the vehicle on which the loading crane is mounted and detecting contributions to the magnitude of the stability parameter of the support elements of the vehicle on which the loading crane is mounted.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: October 28, 2014
    Assignee: Palfinger AG
    Inventor: Thomas Zinke
  • Patent number: 8836489
    Abstract: A system and method for detecting unauthorized vehicle movement that includes measuring a resting angle of a vehicle using a vehicle sensor; thereafter, detecting a change in the measured resting angle of the vehicle; determining that the detected change is not authorized; and sending an alert message based on the determination via a vehicle telematics unit.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: September 16, 2014
    Assignee: General Motors LLC
    Inventors: Jeffrey P. Christensen, Daryl L. Carr, Michael D. Solomon, Christopher L. Oesterling
  • Patent number: 8823504
    Abstract: A vehicle control system includes a forward vehicle sensor transmitting a forward vehicle message based on a distance to a forward vehicle. An adaptive cruise controller receives the forward vehicle message and receives at least one additional message indicating a respective status of the vehicle, the adaptive cruise controller sets a braking pressure for an adaptive cruise controller braking event above a default braking pressure if the adaptive cruise controller determines, based on the at least one of the additional messages, that the vehicle will maintain stability during the adaptive cruise controller braking event.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: September 2, 2014
    Assignee: Bendix Commercial Vehicle Systems LLC
    Inventors: Robert J. Custer, Charles E. Ross, Srikiran Kosanam, William P. Amato
  • Patent number: 8825286
    Abstract: A method and an apparatus for determining a center of gravity of a motor vehicle are described. In said method and apparatus, for at least one wheel of the motor vehicle, two different drive force values representing a drive force are determined. In addition, longitudinal acceleration values associated with the determined drive force values, and wheel slip values associated with the determined drive force values, are determined. As a function of the drive force values, the associated longitudinal acceleration values and the associated wheel slip values that are determined, coordinates of the center of gravity of the vehicle are determined.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: September 2, 2014
    Assignee: Robert Bosch GmbH
    Inventor: Patrick Kroeger
  • Publication number: 20140240117
    Abstract: A control system is provided for a load-handling clamp mountable on a vehicle, the clamp having a pair of opposed load-engagement clamping surfaces capable of clamping opposite sides of different types and configurations of loads. At least one of the clamping surfaces is closeable toward the other clamping surface along a direction which extends substantially laterally across a direction of forward approach of the clamp toward the load. The control system is capable of generating a variable signal indicating a desired forward, vertical and/or lateral pre-engagement position of the clamp from which the clamping surfaces can correctly engage the load.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: CASCADE CORPORATION
    Inventors: Pat S. McKernan, Gregory A. Nagle
  • Patent number: 8818630
    Abstract: A vehicular vibration damping control apparatus calculates a correction torque to suppress vehicle body sprung vibration. In outputting a correction torque command to a driving/braking torque producing device, the control apparatus outputs a hunting time correction torque command smaller than a normal time correction toque command when a state in which amplitude of the correction torque is greater than or equal to a predetermined amplitude continues for a predetermined time length, and thereafter to return an output of the correction torque command from the hunting time correction torque command to the normal time correction torque command if a state in which the amplitude of the correction torque is smaller than or equal to the predetermined amplitude continues for a first predetermined time length. The frequency of performing the vibration damping control is increased by suppressing occurrence of hunting at the time of return to the normal vibration damping control.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: August 26, 2014
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Yosuke Kobayashi, Takeshi Kimura, Yuuki Shiozawa, Mitsunori Ohta, Hiroki Sasaki, Akihiro Itoh, Masahiko Yoshizawa
  • Patent number: 8788171
    Abstract: An attitude angle estimating means computes a derivative amount of an attitude angle with respect to a vertical axis of a vehicle body, and integrates the computed derivative amount of the attitude angle, and estimates the attitude angle. On the basis of the sensor signal and the attitude angle estimated by the attitude angle estimating means, a computing means computes a derivative amount of the attitude angle obtained from equations of motion for vehicle motion. A drift amount estimating means estimates a sensor drift amount of the sensor signal by using a relationship that, when taking a sensor drift amount of the sensor signal into consideration, the derivative amount of the attitude angle computed by the attitude angle estimating means, and a value that considers a sensor drift amount in the derivative amount of the attitude angle computed by the computing means, are equal.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: July 22, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Eiichi Ono, Yumiko Miura, Katsuyuki Yamaguchi, Taisuke Yasutomi
  • Patent number: 8786419
    Abstract: A device for controlling a device by using a rotation-rate sensor. In order to provide a device for determining a triggering signal for a safety device which allows a particularly compact implementation of the device, the device is set up to ascertain an acceleration variable on the basis of a first sensor signal for a first seismic mass of the rotation-rate sensor and the second sensor signal for a second seismic mass of the rotation-rate sensor and to control the device as a function of the acceleration variable.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: July 22, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Markus Ulm, Mathias Reimann, Harald Emmerich, Udo-Martin Gomez, Emma Abel
  • Patent number: 8788136
    Abstract: In a lane keeping assistance method for a vehicle which is traveling in a lane, it is checked whether an activation criterion for an automatic driving dynamics intervention is satisfied, and in response to the satisfaction of the activation criterion, control signals are output for the driving dynamics intervention. A remaining travel time to crossing or reaching a lateral lane line is ascertained and compared to a threshold value as the activation criterion. During the automatic driving dynamics intervention, a deactivation criterion for ending the automatic driving dynamics intervention is checked, the deactivation criterion including a comparison of a vehicle alignment to a lane direction.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: July 22, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Tobias Rentschler, Florian Hauler
  • Patent number: 8768573
    Abstract: Vehicle with an occupant safety system includes an occupant safety system designed to reduce injury to an occupant during an accident involving the vehicle and a processor coupled to the safety system and that receives at least one inertial property of the vehicle and information about a portion of a road ahead of the vehicle in its travel direction. If the processor determines, based on the at least one inertial property and the information, that the vehicle is unlikely to safely travel that portion of the road, the processor initiates action to ensure safe travel of the vehicle or safety of the occupant. The inertial property of the vehicle may be provided by an inertial measurement unit (IMU) that measures acceleration in three orthogonal directions and angular velocity about three orthogonal axes, all at a substantially common location. The occupant safety system may include one or more inflatable airbags.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: July 1, 2014
    Assignee: American Vehicular Sciences, LLC
    Inventor: David S. Breed
  • Patent number: 8761999
    Abstract: A level control system for a vehicle includes a pressure generator (10) for generating a pressure difference between a reservoir (11) containing a pressurized medium and at least one pressure-controlled actuating mechanism (12i) in order to adjust a predefined vehicle chassis level (di,soll), and a valve unit (13) for performing an overflow process between the reservoir (11) containing the pressurized medium and the at least one pressure-controlled actuating mechanism (12i). An evaluation unit (24) decides whether and to what extent the predefined vehicle chassis level (di, soll) can be adjusted by exclusively actuating the valve unit (13) based on a vehicle chassis level (di,erw) that is to be expected in case the overflow process is performed.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: June 24, 2014
    Assignee: Continental Aktienesellschaft
    Inventors: Heike Ilias, Marc Nettelmann, Thomas Sprengel
  • Patent number: 8755974
    Abstract: A vehicle guidance system includes a location determining component for determining locations of the vehicle; a weight sensor for sensing a weight associated with the vehicle; a steering actuator for steering at least one wheel of the vehicle; and a computing device in communication with the location determining component, the weight sensor, and the steering actuator. The computing device receives cartographic data representative of a desired path for the vehicle, receives location information from the location determining component, controls operation of the steering actuator in order to guide the vehicle along the desired path, and adjusts a steering parameter at least partially based on the weight sensed by the weight sensor.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: June 17, 2014
    Assignee: AGCO Corporation
    Inventor: Paul Matthews
  • Patent number: 8742911
    Abstract: The invention relates to a method for monitoring the load of vehicle tires which are each contacting a pavement with a circumferential section during travel, by means of monitoring devices (4) which are mounted to the tire (1) and contain a transmitter and a generator which is driven by the flexion of the tire (1), said flexion occurring during vehicle operation, wherein the generator generates a first voltage pulse each time it reaches the beginning of the circumferential section of the tire (1), which is contacting the pavement, and generates a second voltage pulse each time it reaches the end of the circumferential section of the tire (1), which is contacting the pavement, the time intervals (t1) between first and second voltage pulses are measured, the time intervals (t1) or a value calculated therefrom are/is compared with a reference value, and a warning signal is generated if a difference detected in this comparison exceeds a predefined value.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: June 3, 2014
    Assignee: Huf Hulsbeck & Furst GmbH & Co. KG
    Inventors: Markus Wagner, Hendrik Troeger
  • Patent number: 8731826
    Abstract: A system and method improve guidance system performance. An accuracy improvement module (AIM) can be configured to compare observed and expected inclination compensation factors (ICFs) at a plurality of inclination angles to detect an inaccuracy in antenna height. In response to detecting an inaccuracy, an AIM can determine a revised antenna height that more accurately represents the height of an antenna above ground. A proposed antenna height can be determined using an observed ICF. A fixed vehicle body height can be subtracted from the proposed antenna height to provide a proposed tire radius. The proposed tire radius can be compared to a table of standard tire radii to determine a tire radius value, which can then be added to the fixed vehicle body height to provide a revised antenna height. The revised antenna height can improve the accuracy or calculated ground positions, thereby improving guidance system performance.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: May 20, 2014
    Assignee: AGCO Cor[poration
    Inventor: Paul Matthews
  • Patent number: 8725346
    Abstract: A system for vehicle safety enhancement is disclosed. The system comprises a sudden slowdown detection subsystem, a slight bump detection subsystem, an airbag activation and brake malfunction detection subsystem, and a rollover detection subsystem. A controlling unit is connected to each subsystem for determining a severity level of a collision involving a vehicle, and the controlling unit is in turn connected to a communication unit for sending an alert signal based on the severity level. A method for vehicle safety enhancement is also disclosed.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: May 13, 2014
    Assignee: Hong Kong Productivity Council
    Inventors: Yangsheng Xu, Guoqing Xu, Yongquan Chen, Huihuan Qian, Xin Shi, Ning Ding, Wing Kwong Chung, Yuandong Sun, Maxwell Chow
  • Patent number: 8712641
    Abstract: A yaw stability control system for a vehicle detects and eliminates the vehicle yaw angle resulting from a body-force-disturbance and returns the vehicle to a pre disturbance heading. A yaw rate module generates a signal indicative of the vehicle yaw rate error. A yaw angle error module is triggered in response to a body-force-disturbance being detected by a body-force-disturbance detection unit, and performs integrations of the yaw rate signals to calculate a yaw angle error in order to obtain a correction of the vehicle yaw angle resulting from the body-force-disturbance. A yaw control module uses the yaw angle error in combination with the yaw rate error for a limited time period to generate yaw control signals that are sent to the vehicle brakes and/or active steering system for performing vehicle yaw stability control operations a signal to perform a body-force-disturbance yaw stability control operation for.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: April 29, 2014
    Assignee: Ford Global Technologies, LLC
    Inventors: Jianbo Lu, Li Xu, Bengt Johan Henrik Jacobson, Mikael Thor
  • Patent number: 8643509
    Abstract: A method is described for providing an alert when the motion of a ship indicates a potential of sloshing damage from liquid cargo being transported by the ship. The method includes calculating, with a processing device, a natural period for the tanks holding the liquid cargo based on the configuration and fill levels of the tanks, receiving, at the processing device, data describing the actual or predicted motion of the ship with respect to three orthogonal axes, determining, with the processing device, a proximity of the natural period of the tanks to a period defined by the actual or predicted motion of the ship, and providing an alert to a user if the proximity in periods is within a threshold value.
    Type: Grant
    Filed: January 31, 2011
    Date of Patent: February 4, 2014
    Assignee: The Boeing Company
    Inventors: Henry Chen, Jonathan David Elkin, Lang Deng, Willie Z. Cheng, Philip J. Ballou, John R. Murk, Joel S. Meltzner
  • Patent number: 8599005
    Abstract: A method for making it possible to set the link between all the types of vehicles and roads with the rolling limits on the roadway is described. This setting can be established from the existing road data bases and from the characteristics of the known vehicles. This method is capable of determining the vehicle rolling limits. A device which can be fitted on any vehicle and capable of implementing the method according to the invention is also disclosed.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: December 3, 2013
    Assignee: NODBOX
    Inventors: Thierry Fargas, Dominique Clarac
  • Patent number: 8600650
    Abstract: When a vehicle passes through an intersection that is stored in a collection target intersection database and for which direction-specific probe information is collected, a CPU of a navigation device generates a plurality of direction-specific probe information (entry link, exit link, section travel time, and the like) from a plurality of unit distance section information that is collected within a direction-specific traffic information acquisition section until the vehicle passes through the intersection, an entry link traveled before entering the intersection; and an exit link traveled after passing through the intersection, and transmits these to an information distribution center.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: December 3, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Tomoyuki Zaitsu, Shinji Kachi, Kenji Nagase, Tsuyoshi Iwata, Toshio Inoguchi, Kazunori Watanabe, Teruhide Hayashida
  • Patent number: 8581715
    Abstract: An emergency reporting apparatus including an emergency signal outputting part that outputs an emergency signal when a vehicle is in an emergency status and a logic circuit part that stores an emergency signal output by the emergency signal outputting part with a logic circuit. Furthermore, an emergency reporting apparatus conducts an emergency report with respect to the outside based on the emergency signal output from the emergency signal outputting part.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: November 12, 2013
    Assignees: Toyota Jidosha Kabushiki Kaisha, Denso Corporation
    Inventors: Noriaki Ito, Hiroshi Sakai
  • Patent number: 8577537
    Abstract: A vehicle guidance system includes a location determining component for determining locations of the vehicle; a weight sensor for sensing a weight associated with the vehicle; a steering actuator for steering at least one wheel of the vehicle; and a computing device in communication with the location determining component, the weight sensor, and the steering actuator. The computing device receives cartographic data representative of a desired path for the vehicle, receives location information from the location determining component, controls operation of the steering actuator in order to guide the vehicle along the desired path, and adjusts a steering parameter at least partially based on the weight sensed by the weight sensor.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: November 5, 2013
    Assignee: Agco Corporation
    Inventor: Paul Matthews
  • Patent number: 8564426
    Abstract: A system for evaluating risk in driving comprises a processor and a memory. The processor is configured to determine whether a spacial motion data does not fall within the vehicle profile and, in the event that the spacial motion data does not fall within the vehicle profile, to change class/type assignment associated with the vehicle and to modify a trigger threshold associated with an event detector that monitors the spacial motion data. The memory is coupled to the processor and is configured to provide the processor with instructions.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: October 22, 2013
    Assignee: DriveCam, Inc.
    Inventors: Bryan Cook, Peter Ellegaard, Hongying Li
  • Patent number: 8560152
    Abstract: To provide an inverted type moving body capable of continuing the inversion control with stability even when abnormality occurs in the inversion control while the moving body is moving, and a method of controlling the inverted type moving body. In an inverted type moving body including a rotational body having a circular cross section, a driving portion that rotationally drives the rotational body, a main body that supports the rotational body, and a control portion that maintains the inverted state of the main body by controlling the driving portion such that the rotational driving of the rotational body touching a floor surface is controlled, the control portion multiplies a signal obtained based on the inclined state of the main body by a predefined gain to calculate the driving amount of the rotational body for maintaining the inverted state, and reduces the gain when the inverted state of the main body is determined to be abnormal.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: October 15, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Kajima, Yoshiyuki Semba
  • Patent number: 8554409
    Abstract: In a method for influencing the transverse dynamics of a vehicle, a transverse dynamics disturbance variable acting on the vehicle is detected by a disturbance variable determination device and a counter-yaw moment counteracting the transverse dynamics disturbance variable is produced. For this purpose, the dynamic transverse dynamics disturbance variable is detected by the disturbance variable determination device, and a first counter-yaw moment is produced to compensate at least partially for the dynamic transverse dynamics disturbance variable with the help of a first vehicle system. The first counter-yaw moment is reduced following the at least partial compensation, and with the help of the disturbance variable determination device, a check is made whether a stationary transverse dynamics disturbance variable exists. If so, a second counter-yaw moment is produced with the help of a second vehicle system to at least partially compensate for the stationary transverse dynamics disturbance variable.
    Type: Grant
    Filed: January 27, 2009
    Date of Patent: October 8, 2013
    Assignee: Daimler AG
    Inventors: Jens Kalkkuhl, Daniel Keppler, Magnus Rau, Avshalom Suissa
  • Patent number: 8548689
    Abstract: A system for detecting pitch of a machine caused by operation of a machine implement is provided. The system may include an inclination sensor for sensing inclination of the machine and producing inclination data representing inclination of the machine over time. An acceleration sensor for sensing acceleration of the machine and producing acceleration data representing acceleration of the machine over time can be provided. A controller in communication with the inclination and acceleration sensors respectively receives the inclination and acceleration data. The controller can be configured to process the inclination data so as to detect a sudden inclination change and to process the acceleration data so as to detect a sudden acceleration change. The controller can be further configured to determine a machine pitch condition upon concurrently detecting a sudden inclination change and a sudden acceleration change.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: October 1, 2013
    Assignee: Caterpillar Inc.
    Inventors: Paroma Banerjee, Troy Becicka
  • Patent number: 8548688
    Abstract: A method and a control device for triggering passenger protection devices for a vehicle are provided, a rollover event causing the triggering of the passenger protection devices. The rollover event is detected as a function of kinematic and rotation variables, an adhesion, and a static stability factor. A state of rotation is ascertained via a rotation rate and a rotation angle. A state of adhesion is ascertained from a vehicle transverse acceleration and a vehicle vertical acceleration. The rollover event is detected via the state of adhesion and the state of rotation, the adhesion being much greater than the static stability factor.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: October 1, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Alfons Doerr, Holger Denz, Marcel Maur
  • Patent number: 8543276
    Abstract: An unmanned autonomous vehicle for substantially lateral displacement of feed lying on a ground, comprising two wheels separately drivable by separate drive units, a torque difference adjusting device for adjusting the torque difference between the wheels, a control unit for controlling the vehicle and moving it in a direction of travel by controlling at least one of the separate drive units, a feed displacing device for substantially lateral displacement of the feed, and an adjusting device which is arranged to adjust the height and/or the position of a lowest point of the feed displacing device. The adjusting device comprises a vehicle tilting device which is arranged in such a manner that the lowest point will be located at least substantially off the center line of the vehicle.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: September 24, 2013
    Assignee: Lely Patent N.V.
    Inventor: Karel Van Den Berg
  • Patent number: 8532899
    Abstract: An inclinometer using speed, acceleration and yaw angle rate to measure inclination angle. The accuracy of the inclination angle measurement may be improved by compensating for a position offset of an accelerometer; Kalman filtering with an external altitude measurement; and/or compensating for an accelerometer bias. The accelerometer bias may be calculated based on a last incline angle before a dormant time period and/or by Kalman filtering.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: September 10, 2013
    Assignee: Trimble Navigation Limited
    Inventor: Peter Van Wyck Loomis
  • Patent number: 8528393
    Abstract: A wheel position determination system and method to count wheel revolutions in a wheel unit of a tire monitoring system. An indication of the count is transmitted, optionally along with an indication of a left/right side position of the wheel on the vehicle, and an identification unique to the transmitting wheel unit, to a central controller of the tire monitoring system. In the central controller of the tire monitoring system, the count is compared with wheel speed information for the vehicle, such as from an ABS system, to determine if one wheel on each side of the vehicle is rotating at a different speed. Based at least in part upon a determination that each wheel speed is unique, a determination of wheel location may be made.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: September 10, 2013
    Assignee: Schrader Electronics Ltd.
    Inventors: Philip Craig, Samuel Strahan, William Stewart
  • Patent number: 8506220
    Abstract: A sensing device 26 is attached to a tensioned strap 20 holding a load on a vehicle. A probe 44 engages the strap 20 and causes a signal lamp 28 to light up if the tension in the strap 20 is below a predetermined threshold value. The sensing device 26 helps the vehicle operator to set the tension correctly before a journey and also provides a visible warning if a strap becomes loose during the journey. The warning is visible beyond the vehicle, to alert other road users to a possible hazard.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: August 13, 2013
    Assignee: Express Hire (Dorset) Limited
    Inventor: Anthony Morland
  • Publication number: 20130181825
    Abstract: A Guardian Warning System comprising a multi-axis accelerometer, a micro-controller, an audible alarm, a visual indication and a GPS chip. The Guardian Warning System provide detection of the angle, degree or slop of ATV, UTV and any vehicle type or any other object where it needs to be detected. The Guardian Warning System will sound an audible alarm and flash a LED light when said Degree, Angle or Slope is reached. The said elements contained in a molded plastic container, which can be attached to ATVs, UTVs and any vehicle type or any other objects where the Degree, Angle or Slope needs to be detected.
    Type: Application
    Filed: January 13, 2012
    Publication date: July 18, 2013
    Inventors: Jerry Johnson, Nadejda Ivanovna Johnson
  • Patent number: 8471721
    Abstract: A server rack includes a main body, an electronic scale, and an alarm. The main body is used for receiving a number of servers. The electronic scale includes a pressure sensor and a microcontroller. The main body presses on the pressure sensor so that the pressure sensor can measure the pressure from the main body to obtain a pressure signal. The microcontroller analyzes the pressure signal to calculating the total weight of the main body and the servers. The alarm stores a predetermined weight threshold, which is the total weight of the main body and the maximum servers that the main body can bear. The alarm also compares the measured total weight with the predetermined weight threshold. When the measured total weight is larger than the predetermined weight threshold, the alarm alarms.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: June 25, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Song-Lin Tong, Guang-Dong Yuan, Hai-Qing Zhou
  • Patent number: 8441347
    Abstract: The present invention provides system, method and apparatus for energizing one or more brake lights on a vehicle without an operator of the vehicle applying a brake of the vehicle by determining an acceleration of the vehicle, energizing the brake lights on the vehicle whenever the acceleration of the vehicle equals or exceeds a braking threshold, and deenergizing the brake lights on the vehicle whenever: (a) the brake lights are energized, (b) the acceleration of the vehicle is less than the braking threshold, (c) a specified period of time has elapsed since the brake lights were energized, and (d) the operator is not applying the brake of the vehicle.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: May 14, 2013
    Assignee: University of North Texas System
    Inventors: Kenneth Adam Marlowe, Bryan Cotanch, James Parker