By Light Patents (Class 356/317)
  • Patent number: 11092532
    Abstract: The present invention includes method and device for label-free holographic screening and enumeration of tumor cells in bulk flow comprising: a laser source, a micro-objective, a pinhole device and a collimating lens, a mirror, a sample chamber with a sample flow inlet on a first side of the sample chamber and a sample flow outlet connected by a microchannel, and a detector, wherein the collimated laser beam passes through microchannel and interacts with cells in the sample to generate a respective hologram at the detector, wherein a processor calculates a numerical reconstruction from the respective hologram and generates a focused image of the numerous cells using the numerical reconstruction, wherein the numerous cells are enumerated by looking at a size, a maximum intensity and a mean intensity of the focused image.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: August 17, 2021
    Assignee: Texas Tech University System
    Inventors: Dhananjay Kumar Singh, Caroline C. Ahrens, Wei Li, Siva A. Vanapalli
  • Patent number: 11092547
    Abstract: A method for observing a fluorescent sample, the sample comprising a fluorescent agent that emits fluorescence light, in a fluorescence spectral band, when it is illuminated by excitation light, in an excitation spectral band, the method comprising the following steps: a) placing the sample on a holder; b) illuminating the sample, with an excitation light source, in the excitation spectral band, the light emitted by the light source propagating along a propagation axis; c) detecting fluorescence light, in the fluorescence spectral band, with an image sensor; the method being such that the holder comprises a thin layer formed from a first material, of a first refractive index, the thin layer lying in a holder plane perpendicular to the propagation axis, the thin layer comprising a first photonic crystal and second photonic crystals configured to confine the excitation light and the fluorescence light in the thin layer.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: August 17, 2021
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Selimen Benahmed, Cedric Allier, Salim Boutami
  • Patent number: 11088352
    Abstract: A display substrate, a manufacturing method thereof, and a display device are provided, in the field of display technology. The display substrate includes a base substrate, and a thin-film transistor, a light-emitting device, an encapsulation structure, and a conductive film layer sequentially disposed on the base substrate in a direction away from the base substrate. Since the display substrate includes a conductive film layer on a side of the encapsulation structure away from the base substrate, when the protective film layer on the side of the conductive film layer away from the base substrate is peeled off, static electricity generated by the separation of the film layer can be released to the conductive film layer, avoiding electron transition to the active layer of the thin-film transistor in the display substrate to cause offset of the threshold voltage of the thin-film transistor. The display brightness uniformity of the display substrate can be ensured.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: August 10, 2021
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Wenqu Liu, Feng Zhang, Qi Yao, Zhijun Lv, Liwen Dong, Shizheng Zhang, Ning Dang, Xiaoxin Song, Zhao Cui
  • Patent number: 11047794
    Abstract: A system and method that improves and enhances the quality of step-scan Fourier Transform Infrared spectroscopy data. The system and method enables the removal of dark voltage with greater accuracy, provides access to previously unobtainable IR spectral information data which is amplified by the disclosed system and method. The system and method removes dark interferogram voltage from an interferogram of interest obtained during nanosecond or microsecond step-scan measurement. The system and method includes a programmable high gain setting to amplify both signal and noise into the analog-to-digital quantization range to allow signal averaging for obtaining additional bits of resolution. The system and method also accounts for and corrects intrinsic offset voltages introduced by the electronics of the disclosed system.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: June 29, 2021
    Assignee: The Board of Regents for Oklahoma State University
    Inventors: Chriswell G. Hutchens, Cheng Hao, Aihua Xie, Johnny Hendriks
  • Patent number: 11048938
    Abstract: A method for recognizing individual plants of a selected type growing in a field, wherein the method comprises capturing color NIR image data of an entire field having plants of a selected type growing therein utilizing an automated plant counting system and calculating a ratio value between each pixel of the color image data and the corresponding pixel of the NIR image data utilizing a plant recognition algorithm executed via a data processing system of the plant counting system. The method additionally comprises generating, via execution of the plant recognition algorithm, a false color image of the field based on the calculated ratios for each pixel, and identifying, via execution of the plant recognition algorithm, all plants of the selected type in the false color image based on a plant distinguishing characteristic uniquely rendered for each individual plant of the selected type in the false color image.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: June 29, 2021
    Assignee: Monsanto Technology LLC
    Inventors: Christopher A. Hundley, James H. Crain
  • Patent number: 11016026
    Abstract: In the scanning molecule counting method of measuring light intensity from a light detection region while moving the position of the light detection region of a confocal or multiphoton microscope in a sample solution containing light-emitting particles, generating time series light intensity data and detecting each of signals of the light-emitting particles individually in the data, wherein the light-emitting particles are formed by binding to a particle to be observed a light-emitting probe which emits light through binding to the particle to be observed and in which a stochastic transition between a non-light-emitting state and a light-emitting state occurs in the unbound state, the moving speed of the position of the light detection region is adjusted to make the time during which the unbound probe is encompassed by the moving light detection region longer than an average lifetime during which the probe is in the light-emitting state.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: May 25, 2021
    Assignee: OLYMPUS CORPORATION
    Inventors: Tetsuya Tanabe, Takuya Hanashi, Hidetaka Nakata
  • Patent number: 11002654
    Abstract: Measurement device and methods for the detection and/or analysis of fluid-borne particles. The measurement device comprises a means for producing a flow of fluid along a fluid flow path, a laser positioned for emitting a beam of laser light in a measurement volume of the fluid flow path; a lens set for collecting laser light scattered in the measurement volume by fluid-borne particles contained in the flow of fluid; a multipixel photo-detector positioned for detecting scattered laser light collected by the lens set. The lens set is configured for focusing the scattered light in a line being perpendicular to a flow direction (y) of the flow of fluid and at a focal distance of the lens set. The multipixel photodetector is positioned at a distance from the focal distance of the lens set and oriented with its longitudinal axis parallel to the line.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: May 11, 2021
    Assignee: PLAIR SA
    Inventor: Denis Kiselev
  • Patent number: 10996454
    Abstract: A microscope includes a movable stage supporting wells arranged in an array, a first imaging unit having a low-magnification objective lens, a second imaging unit having a high-magnification objective lens, a computer determining a representative position of a spheroid based on imaging data of the spheroid acquired by the first imaging unit, and a controller causing respective imaging units to sequentially acquire imaging data of the spheroid in each of the wells. The controller causes the first imaging unit to acquire imaging data for the spheroid in one of the wells, and then causes the stage to adjust the representative position to the optical axis of the high-magnification objective lens, and further causes the second imaging unit to acquire imaging data while causing the first imaging unit to acquire imaging data of the spheroid in another of the wells in synchronization with acquisition by the second imaging unit.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: May 4, 2021
    Assignee: OLYMPUS CORPORATION
    Inventor: Yoshihiro Shimada
  • Patent number: 10948703
    Abstract: Imaging systems and methods with scattering to reduce source auto-fluorescence and improve uniformity. In some embodiments, the system may include a plurality of trans-illumination light sources configured to irradiate an examination region with different colors of trans-illumination light, while a same diffuser is present in each optical path from the trans-illumination light sources to the examination region. The system also may comprise an excitation light source configured to irradiate the examination region with excitation light. The system may be configured to irradiate the examination region with each of the trans-illumination light sources and, optionally, with the excitation light source, without moving parts in any of the optical paths from the trans-illumination light sources. The system further may comprise an image detector configured to detect grayscale images of the examination region, and a processor configured to create a color trans-illumination image from grayscale images.
    Type: Grant
    Filed: February 15, 2017
    Date of Patent: March 16, 2021
    Assignee: Molecular Devices, LLC
    Inventor: Matthew Chan
  • Patent number: 10942122
    Abstract: A microscopy method includes illuminating an object with illumination light, recording a first color image of the illuminated object by a color image sensor suitable for recording colors of a first gamut, producing a second color image of the object, the second color image including pixels that each have assigned a color from a second gamut, depicting the second color image by a display apparatus suitable for rendering colors of the second gamut, wherein the producing the second color image includes determining the colors at the pixels of the second color image by applying a color transfer function to the colors of the corresponding pixels of the first color image, the color transfer function mapping input colors onto output colors, and the color transfer function mapping those input colors that belong to the first gamut but not to the second gamut onto output colors that belong to the second gamut.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: March 9, 2021
    Assignee: Carl Zeiss Meditec AG
    Inventors: Christoph Nieten, Enrico Geissler, Marco Wilzbach, Susanne Kohlhammer
  • Patent number: 10942108
    Abstract: To provide a technology that an output level difference is corrected with high accuracy in fine particle measurement that optically measures properties of fine particles. The present technology provides a fine particle measurement apparatus including a detector that detects light from fluorescent reference particles that emit fluorescence having a predetermined wavelength bandwidth, and an information processor that specifies a relationship between an applied voltage coefficient corresponding to a feature amount of a predetermined output pulse and a control signal of the detector on the basis of a feature amount of an output pulse detected by the detector and the control signal of the detector at the time of detecting the feature amount of the output pulse, the feature amount of the output pulse being dependent on the control signal of the detector, or the like.
    Type: Grant
    Filed: October 17, 2016
    Date of Patent: March 9, 2021
    Assignee: SONY CORPORATION
    Inventor: Katsutoshi Tahara
  • Patent number: 10925133
    Abstract: An electroluminescent LED device comprising a hole transport layer, an electron transport layer, an active emissive layer between the hole transport layer and the electron transport layer, and carbon dots forming the active emissive layer.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: February 16, 2021
    Assignee: BOARD OF SUPERVISORS OF LOUISIANA STATE UNIVERSITY
    Inventors: Weiyong Yu, Yu Zhang
  • Patent number: 10921241
    Abstract: An oblique incidence, prism-incident, silicon-based, immersion microchannel-based measurement device may include: a microchannel structure which has a support, a substrate which is formed on the support and made of a semiconductor or dielectric material, a cover part which has a prism structure and is installed on the support, and a microchannel which is formed in any one of an upper portion of the support and a lower end of the cover part; a sample injection part which forms an adsorption layer for a sample on a substrate by injecting a buffer solution containing the sample made of a biomaterial into the microchannel; a polarized light generation part which emits polarized incident light through an incident surface of the prism to the adsorption layer at an incident angle that satisfies a p-wave antireflection condition; and a polarized light detection part.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: February 16, 2021
    Assignee: KOREA RESEARCH INSTITUTE OF STANDARDS AND SCIENCE
    Inventors: Hyun Mo Cho, Won Chegal, Yong Jai Cho
  • Patent number: 10914676
    Abstract: An observation apparatus in this embodiment includes a light source configured to irradiate an observation target with light, and a processing unit configured to generate an image based on Rayleigh scattered light derived from ?(3) included in light obtained from the observation target.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: February 9, 2021
    Assignee: NIKON CORPORATION
    Inventor: Naoki Fukutake
  • Patent number: 10888230
    Abstract: Methods and systems for detecting early stage dental caries and decays are provided. In particular, in an embodiment, laser-induced autofluorescence (AF) from multiple excitation wavelengths is obtained and analyzed. Endogenous fluorophores residing in the enamel naturally fluoresce when illuminated by wavelengths ranging from ultraviolet into the visible spectrum. The relative intensities of the AF emission changes between different excitation wavelengths when the enamel changes from healthy to demineralized. By taking a ratio of AF emission spectra integrals between different excitation wavelengths, a standard is created wherein changes in AF ratios within a tooth are quantified and serve as indicators of early stage enamel demineralization. The techniques described herein may be used in conjunction with a scanning fiber endoscope (SFE) to provide a reliable, safe and low-cost means for identifying dental caries or decays.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: January 12, 2021
    Assignee: University of Washington through its Center for Commercialization
    Inventors: Eric J. Seibel, Leonard Y. Nelson
  • Patent number: 10883917
    Abstract: A method for imaging 1-D nanomaterials is provided. The method includes: providing a 1-D nanomaterials sample; immersing the 1-D nanomaterials sample in a liquid; illuminating the 1-D nanomaterials sample by a first incident light and a second incident light to cause resonance Rayleigh scattering, wherein the first incident light and the second incident light are not parallel to each other; and acquiring a resonance Rayleigh scattering image of the 1-D nanomaterials sample with a microscope.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: January 5, 2021
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Wen-Yun Wu, Dong-Qi Li, Jin Zhang, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10866191
    Abstract: An atomization unit has a tube-shaped furnace, and heats and atomizes a sample injected into the furnace. A light source unit emits light having a wavelength to be measured toward the atomization unit such that light passes through the furnace. An optical system transmits the light having the wavelength to be measured, of light passing through the furnace. A detection unit detects the light transmitted by the optical system. A light transmission plate is provided at a position in an optical path of the light passing through the furnace toward the detection unit, to obliquely cross an optical axis of the light. An image capturing unit is arranged outside the optical path, and captures an image inside the furnace by receiving light reflected by the light transmission plate, of the light passing through the furnace.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: December 15, 2020
    Assignee: SHIMADZU CORPORATION
    Inventors: Atsuhiko Otaguro, Osuke Kobayashi
  • Patent number: 10854662
    Abstract: Imaging systems and methods for imaging using the same color or monochromatic image sensor, wherein imaging can be switched between at least two imaging modes, for example between a visible imaging mode and an IR imaging mode, without moving any system component from a given position in an optical path between an imaged object and the image sensor. In an example, a system includes an image sensor, a tunable spectral filter and a multi-bandpass filter, the tunable spectral filter and the multi-bandpass filter arranged in a common optical path between an object and the image sensor, and a controller configured and operable to position the tunable spectral filter in a plurality of operation states related to a plurality of imaging modes.
    Type: Grant
    Filed: November 18, 2017
    Date of Patent: December 1, 2020
    Assignee: UNISPECTRAL LTD.
    Inventors: Ariel Raz, Viacheslav Krylov, Eliahu Chaim Ashkenazi, Peleg Levin, Efrat Immer
  • Patent number: 10845535
    Abstract: Systems and methods are provided for processing an optical signal. An example system may include a source disposed on a substrate and capable of emitting the optical signal. A first waveguide is formed in the substrate to receive the optical signal. A first coupler is disposed on the substrate to receive a reflected portion of the optical signal. A second waveguide is formed in the substrate to receive the reflected portion from the first coupler. A second coupler is formed in the substrate to mix the optical signal and the reflected portion to form a mixed signal. Photodetectors are formed in the substrate to convert the mixed signal to an electrical signal. A processor is electrically coupled to the substrate and programmed to convert the electrical signal from a time domain to a frequency domain to determine a phase difference between the optical signal and the reflected portion.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: November 24, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Amit S. Sharma, John Paul Strachan, Marco Fiorentino
  • Patent number: 10830696
    Abstract: A solid-state device for photo detection, in general, of terahertz radiation is disclosed. One aspect is a detector device comprising a body having a photoconductive material, a first antenna element connected to a first portion of the body, and a second antenna element connected to a second portion of the body. The first antenna element and the second antenna element are arranged to induce an electric field in the body in response to an incident signal. Further, the device has a waveguide arranged to couple light into the photoconductive material via a coupling interface between the waveguide and the body, where the coupling interface faces away from the first portion and the second portion of the body and is closer to the first portion than to the second portion.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: November 10, 2020
    Assignees: IMEC vzw, Stichting IMEC Nederland
    Inventors: Peter Offermans, Joris Van Campenhout
  • Patent number: 10821446
    Abstract: The present technology provides for a fluorescent detector that is configured to detect light emitted for a probe characteristic of a polynucleotide. The polynucleotide is undergoing amplification in a microfluidic channel with which the detector is in optical communication. The detector is configured to detect minute quantities of polynucleotide, such as would be contained in a microfluidic volume. The detector can also be multiplexed to permit multiple concurrent measurements on multiple polynucleotides concurrently.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: November 3, 2020
    Assignee: HANDYLAB, INC.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra
  • Patent number: 10768112
    Abstract: An optical detection method and an optical detection device quickly and accurately detects a micro target substance, such as an antigen, with high sensitivity by using an enhanced electric field. The optical detection device includes: one or more light irradiation units; a detection plate having a laminate structure; a prism in close optical contact to a back surface side of the detection plate and having multiple light incident surfaces with different incidence angles; and a light detection unit which is placed on the front surface side of the detection plate and which detects an optical signal from a sample. Light from the light irradiation unit enters the light incident surfaces of the prism at a fixed angle with respect to the front surface of the detection plate, and the light passing through the prism is irradiated from the back surface side of the detection plate under a total reflection condition.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: September 8, 2020
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Masato Yasuura, Makoto Fujimaki
  • Patent number: 10761011
    Abstract: Any one or both of an optical system with a structured lighting pattern and a structured detecting system having a plurality of regions with different optical characteristics are used. In addition, optical signals from an object to be observed through one or a small number of pixel detectors are detected while changing relative positions between the object to be observed and any one of the optical system and the detecting system, time series signal information of the optical signals are obtained, and an image associated with an object to be observed from the time series signal information is reconstructed.
    Type: Grant
    Filed: February 24, 2016
    Date of Patent: September 1, 2020
    Assignees: The University of Tokyo, Osaka University
    Inventors: Sadao Ota, Ryoichi Horisaki, Kazuki Hashimoto
  • Patent number: 10712270
    Abstract: A digital holographic microscope in which two digital holographic microscopes for detecting a fluorescence image and a phase image, respectively, are combined to be able to three-dimensionally measure a fluorescence image and a phase image at the same time, and perform measurement at a high SN ratio in all the polarization states including random light polarization. A first holographic optical system that, by using laser light, acquires a phase three-dimensional image due to interference light generated by superimposing object light which passes through a sample stage and reference light which does not pass through the sample stage onto each other. A second holographic optical system that, by using fluorescent excitation light, acquires a fluorescence three-dimensional image due to a fluorescence signal light, wherein phase measurement by the first holographic optical system and fluorescence measurement by the second holographic optical system are performed at the same time.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: July 14, 2020
    Assignee: National University Corporation Kobe University
    Inventor: Osamu Matoba
  • Patent number: 10678805
    Abstract: Techniques and mechanisms are disclosed that enable a data collection system to adaptively control collection of data from one or more external data sources. At a high level, adaptively controlling collection of data from external data sources may include collecting performance information related to one or more data collection nodes and, in response to analyzing the collected performance information, adapting rates at which the data collection nodes send data collection requests to external data sources. Data collection performance information generally may include, but is not limited to, network traffic data, error messages generated by external data sources and/or data collection nodes, computing device performance information, and any other types of information related to a data collection node's ability to collect data from external data sources.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: June 9, 2020
    Assignee: Splunk Inc.
    Inventors: Ken Chen, Gang Tao, Lai Qiang Ding, Junqing Hao, Ting Wang, Elias Haddad, Dritan Bitincka
  • Patent number: 10639680
    Abstract: A system for the detection of foreign object debris material on a surface includes an ultraviolet light source configured to direct ultraviolet light across a surface. The surface is an outer surface of a composite part being formed by a composite layup machine. The system includes an ultraviolet light camera configured to scan the surface and output a first signal proportional to reflected ultraviolet light reflected by at least one of the surface and a first type of foreign object debris material. The reflected ultraviolet light is responsive to the ultraviolet light from the ultraviolet light source. The system also includes a controller coupled to the ultraviolet light source and to the ultraviolet light camera. The controller is configured to compare the first signal from the ultraviolet light camera with a first threshold to detect presence of the first type of foreign object debris material.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: May 5, 2020
    Assignee: THE BOEING COMPANY
    Inventors: Morteza Safai, Jeffrey G. Thompson
  • Patent number: 10605715
    Abstract: The present invention is to provide a flow cytometer comprising: flow cell; a liquid feeding unit for feeding a liquid different from a sample liquid containing sample particles to the flow cell; a sample liquid feeding unit for feeding the sample liquid to the flow cell after the liquid is sent to the flow cell; and a detector for detecting the sample particles flowing through the flow cell.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: March 31, 2020
    Assignee: SYSMEX CORPORATION
    Inventors: Shohei Matsumoto, Tomoya Hayashi
  • Patent number: 10527550
    Abstract: A method for investigating biological cells or cell cultures in a microplate reader receives at least one microplate with wells containing biological cells or cell cultures by a receiving device; positions the wells with respect to measuring devices of the microplate reader and detects integral measurement signals by at least one of the measuring devices. The biological cells or cell cultures in the specific wells of the microplate(s) are transilluminated by an illumination source of the microplate reader and imaged by an imaging camera. Each of the detected integral signals is compared with the image of the biological cells or cell cultures in the corresponding wells of the microplate(s) by a processor and is related to the imaged number, adherence, confluence or morphology of these biological cells or cell cultures.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: January 7, 2020
    Assignee: TECAN TRADING AG
    Inventors: Harald Gebetsroither, Andreas Gfrorer, Juha Koota
  • Patent number: 10516132
    Abstract: The present invention provides an inverted QD-LED and a manufacturing method thereof. The manufacturing method of an inverted QD-LED according to the present invention adopts a hydrothermal synthesis process to form a monocrystalline TiO2 nanorod array film for serving as an electron transport layer, wherein a plurality of monocrystalline TiO2 nanorods contained in the monocrystalline TiO2 nanorod array film are arranged in an array so as not to readily get aggregated thereby overcoming the deficiencies of inhomogeneous film formation resulting from aggregation of TiO2 nanometer particles, lowered electron transport efficiency, and low light extraction efficiency, and thus ensuring high-efficiency electron transport rate of the electron transport layer, increasing scattering of light to heighten light extraction efficiency, and improve luminous efficiency and stability of a device.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: December 24, 2019
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS SEMICONDUCTOR DISPLAY TECHNOLOGY CO., LTD.
    Inventor: Yadan Xiao
  • Patent number: 10509167
    Abstract: Systems and methods are provided for processing an optical signal. An example system may include a source disposed on a substrate and capable of emitting the optical signal. A first waveguide is formed in the substrate to receive the optical signal. A first coupler is disposed on the substrate to receive a reflected portion of the optical signal. A second waveguide is formed in the substrate to receive the reflected portion from the first coupler. A second coupler is formed in the substrate to mix the optical signal and the reflected portion to form a mixed signal. Photodetectors are formed in the substrate to convert the mixed signal to an electrical signal. A processor is electrically coupled to the substrate and programmed to convert the electrical signal from a time domain to a frequency domain to determine a phase difference between the optical signal and the reflected portion.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: December 17, 2019
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Amit S. Sharma, John Paul Strachan, Marco Fiorentino
  • Patent number: 10495719
    Abstract: Methods and systems for determining the direction to at least one source contributing to a wave field. A wave field partial wave expansion (PWE) model is comprised of wave field partial wave functions (PWFs) and unknown PWE coefficients corresponding to the wave field PWFs. A source PWE model is comprised of source PWFs and source PWE coefficients corresponding to the source PWFs, the source PWE coefficients being expressed in terms of source PWFs of the directional coordinates of the source. A processor, using: the output signals from at least one sensor outputting signals consistent with Nyquist criteria representative of the wave field; a library of PWFs to determine at least one of the unknown PWE coefficients; and the source PWE model, determines directional coordinates of the source (wherein the number of floating point operations are reduced) and outputs the directional coordinates to a reporter configured for reporting information to humans.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: December 3, 2019
    Inventor: Charles Alphonse Uzes
  • Patent number: 10481001
    Abstract: An optical spectrum measuring apparatus includes: a CCD (Charge Coupled Device) detector including a plurality of light-receiving devices that are two-dimensionally arranged; an optical system configured to split incident light into rays and irradiate the CCD detector with the rays; and a restriction unit configured to restrict one or more rows and/or one or more columns out of the rows and columns of the plurality of light-receiving devices from being irradiated with light from the optical system.
    Type: Grant
    Filed: January 9, 2018
    Date of Patent: November 19, 2019
    Assignee: Otsuka Electronics Co., Ltd.
    Inventor: Goro Maeda
  • Patent number: 10463256
    Abstract: A method for determining sub-diffuse scattering parameters of a material includes illuminating the material with structured light and imaging remission by the material of the structured light. The method further includes determining, from captured remission images, sub-diffuse scattering parameters of the material. A structured-light imaging system for determining sub-diffuse scattering parameters of a material includes a structured-light illuminator, for illuminating the material with structured light of periodic spatial structure, and a camera for capturing images of the remission of the structured light by the material. The structured-light imaging system further includes an analysis module for processing the images to quantitatively determine the sub-diffuse scattering parameters. A software product includes machine-readable instructions for analyzing images of remission of structured light by a material to determine sub-diffuse scattering parameters of the material.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: November 5, 2019
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Stephen Chad Kanick, Brian William Pogue, Keith D. Paulsen, Jonathan T. Elliott, David M. McClatchy, III, Venkataramanan Krishnaswamy
  • Patent number: 10393587
    Abstract: Methods for laser induced ablation spectroscopy are disclosed. A sample site position sensor, and stage position motors can move the stage in three independent spatial coordinate directions, and a stage position control circuit is used to move an analysis sample site to selected coordinate positions for laser ablation. Light emitted from a plasma plume produced with laser ablation can be gathered into a lightguide fiber bundle that is subdivided into branches. One branch can convey a first portion of the light to a broadband spectrometer operable to analyze a relatively wide spectral segment, and a different branch can convey a second portion of the light to a high dispersion spectrometer operable to measure minor concentrations and/or trace elements. Emissions from a plasma plume can be simultaneously analyzed in various ways using a plurality of spectrometers having distinct and/or complementary capabilities.
    Type: Grant
    Filed: July 3, 2016
    Date of Patent: August 27, 2019
    Assignee: Applied Spectra, Inc.
    Inventors: Jong Hyun Yoo, Randolph S. Tribe, Chunyi Liu
  • Patent number: 10386338
    Abstract: The present invention relates to a piezoelectric mechanical system (PEMS) microcantilever sensor that both detects the presence of viral RNA in an aqueous solution, such as a blood sample. The method provides for the formation of the sensor by attaching RNA, DNA, or an antibody to the microcantilever sensor surface via a hydrazone or an oxime chemical bond. The method provides for the detection of viral RNA viruses and viral DNA viruses upon the chemical binding/bonding of single-stranded viral nucleic acid to the microcantilever sensor surface. The method provides for the detection of DNA cancer mutations or variants that have been identified in a cancer cell upon the chemical binding/bonding of single-stranded DNA to the microcantilever sensor surface.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: August 20, 2019
    Inventor: Cynthia Rena Wright
  • Patent number: 10379047
    Abstract: Embodiments of a cell culture monitoring system are disclosed that may include a device having collimating and filtering components to elicit and detect fluorescence from a substrate located within a reaction vessel. The device may be used to detect changes in pH and dissolved oxygen levels in a liquid contained in the reaction vessel due to growth of living cells. Excitation light beams can be generated and collimated by a beam combiner and directed into the reaction vessel so as to be incident upon the substrate to cause the substrate to fluoresce. Some embodiments include use of expected wavelength offsets and shifted filters/mirrors to improve functionality and reduce space of device components.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 13, 2019
    Assignee: Scientific Industries, Inc.
    Inventors: Michael Tolosa, William Chandler, Douglas J. Koebler, Joseph G. Cremonese, Brookman P. March
  • Patent number: 10371700
    Abstract: An in-vitro diagnostic includes a housing, a storage, and a blocking agent. The housing houses a liquid including a test substance included in a sample extracted from a subject. The storage stores a substance that specifically reacts with the test substance. The blocking agent is placed to separate the container and the storage.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: August 6, 2019
    Assignee: Canon Medical Systems Corporation
    Inventors: Asuka Hirano, Shoichi Kanayama, Ichiro Tono
  • Patent number: 10365273
    Abstract: Provided is a fluorescence immunoassay sensor chip and a fluorescence immunoassay method, which are capable of measuring, at the same time, a marker requiring high sensitivity due to its low content in a sample solution and a marker not requiring high sensitivity due to its high content in a sample solution. The fluorescence immunoassay sensor chip for use in fluorescence immunoassay for detecting and measuring markers contained in a sample solution includes: a dielectric member; a metal thin film formed on part of a main surface of the dielectric member; a first sensor part formed in a predetermined position on the metal thin film; and a second sensor part directly formed in a predetermined position on the dielectric member, wherein a ligand immobilized in the first sensor part and a ligand immobilized in the second sensor part capture different types of markers.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: July 30, 2019
    Assignee: KONICA MINOLTA, INC.
    Inventors: Makiko Ootani, Tsuruki Tamura, Shinichi Muramatsu
  • Patent number: 10330597
    Abstract: Apparatus for enhancing on-chip fluorescence detection. For example, an apparatus comprises a microfluidic channel, an excitation signal enhancing structure formed on a first side of the microfluidic channel and a photodetector structure formed on a second side of the microfluidic channel. For example, the excitation signal enhancing structure enhances an excitation signal and the enhanced excitation signal excites one or more samples in the microfluidic channel to emit signals at a fluorescence wavelength at a higher rate.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Yann Andre Nicolas Astier, Ning Li, Devendra K. Sadana, Chao Wang
  • Patent number: 10310248
    Abstract: Provided is a microscope including: a chamber storing a solution in which a cuvette accommodating a solution together with a sample is immersed and that has an index of refraction identical to that of the solution; an immersion objective lens being placed outside the chamber and collecting light from the sample; a camera acquiring an image of the light collected by the lens; a targeting section moving the lens in a direction along a detection light axis thereof; and a movable stage supporting the cuvette in the chamber so as to be movable in at least a direction along the detection light axis. Each of the cuvette and the chamber has a transparent section that can transmit light coming from the sample. The lens is placed so as to face the transparent section of the cuvette with the transparent section of the chamber interposed therebetween.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: June 4, 2019
    Assignee: OLYMPUS CORPORATION
    Inventors: Brendan Brinkman, Yoshihiro Shimada
  • Patent number: 10271720
    Abstract: The present invention provides an intraoral imaging and illumination apparatus comprising a rear portion and a front portion removably connected to the rear portion. The front portion is formed as a light guide. The rear portion comprises an imaging device and an illumination device. The illumination device is adapted to couple light into the front portion and towards a leading end of the front portion opposite the rear portion so as to illuminate a first object. The imaging device is adapted to image the first object.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: April 30, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Johannes Fink, Guenter Zilligen, David M. Rudek
  • Patent number: 10257480
    Abstract: A projection display apparatus that can prevent deviation in the light quantity distribution of the projected image is provided. A projection display apparatus includes: a light source unit including a light emitting element; an image light generator modulating light from the light source unit to emit image light; a projecting unit projecting the image light; a polarization modulator on which the image light is made incident and that emits light in a particular polarization state; and a depolarizer arranged on the optical path between the light emitting element and the polarization modulator.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: April 9, 2019
    Assignee: NEC DISPLAY SOLUTIONS, LTD.
    Inventor: Shinichiro Chikahisa
  • Patent number: 10222337
    Abstract: Methods for laser induced ablation spectroscopy are disclosed. A position sensor, and position motors can move a sample stage in three independent spatial coordinate directions, and a stage position control circuit can move an analysis sample site to selected coordinate positions for ablation. Light from laser ablation can be gathered into a lightguide fiber bundle that is subdivided into branches. One branch can convey a first portion of the light to a broadband spectrometer operable to analyze a relatively wide spectral segment, and a different branch can convey a second portion of the light to a high dispersion spectrometer operable to measure minor concentrations and/or trace elements. Emissions can be simultaneously analyzed in various ways using a plurality of spectrometers having distinct and/or complementary capabilities, and isotope analysis of a sample can be performed.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: March 5, 2019
    Assignee: Applied Spectra, Inc.
    Inventors: Jong Hyun Yoo, Chunyi Liu, Alexander A. Bol'shakov, Richard E. Russo, Xianglei Mao, Randolph S. Tribe, Osman Sorkhabi
  • Patent number: 10209197
    Abstract: A method for inspecting an aging state of a silicone rubber composite insulating material comprises the following steps: bombarding, for multiple times and by a pulsed laser beam, selected points on a surface of a silicone rubber composite insulating material to be inspected to generate a plasma; collecting spectrum information emitted by the plasma at each bombardment, and extracting, from the collected spectrum information, a spectral property indicator of a specific constituent element of the silicone rubber composite insulating material at each bombardment; and determining aging state information of the silicone rubber composite insulating material according to the change pattern of the spectral property indicator of the specific constituent element with respect to the bombardment depth. The method enables the rapid and accurate inspection of an aging state of a silicone rubber composite insulating material, and avoids the destructive tests required in the prior art.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: February 19, 2019
    Assignee: GRADUATE SCHOOL AT SHENZHEN, TSINGHUA UNIVERSITY
    Inventors: Xilin Wang, Han Wang, Weian Ye, Zhidong Jia
  • Patent number: 10073256
    Abstract: An apparatus for imaging a sample arranged in a first medium in an object plane. The apparatus includes an optical transmission system which images the sample in the object plane in an intermediate image in an intermediate image plane. The object plane and the intermediate image plane form an angle not equal to 90° with an optical axis of the transmission system. The apparatus further comprises an optical imaging system having an objective. The object plane may be imaged on a detector without distortion. The optical transmission system is symmetrical with respect to a pupil plane, the object plane, and the intermediate image plane to satisfy the Scheimpflug condition. The intermediate image lies in a second medium having a refractive index virtually identical to that of the first medium. A lens group of a subsystem arranged closest to the sample or intermediate image comprises at least one catadioptric assembly.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: September 11, 2018
    Assignees: CARL ZEISS MICROSCOPY GMBH, CARL ZEISS AG
    Inventors: Wolfgang Singer, Ralf Wolleschensky, Wilhelm Ulrich, David Shafer, Artur Degen
  • Patent number: 10060795
    Abstract: A problem addressed by the present invention is to reduce the influence of stray light incident on each light-receiving element in the case of receiving each wavelength of light using a plurality of light-receiving elements.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: August 28, 2018
    Assignee: Shimadzu Corporation
    Inventors: Masahide Gunji, Akira Noda, Kensuke Otake
  • Patent number: 10060975
    Abstract: A semiconductor device inspection system (1) includes a laser beam source (2), for emitting light, an optical sensor (12) for detecting the light reflected by the semiconductor device (10) from the light and outputting a detection signal, a frequency band setting unit (16) for setting a measurement frequency band and a reference frequency band with respect to the detection signal, a spectrum analyzer (15) for generating a measurement signal and a reference signal from the detection signals in the measurement frequency band and the reference frequency band, and a signal acquisition unit (17) for calculating a difference between the measurement signal and the reference signal to acquire an analysis signal. The frequency band setting unit (16) sets the reference frequency band to a frequency domain in which a level of the detection signal is lower than a level obtained by adding 3 decibels to a white noise level serving as a reference.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: August 28, 2018
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventor: Tomonori Nakamura
  • Patent number: 10054483
    Abstract: Aspects of a micromirror spectrophotometer assembly are described. In one example case, an instrument includes a diffraction grating to disperse broadband light over a range of wavelengths, a detector, a digital micromirror device (DMD) configured to scan through and reflect at least a portion of the range of wavelengths toward the detector, and a base platform having a number of integrally formed assembly mounts. The assembly mounts are formed to align and secure the diffraction grating, the detector, the DMD, and other optical components of the instrument in a predetermined arrangement. The instrument can also include a reference paddle having a reference material for calibration of the instrument, and a rotatable sample tray to rotate a sample placed on the sample tray for measurement.
    Type: Grant
    Filed: June 1, 2017
    Date of Patent: August 21, 2018
    Assignee: WESTCO SCIENTIFIC INSTRUMENTS, INC
    Inventors: Jerome J. Workman, Jr., John Coates, David Naranjo
  • Patent number: 10041464
    Abstract: A controller of a laser ignition engine configured to perform ignition by using a laser ignition device configured to emit a laser beam condensed by a lens includes: a combustion state related value acquiring portion configured to acquire a combustion state related value related to a combustion state of the engine; and a contamination determining portion configured to compare the combustion state related value acquired by the combustion state related value acquiring portion with a combustion state determining value to determine whether or not the laser ignition device is contaminated, the combustion state determining value being defined based on the combustion state of the engine when the laser ignition device is not contaminated.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: August 7, 2018
    Assignee: Mazda Motor Corporation
    Inventors: Takashi Youso, Masahisa Yamakawa, Tatsuya Fujikawa, Atsushi Inoue
  • Patent number: 10007100
    Abstract: A light sheet illumination microscope includes a detection optical system and an illumination optical system. The illumination optical system includes a first optical element for forming a sheet-shaped illumination beam that travels in a first direction and that has a width in a second direction that is perpendicular to both the optical axis of the detection optical system and the first direction in a specimen, and a scanner that relatively scans the specimen with the sheet-shaped illumination beam in the second direction.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: June 26, 2018
    Assignee: OLYMPUS CORPORATION
    Inventor: Yu Kikuchi