Digital Processing Patents (Class 342/195)
  • Patent number: 7486226
    Abstract: The invention relates to a system, device, and method for using radar signals to measure the distance (h) to a surface from said device, the device comprising a transmitter and a transmitting antenna for transmitting radar signals, and a receiver and a receiving antenna for receiving a radar signal. The device may also comprise a first additional reflecting object separate from the receiving antenna, which additional reflector is designed so as to introduce a first predetermined alteration in radar signals upon reflection, with the device being equipped with means to differ between received signals with and without said predetermined alteration. The first predetermined alteration introduced by the first separate reflector can be, for example, a modulation shift or a shift in the polarization of the signal. In a typical embodiment the additional reflector is located close to the radar unit creating a double transition from radar unit to the surface.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: February 3, 2009
    Assignee: Rosemount Tank Radar AB
    Inventor: Olov Edvardsson
  • Patent number: 7486223
    Abstract: A radar apparatus is provided which includes a plurality of antennas arranged at unequally spaced intervals in a single row, the plurality of antennas configured to transmit a radio wave as transmitting antennas during continued multiple periods, and receive a reflected radio wave as receiving antennas during the continued multiple periods. A plurality of transceivers are included for transmitting a radio wave from the transmitting antennas and receiving received signals from the receiving antennas, said received signals representing the reflected wave received at the receiving antennas. A signal processing unit is included for selecting a transceiver which transmits a radio wave during each of the continue multiple periods, selecting transceivers which receive the received signals from the receiving antennas during each of the continued multiple periods, and perform digital beam forming with a first receiving signal channel group and a second receiving signal channel group.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: February 3, 2009
    Assignee: Fujitsu Ten Limited
    Inventor: Nobukazu Shima
  • Patent number: 7486219
    Abstract: A method of detecting weather on an aircraft uses a weather radar system. The method adapts the weather radar system in accordance with a seasonal parameter, a time-of-day parameter, or a location parameter. The method includes determining the particular parameter and automatically adjusting the weather radar system to display the weather in response to the parameter. The system can be implemented in hardware or software and advantageously can more precisely predict and identify weather and/or weather hazards.
    Type: Grant
    Filed: April 12, 2006
    Date of Patent: February 3, 2009
    Assignee: Rockwell Collins, Inc.
    Inventors: Daniel L. Woodell, Roy E. Robertson
  • Patent number: 7482967
    Abstract: An apparatus for characterising an input signal within abroad frequency band by comparing the same input signal in a plurality of channels, in order to operate digital Electronic Support Measures (ESM) which require a broad bandwidth to function. The apparatus comprises one or more signal input bands spread across the broad frequency band, a means of splitting the input signal in each input band into a plurality of separate channels, and a means of sampling each channel, wherein the sampling means in each channel runs at a different clock rate from sampling means in each of the other channels within the input bands, so as to remove the ambiguities inherent in frequency aliasing.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: January 27, 2009
    Assignee: The Secretary of State For Defence
    Inventor: George Peter Beharrell
  • Publication number: 20090021422
    Abstract: A largest eigenvalue is determined among eigenvalues corresponding to a correlation matrix indicating correlations between a plurality of channels receiving incoming radar waves from an object that reflects a radar wave as a reference eigenvalue ?1. A ratio R?i (=10 log 10(?i/?1)) is calculated of each eigenvalue ?2 to ?N to the reference eigenvalue ?1. Eigenvalues among the reference eigenvalue ?1 and the eigenvalues ?2 to ?N of which the eigenvalue ratio R?i is greater than a noise threshold TH are identified as eigenvalues in signal space. Eigenvalues of which the eigenvalue ratio R?i is equal to the noise threshold TH or less are identified as eigenvalues in noise space. The number of eigenvalues identified as the eigenvalues in signal space is counted as the number of arrival signals.
    Type: Application
    Filed: July 17, 2008
    Publication date: January 22, 2009
    Applicant: DENSO CORPORATION
    Inventors: Yoshihiro Abe, Kouji Shimizu
  • Patent number: 7477182
    Abstract: Provided is a pulse radar system capable of measuring the distance to an obstacle with high accuracy irrespective of the distance to an obstacle by securing distance resolution with respect to a reflective wave from an obstacle at a short distance, and preventing a decline in S/N ratio with respect to a reflective wave from an obstacle at a long distance. A pulse radar system includes a transmitting circuit, a transmitting antenna, a receiving antenna, a receiving circuit, and a gain control circuit. The gain control circuit generates a gain control signal corresponding to the amplitude of the reception pulse obtained in response to a gain control transmission pulse wave transmitted from the transmitting circuit, and controls the gain of a reception pulse wave or a reception pulse obtained in response to a measurement transmission pulse wave transmitted from the transmitting circuit after the gain control transmission pulse wave.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: January 13, 2009
    Assignee: TDK Corporation
    Inventor: Hiroshi Ikeda
  • Patent number: 7473876
    Abstract: A fire control system for a boost phase threat missile includes sensors for generating target-missile representative signals, and a multi-hypothesis track filter, which estimates the states of various target hypotheses. The estimated states are typed to generate hypotheses and their likelihoods. The states, hypotheses and likelihoods are applied to a multihypothesis track filter, and the resulting propagated states are applied to an engagement planner, together with the hypotheses and likelihoods. The engagement planner initializes the interceptor(s). Interceptor guidance uses the initialization and the propagated states and typing information to command the interceptor.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: January 6, 2009
    Assignee: Lockheed Martin Corporation
    Inventors: Christian E. Pedersen, Jeffrey B. Boka, Naresh R. Patel, Peter N. Bishop, Carl J. Bauer, Koeunyi Bae
  • Patent number: 7474250
    Abstract: Weather radar reflectivity data is compressed by converting radar data to image pixels. Next, contours are traced from select groupings of the pixels. Control points are derived from the contours. The control points represent a compressed version of the radar data and may be used to recreate and fill the contours with predefined colors or effects for purposes of visually depicting weather phenomena.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: January 6, 2009
    Assignee: Honeywell International Inc.
    Inventors: Vishnu V. Makkapati, Pravas R. Mahapatra
  • Patent number: 7474962
    Abstract: A method for guiding the approach and landing of an aircraft is provided. The method involves receiving navigation information from the aircraft, receiving navigation information from an aircraft carrier, integrating the navigation information from the aircraft with the navigation information from the aircraft carrier to determine a relative velocity and a relative position between the aircraft and the aircraft carrier, and propagating the relative velocity and the relative position forward in time for navigation purposes.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: January 6, 2009
    Assignee: Honeywell International Inc.
    Inventors: James Waid, Kevin Dutton, Adam Boseley, Kenneth S. Morgan, Phil Hess, Michael Vaujin
  • Patent number: 7474255
    Abstract: The present invention relates to a target tracking method of radar with frequency modulated continuous wave, which transmits a transmitted signal to receive a return wave of the transmitted signal that is used for detecting the target and obtaining the relative distance between the target and the radar. The target tracking method includes transmitting a frequency modulated continuous wave and receiving the reflected wave; getting a reflected wave corresponding to the target by detecting the reflected wave; getting a range gate error by seeking the plurality of the range gates corresponding to the reflected wave; and getting a position and a speed of the target at next time by knowing the position of the target at present time basis of the range gate error. Hence, the relative distance between the radar and the target is got.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: January 6, 2009
    Assignee: Chung Shan Institute of Science and Technology, Armaments Bureau, M.N.D.
    Inventors: Hung-Tao Hsieh, Feng-Ling Liu, Yao-Hwa Wen
  • Patent number: 7471235
    Abstract: There are provided a differential processing unit which performs differential processing for a Mode S transponder transmission signal, an auto correlation arithmetic operation unit which performs an arithmetic operation of a degree of auto correlation between an increasing change rate and decreasing change rate of a power level in the signal which has been subjected to the differential processing, a pulse regeneration unit which regenerates a pulse based on the degree of auto correlation, which has been obtained by the auto correlation arithmetic operation processing, a pulse phase locked loop unit which performs gate processing and phase locked processing for the regenerated pulse, and a pulse decoding unit which decodes the Mode S transponder transmission signal based on the pulse which has been subjected to the gate processing and the phase locked processing.
    Type: Grant
    Filed: December 19, 2007
    Date of Patent: December 30, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hisashi Ootomo, Yoshirou Aoki, Yoshinori Kuji
  • Publication number: 20080316090
    Abstract: A DSSS (Direct Sequence Spectrum Spreading) radar has a transmitting part to transmit a transmitting signal, including a predetermined code sequence, to one or a plurality of targets, a receiving part to receive a received signal corresponding to the transmitting signal which has been reflected from the one or a plurality of targets, and a computing part. The computing part computes a sum signal and a difference signal of received signals received by the receiving part at different points in time, and obtains a Doppler frequency of the one or a plurality of targets based on a phase difference between the sum signal and the difference signal.
    Type: Application
    Filed: March 13, 2008
    Publication date: December 25, 2008
    Inventor: Kazuo Shirakawa
  • Patent number: 7466261
    Abstract: A RADAR system including a set of RADAR apparatuses is disclosed. Each apparatus includes a processor, a pulse unit in signal communication with the processor, a waveform signal generator in signal communication with the pulse unit, and a set of radar antennas in signal communication with the waveform signal generator. The waveform signal generator is capable of generating a waveform signal in response to pulses provided by the pulse unit. The set of antennas is capable of transmitting a burst of microwave energy in response to each waveform signal and to receive a plurality of reflected bursts associated with the transmitted bursts. An acquisition unit is configured to develop and amplify a finite window integral associated with each reflected burst, the acquisition unit in signal communication with the set of antennas and a pre-processor configured to digitize and store information relating to each finite window integral for subsequent processing.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: December 16, 2008
    Assignee: General Electric Company
    Inventors: Ralph Thomas Hoctor, Jeffrey Michael Ashe, Vincent Paul Staudinger, Kenneth Brakeley Welles
  • Patent number: 7463187
    Abstract: A method to control a track gate and a level gate in an altimeter tracking an altitude of an airborne vehicle comprising emitting signals, directed toward a terrain, from the airborne vehicle, receiving terrain echo signals, positioning the track gate to a selected reference amplitude on the rising edge of the terrain echo signals, positioning the level gate to within a selected range of the peak amplitude level of the terrain echo signals, measuring a change in a location of the peak amplitude between sequentially received terrain echo signals, and varying a separation between the track gate and the level gate based on the measured change in the location of the peak amplitude. The terrain echo signals comprise reflections of the emitted signals from the terrain, and each terrain echo signal has a rising edge and a peak amplitude.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: December 9, 2008
    Assignee: Honeywell International Inc.
    Inventors: Robert C. Becker, Steven K. Stegemeyer
  • Patent number: 7463181
    Abstract: In a method for suppressing interferences while detecting objects in a target area, a transmitter transmits a sequence of pulses into the target area, and a receiver detects the resulting reflection signal of the pulses reflected from the objects, within successive time windows that are referenced to the moment of transmitting an individual pulse and thus represent distance gates. The time spacing between the successive individual pulses is variable and randomized according to the pseudo-noise principle within predetermined limits, and the time windows are adapted accordingly. The received reflection signal may be sampled, digitized, digitally pre-processed and digitally filtered in the individual distance gates. A non-linear digital filter, preferably a sliding median filter, is used for the filtering to suppress transient disturbances. The median is determined from an odd number of consecutive sampled values of a reflection signal detected within a distance gate.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: December 9, 2008
    Assignee: A.D.C. Automotive Distance Control Systems GmbH
    Inventor: Markus Wintermantel
  • Publication number: 20080297404
    Abstract: A radio frequency communication front-end device having a front-end radio frequency antenna module comprises a microchip antenna and a radio frequency front-end signal processing core chip, wherein the microchip antenna is used to emit and receive electromagnetic waves for signal communication with other wireless equipment. The present invention, as being in the form of a module, processes the radio frequency signals by means of the radio frequency front-end signal processing core chip and, therefore, achieves optimized efficiency of electromagnetic wave emission and reception.
    Type: Application
    Filed: June 27, 2007
    Publication date: December 4, 2008
    Inventors: Tsung-Lang Lin, Hsiao Chi Yu
  • Publication number: 20080297402
    Abstract: Array antenna calibration verification coupling interrogator and responder with mode-related interrogation signal having a previous calibration phase angle, producing in responder a characteristic interrogation response. Conjugate signal is generated by reversing phase of interrogation signal, producing in responder a characteristic conjugate response. Interrogation and conjugate responses sensed and combined to determine difference characteristic for responder array element. Responder difference characteristic iteratively determined for elements in antenna array representative of present calibration verification state. Present and previous calibration verification states compared, with significant variation adapting array to desired calibration verification state. Verification processor controls interrogator, responders, and signals providing built-in missile RADAR calibration verification.
    Type: Application
    Filed: March 22, 2006
    Publication date: December 4, 2008
    Inventor: John J. Wooldridge
  • Patent number: 7460067
    Abstract: A system for dynamically compensating signal propagation for flexible radar antennas receives measurement signals indicating the position of selected locations of an antenna array. The future shape of the antenna array at a future time is predicted, and compensation signals are applied to signals generated or received by the antenna elements. The compensation signals are based on the future shape of the antenna array.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: December 2, 2008
    Assignee: Lockheed-Martin Corporation
    Inventors: Edward H. Allen, Fred L. Reagor, Mary P. Reagor
  • Patent number: 7460058
    Abstract: A radar for detecting a target wherein a standard deviation of the amplitude of a beat signal from a transmission signal and a reception signal is determined for a predetermined period. A threshold is determined by adding a predetermined value to the standard deviation or by multiplying the standard deviation by a predetermined coefficient. The presence or absence of interference on the beat signal is detected according to the presence or the absence of an amplitude greater than the threshold. For example, an amplitude exceeding the standard deviation×2 is considered a spike noise (SPN), i.e., as “presence of interference”. The threshold used for detecting peaks appearing on a frequency spectrum is then increased. This allows detection of the presence or the absence of a spike noise superposed on the beat signal to be performed more certainly, thereby enabling processing according to the presence or the absence of interference.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: December 2, 2008
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Motoi Nakanishi
  • Patent number: 7460060
    Abstract: An electric wave transmitting/receiving module includes: a waveguide including a conductive member and an opening facing a transmitting side and/or a receiving side; a dielectric substrate disposed on a side opposite to the opening of the waveguide; and transmitting/receiving means. The transmitting/receiving means includes a core line, a transmitting/receiving element, and a wire. The core line and the transmitting/receiving element are horizontally disposed on the dielectric substrate. The core line transmits the transmitting electric wave and/or receives the receiving electric wave. The transmitting/receiving element outputs a transmitting/receiving signal corresponding to the transmitting electric wave and/or the receiving electric wave. The wire sends the transmitting/receiving signal from the transmitting/receiving element to an external circuit.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: December 2, 2008
    Assignee: Denso Corporation
    Inventor: Yutaka Aoki
  • Patent number: 7460061
    Abstract: A distributed radar data processing system for generating data to be supplied to air traffic control by processing radar data obtained from a radar device, comprises a plurality of data buses provided in accordance with types of flowing data, a plurality of applications which is distributed and allocated to each of a plurality of hierarchical layers separated by the plurality of data buses, and connected to two of the data buses configuring a particular layer to realize a predetermined function, and a distribution and integration interface for controlling a connection between the plurality of applications.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: December 2, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jitsuo Taguchi, Tatsuro Yamada
  • Patent number: 7460062
    Abstract: A first AD converter subjects an analog signal to AD conversion by a first AD clock, and a second AD converter subjects the same analog signal to AD conversion by a second AD clock that is shifted in phase from the first AD clock by half cycle. FF circuits store the AD conversion results of the first AD converter and the second AD converter by the first AD clock and the second AD clock, respectively. FF circuits store the data of the FF circuits by the first AD clock, separately. A DPRAM writes the respective data that are stored by the FF circuits by the first AD clock as a group of data, divides the group of written data into the respective data, and reads the respective data by a logic clock in twice to output the data to an integration circuit.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: December 2, 2008
    Assignee: Denso Corporation
    Inventor: Mitsuo Nakamura
  • Patent number: 7460059
    Abstract: Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: December 2, 2008
    Assignee: Sandia Corporation
    Inventors: Richard C. Ormesher, Robert M. Axline
  • Patent number: 7456780
    Abstract: Image reconstruction approaches that use standard Cartesian-sampled, frequency-domain SAR data, which can be collected by a platform with a single radar antenna, together with its associated metadata as the input and generate an output comprised of a set of images that show the directions of moving targets, estimates of their motions, and focused images of these moving targets.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: November 25, 2008
    Assignee: Science Applications International Corporation
    Inventor: David Alan Garren
  • Patent number: 7456781
    Abstract: A radar includes a transmission section, a heterodyne reception section, a power supply section and a detection section. The transmission section emits a transmission wave to a target. The heterodyne reception section receives a reflected wave from the target. The power supply section supplies power to the reception section. A switching frequency of the power supply section is in synchronization with a local oscillation frequency of the reception section. The detection section determines that the switching frequency is out of synchronization with the local oscillation frequency when a certain peak frequency existing in an output signal of the reception section before a transmission state of the transmission section is changed still exists in the output signal of the reception section after the transmission state of the transmission section is changed.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: November 25, 2008
    Assignee: Fujitsu Ten Limited
    Inventor: Kanako Honda
  • Patent number: 7453390
    Abstract: A detection device for detecting a body entering a predetermined range has a transmission means for periodically radiating a pulse-like transmission signal by way of an electromagnetic wave to which a band restriction has been applied, a first reception means and a second reception means, and a judgment means. Each of the reception means performs receiving, as a reception signal, the electromagnetic wave reflected by the body, periodic sampling of the reception signal after a predetermined delay time has elapsed from transmission, and judging, based on a result of the periodic sampling, whether the body exists. The judgment means judges, based on judgment results of each of the first reception means and the second reception means, whether the body has entered into the predetermined range, and outputs a judgment result.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: November 18, 2008
    Assignee: OMRON Corporation
    Inventors: Tadao Nishiguchi, Naoyuki Ishihara, Yasuhiro Satoh
  • Patent number: 7450054
    Abstract: A computer system for processing interferometric synthetic aperture radar (SAR) images includes a database for storing SAR images to be processed, and a processor for processing interferometric SAR images from the database. The processing includes receiving first and second complex SAR data sets of a same scene, with the second complex SAR data set being offset in phase with respect to the first complex SAR data set. Each complex SAR data set includes a plurality of pixels. An interferogram is formed based on the first and second complex SAR data sets for providing a phase difference therebetween. A complex anisotropic diffusion algorithm is applied to the interferogram. The interferogram includes a real and an imaginary part for each pixel. A shock filter is applied to the interferogram. The processing further includes performing a two-dimensional variational phase unwrapping on the interferogram after application of the shock filter.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: November 11, 2008
    Assignee: Harris Corporation
    Inventors: Kenneth Sartor, Josef Allen, Emile Ganthier, Bernard S. Gilbert, Gnana Bhaskar Tenali
  • Patent number: 7450052
    Abstract: Method and apparatus for detecting objects. In one embodiment, a person entering a secured zone is illuminated with low-power polarized radio waves. Differently polarized waves which are reflected back from the person are collected. Concealed weapons are detected by measuring various parameters of the reflected signals and then calculating various selected differences between them. These differences create patterns when plotted as a function of time. Preferably a trained neural network pattern recognition program is then used to evaluate these patterns and autonomously render a decision on the presence of a weapon. An interrupted continuous wave system may be employed. Multiple units may be used to detect various azimuthal angles and to improve accuracy.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: November 11, 2008
    Assignee: The MacAleese Companies, Inc.
    Inventors: Jerry Hausner, Jonathan M. West
  • Patent number: 7450053
    Abstract: A logging radar system and method for measuring propped fractures and down-hole formation conditions in a subterranean formation including: a radar source; an optical source; an optical modulator for modulating an optical signal from the optical source according to a signal from the radar source; a photodiode for converting the modulated optical signal output from the optical modulator to the source radar signal; a transmitter and receiver unit; and a mixer. The transmitter and receiver unit receives the source radar signal from the photodiode, transmits the source radar signal into the formation and receives a reflected radar signal. The mixer mixes the reflected radar signal with the source radar signal to provide an output. This technology can be used to describe all fractures connected to the wellbore and differentiate between the dimensions of the two vertical wings of a propped fracture.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: November 11, 2008
    Assignee: Hexion Specialty Chemicals, Inc.
    Inventors: Eric E. Funk, Ethan A. Funk, Michael L. Sheriff, Scott M. McCarthy, Robert R. McDaniel
  • Patent number: 7446695
    Abstract: A precision pulse detection system for time-of-flight sensors detects a zero axis crossing of a pulse after it crosses above and then falls below a threshold. Transmit and receive pulses flow through a common expanded-time receiver path to precision transmit and receive pulse detectors in a differential configuration. The detectors trigger on zero axis crossings that occur immediately after pulse lobes exceed and then drop below a threshold. Range errors caused by receiver variations cancel since transmit and receive pulses are affected equally. The system exhibits range measurement accuracies on the order of 1-picosecond without calibration even when used with transmitted pulse widths on the order of 500 picoseconds. The system can provide sub-millimeter accurate TDR, laser and radar sensors for measuring tank fill levels or for precision radiolocation systems including digital handwriting capture.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: November 4, 2008
    Inventor: Thomas Edward McEwan
  • Patent number: 7446698
    Abstract: A method for remotely calibrating an active phased array system, and more particularly an antenna, (APA), used in transmission and/or in reception, comprising transmitting and/or receiving a set of calibration pulses (RCP, TCP). Contrarily to methods known from the prior art, in which a reference signal is transmitted together with the calibration pulses in order to be able to perform a coherent detection of the calibration pulses at a remote station (GS), the method of the invention comprises incoherent demodulation of the calibration pulses and use of a signal processing procedure to account for the phase noise and amplitude fluctuations resulting from said incoherent demodulation. The method of the invention is particularly well suited for space applications, in which the active phased array system is an active phased array (APA) carried by a satellite (SAT) and the remote station (when it is present) is a ground station (GS).
    Type: Grant
    Filed: February 27, 2004
    Date of Patent: November 4, 2008
    Assignee: Agence Spatiale Europeenne
    Inventor: Daniel Christopher Bast
  • Patent number: 7443336
    Abstract: Provided is an in-vehicle pulse radar device capable of calculating a distance to a target object based on a delay time between a transmission pulse wave and a received signal. The in-vehicle pulse radar device includes: a reception control unit for controlling passing and blocking of the received signal in synchronization with the transmission pulse wave; a shaping unit for shaping the trailing edge of a pulse wave of the received signal to be delayed; and a sampling unit for sampling the received signal when a predetermined period of time elapses after the reception control unit starts to pass the received signal therethrough.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: October 28, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shinsaku Noda
  • Patent number: 7443337
    Abstract: A method for generating a synthesized waveform from a desired arbitrary waveform via a convolution processor includes: providing a data stream input signal to the convolution processor including an extended duration impulse signal; computing one or more filter coefficients of the convolution processor; and generating the synthesized waveform substantially similar to the desired arbitrary waveform using the filter coefficients. The convolution processor may be a finite impulse response (FIR) filter. The convolution processor may perform a convolution upon the extended duration impulse signal, where: the extended duration impulse signal is successively delayed via one or more taps and the output of each tap is multiplied by a filter coefficient corresponding to a delay; and the summation of the products of tap outputs and filter coefficients is the desired arbitrary waveform.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: October 28, 2008
    Assignee: AAI Corporation
    Inventor: James J. Jaklitsch
  • Patent number: 7439906
    Abstract: A radar receiver system includes a receiver, a processor including a Doppler Compensated Adaptive Pulse Compressor (DCAPC) algorithm, possible other intermediate processing and a target detector. The DCAPC algorithm processes samples of a radar return signal, applies Minimum Mean Square Error (MMSE), or alternatively matched filtering, to the radar return signal to obtain initial radar impulse response estimates, computes power estimates, estimates a range cell Doppler shift for each range cell, computes range-dependent filters, applies the MMSE filters, and then repeats the cycle for subsequent reiterative stages until a desired length?L range window is reached, thereby resolving the scatterer from noise and other scatterers.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: October 21, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Shannon D Blunt, Karl R Gerlach, Kevin J Smith
  • Patent number: 7436352
    Abstract: A method for radar protection. The method includes recording energy events and calculating differences in recorded energy events to determine pulses. The method further includes sorting intervals between pulses into histogram bins, each bin representing a range of time intervals between two pulses, each pulse indicative of a radar frequency and limiting network traffic on a frequency based on a selected bin count.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: October 14, 2008
    Inventors: David M. Theobold, Christopher G. Meil, Edward Frederick Wright, James A. Amos, Brian Hart, Jason R. Crawford, Philip O'Sullivan, Kevin C. H. Wong
  • Patent number: 7436351
    Abstract: Apparatus and a method utilizing correlation interferometer direction finding for determining the azimuth and elevation to an aircraft at long range and flying at low altitudes above water with a transmitting radar while resolving multipath signals. The signals from the radar are received both directly and reflected from the surface of the water using horizontally polarized and vertically polarized antenna arrays, are digitized and are stored in separate covariant matrices. Eigenvalues for the eigenvectors of the matrices processed on signal samples recorded on horizontally polarized X arrays are compared to the eigenvalues for the eigenvectors of the covariance matrices processed on signal samples recorded on vertically polarized X arrays. Incident field polarization is associated with the antenna array measurements that yield the strongest eigenvalue. The eigenvector and eigenvalues for the strongest signal are selected and used for subsequent signal processing.
    Type: Grant
    Filed: February 16, 2008
    Date of Patent: October 14, 2008
    Assignee: BAE Systems Information And Electronic Systems Integration Inc.
    Inventors: Keith A. Struckman, Robert T. Martel
  • Patent number: 7429948
    Abstract: In a combined GPS/altimeter device, the calibration and hence the accuracy of barometric altimeter measurements are enhanced with the aid of derived altitudes from a GPS. The device determines the need for calibration and perform the subsequent computations necessary to facilitate the calibration. Furthermore, the device determines a correction quantity that should be applied to barometric altitude readings, thereby allowing the device to be calibrated while in motion. Both of these features ultimately result in a more accurate determination of altitude.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: September 30, 2008
    Assignee: Garmin Ltd.
    Inventors: Scott Burgett, Tracy Oliver
  • Publication number: 20080231501
    Abstract: Disclosed is a DBF radar apparatus comprising: an antenna for radiating a transmit signal; a plurality of antennas for receiving the transmit signal reflected from an object; a first selector switch section for sequentially selecting output terminals of the plurality of antennas one at a time for connection to an input terminal by performing switching with a first period; a first downconverting section for downconverting, by using a portion of the transmit signal, a received signal input from each antenna; a low-frequency cut-off filter connected to an output of the first downconverting section; a second selector switch section for connecting an output of the low-frequency cut-off filter to a sequentially selected one of a plurality of A/D converters; and a digital signal processing section for receiving outputs of the plurality of A/D converters, and for applying prescribed processing to the outputs to detect the distance to the object or the relative velocity with respect to the object, wherein, when each a
    Type: Application
    Filed: January 14, 2005
    Publication date: September 25, 2008
    Inventor: Osamu Isaji
  • Patent number: 7427947
    Abstract: The invention generally relates to the field of computer software particularly to an improved method of providing aircrew decision aids for use in determining the optimum placement of an Electronic Attack (EA) aircraft. The core of the invention is a software program that will dynamically provide the EA flight crew situational awareness regarding a threat emitter's coverage relative to the position of the EA aircraft and to the position of protected entities (PE). The software program generates information to provide visual cues representing a Jam Acceptability Region (JAR) contour and a Jam Assessment Strobe (JAS) for display via designated aircraft cockpit processors and devices. The JAR and JAS will aid the EA aircrew in assessing the effectiveness of a given jamming approach.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: September 23, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: James Dark, James Buscemi, Scott Burkholder
  • Patent number: 7427946
    Abstract: While an FM-CW mode for sensing an object, in which a frequency of an electromagnetic wave transmitted from a transmission/reception antenna 6 is continuously modulated, and also, a CW mode for judging an abnormal condition, in which the frequency of the electromagnetic wave to be transmitted from the transmission/reception antenna 6 is not modulated are switched, an abnormal condition judging section judges an abnormal condition when a signal level of a reception signal of the FM-CW mode is smaller than, or equal to a first judging threshold value, and also, a signal level of a reception signal in the CW mode is smaller than, or equal to a second judging threshold value which is higher than the first judging threshold value.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: September 23, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hiroyuki Ando, Masahito Shingyoji
  • Patent number: 7427943
    Abstract: A method of displaying real-time, three-dimensional weather information is disclosed. A first representation of a weather event along a first plane is generated from data obtained from a first radar scan. A second representation of the weather event along a second plane is generated from data obtained from a second radar scan. The first and second planes are non-coplanar. The first and second representations are combined to form a three-dimensional model of the weather event. A three-dimensional shape of the three-dimensional model is constructed. The three-dimensional shape is displayed on an avionics display.
    Type: Grant
    Filed: July 22, 2003
    Date of Patent: September 23, 2008
    Assignee: Rockwell Collins, Inc.
    Inventors: Kevin M. Kronfeld, Mathew S. Chackalackal
  • Patent number: 7425693
    Abstract: A method of tracking a target. The method includes the steps of acquiring a first spectral image of a scene that includes the target, designating a spectral reference window, in the first spectral image, that includes a respective plurality of pixel vectors, acquiring a second spectral image, of the scene, that includes a respective plurality of pixel vectors, and hypercorrelating the spectral reference window with the second spectral image, thereby obtaining a hypercorrelation function, a maximum of the hypercorrelation function then corresponding to a location of the target in the scene.
    Type: Grant
    Filed: July 18, 2004
    Date of Patent: September 16, 2008
    Assignee: Rafael Advanced Defence Systems Ltd.
    Inventor: Ruth Shapira
  • Patent number: 7425917
    Abstract: A radar including a target measurement component, a differential velocity calculator and an overall velocity determination portion. The target measurement component transmits and receives an electromagnetic wave over a detection range repeatedly at measurement intervals to measure a position of a target in the detection range and measure a Doppler velocity of the target based on a Doppler shift of the electromagnetic wave reflected from the target. The differential velocity calculator determines a differential velocity of the target based on a change in position of the target during consecutive measurement intervals. The overall velocity determination portion determines a current overall velocity by calculating a weighted average of the Doppler velocity, the differential velocity, and a previously determined overall velocity.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: September 16, 2008
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Motoi Nakanishi, Toru Ishii
  • Publication number: 20080218401
    Abstract: A digital camera for providing a short burst of global navigation satellite system (GNSS) signal samples in a picture data file with an approximate time for reading by a computer apparatus some time later for determining the geographical location and an accurate time of the picture. An apparatus and method for determining a GNSS position of an event where an event capture device writes a short burst of GNSS signal samples with an approximate time into an event data file and a GNSS sample processor reads the event data file some time later for determining the geographical location and an accurate time of the event.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Inventors: Peter Van Wyck Loomis, Carl Jacob Norda
  • Patent number: 7423587
    Abstract: A method for generating a multiresolution decomposition of an array signal by a bank of spatial bandpass filters is disclosed. The signal processing operation is implemented through the use of the directivities of the individual array elements and does not degrade the spatial or temporal resolution of the array.
    Type: Grant
    Filed: April 2, 2006
    Date of Patent: September 9, 2008
    Inventor: Rolf Mueller
  • Patent number: 7424269
    Abstract: Embodiments of the present invention provide a method, apparatus and system of radar detection. The method, according to some demonstrative embodiments of the invention, may include comparing an energy level of signals received over a wireless communication channel to a threshold; during operation of a processor, if the energy level is above the threshold, determining independently of the processor one or more time values related to said signals; and if the energy level decreases to or below the threshold, interrupting the operation of the processor to determine, based on the time values, one or more parameters of a detection time period during which the energy level was above the threshold. Other embodiments are described and claimed.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: September 9, 2008
    Assignee: Intel Corporation
    Inventors: Solomon B. Trainin, Jorge Myszne, Oded Liron
  • Patent number: 7423581
    Abstract: A radar device is provided that can reliably display sensed image data of an object, regardless of the state of the object (echo) within a sensed range and of the surrounding environment. A behavior data detector 11 generates current level detection data by detecting a level behavior of sensed image data X(n) handled by a W data generator 7 from sensed data x(n) that is output from a sweep memory 4. Previous behavior data constituted by level detection data of several past scans is stored in a behavior data memory 12, and the behavior detector 11 updates the previous behavior data with the current level detection data and outputs the result to the W data generator 7. Detecting characteristics of the sensed image data of corresponding pixels from the behavior data, the W data generator 7 selects filter calculation data W(n), the current sensed image data X(n) or specific filter calculation data Z(n) and outputs the selected result as written image data Y(n).
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: September 9, 2008
    Assignee: Furuno Electric Co., Ltd.
    Inventors: Takumi Fujikawa, Takehiro Yamashita, Sae Shibata, Yasushi Maruono
  • Patent number: 7423575
    Abstract: An ultra wideband (UWB) jamming system comprises a processor, a memory, a pulse generator, one or more UWB transmitters, and one or more UWB antennas. In an exemplary embodiment of the present invention, the RF signals of a threat transmission or an RF-triggered explosive device (RTED) are evaluated and a set of interference parameters defined for the RF signal of that device. The interference parameters are predetermined to interfere with the reception or transmission of the RF signal. The interference parameters are sent to a pulse generator that drives one or more UWB transmitters to generate a signal has a statistically high probability of jamming or introducing an error in the threatening transmission.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: September 9, 2008
    Assignee: Sentel Corporation
    Inventors: William G. Duff, Theodore L. Harwood, II, Arthur Light, John P. Smith
  • Patent number: 7420504
    Abstract: A method of operating a multibeam radar carried on a platform flying a mission over a prescribed flight path to obtain images of a plurality of target areas, the beams of said radar being the result of respective transmit pulses and beam returns being received by respective receive windows. A range of pulse repetition frequencies and pulse repetition frequency change rates are used in an iterative process to determine non-collision alignments of any combination of transmit pulses and receive windows. When a non-collision alignment is determined the particular arrangement producing that non-collision alignment is used in a simulated flight of the platform to determine dwell time before a collision occurs. An arrangement that produces sufficient dwell time to accomplish a mission is then used in an actual flight of the platform.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: September 2, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: Daniel N. Held, Elbert L. Cole, Jr., Martin J. Decker, Charles Y. Chen
  • Patent number: 7420505
    Abstract: A method of organizing a radar system or a sensor system with multiple levels of hierarchical constructs for all level of the system. These architectural levels incorporate self-similar organizational structure and represent design strategies that implement data transfer and communication interfaces with both intranet and internet communication network connections.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: September 2, 2008
    Assignee: Clean Earth Technologies, LLC
    Inventors: Andrew Blanchard, Jeffry Golden, Robert D. Morgan, Andrew Cilia