Monochromatic (e.g., Laser) Patents (Class 356/318)
  • Patent number: 11965781
    Abstract: A system for non-invasively interrogating an in vivo sample for measurement of analytes comprises a pulse sensor coupled to the in vivo sample for detect a blood pulse of the sample and for generating a corresponding pulse signal, a laser generator for generating a laser radiation having a wavelength, power and diameter, the laser radiation being directed toward the sample to elicit Raman signals, a laser controller adapted to activate the laser generator, a spectrometer situated to receive the Raman signals and to generate analyte spectral data; and a computing device coupled to the pulse sensor, laser controller and spectrometer which is adapted to correlate the spectral data with the pulse signal based on timing data received from the laser controller in order to isolate spectral components from analytes within the blood of the sample from spectral components from analytes arising from non-blood components of the sample.
    Type: Grant
    Filed: May 5, 2023
    Date of Patent: April 23, 2024
    Assignee: Sanguis Corporation
    Inventor: Jeffrey Owen Katz
  • Patent number: 11966037
    Abstract: Disclosed herein are sample dishes for use with microscopes that are simple to mount on a microscope and facilitate easy manipulation of tissue samples disposed thereon during imaging as well as methods of their use. A sample dish comprises an optical interface and, optionally, a support member that holds the optical interface. The optical interface of a sample dish is suitably transparent and planar such that a focal plane of a microscope can reside uniformly at or within a surface of a sample during imaging. In certain embodiments, a support member comprises a dish for holding excess fluid. In certain embodiments, a sample dish comprises separation ribs. In certain embodiments, a sample dish comprises one or more manipulation members (e.g., tabs). In certain embodiments, a sample dish is used with an imaging artifact reducing fluid.
    Type: Grant
    Filed: May 9, 2022
    Date of Patent: April 23, 2024
    Assignee: SamanTree Medical SA
    Inventors: Etienne Shaffer, Jonathan Abel Pirolet, Frédéric Schmitt, Bastien Rachet, Diego Joss, Aurèle Timothée Horisberger
  • Patent number: 11892353
    Abstract: Disclosed herein are a method for diagnosing a disease of a body tissue by using LIBS (Laser-Induced Breakdown Spectroscopy) comprising: preparing a laser device including: a laser projection module, outputting the laser to a suspicious region of the body tissue, a light receiving module, receiving a plurality of light, a spectrum measurement module, and a guide unit; and projecting the laser to generate plasma by inducing tissue ablation in the suspicious region; wherein the laser projected to the suspicious region has a target area, and wherein the target area has smaller size than the suspicious region such that the target area is located inside the suspicious region.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: February 6, 2024
    Assignee: SPECLIPSE, INC.
    Inventors: Sung Hyun Pyun, Wan Ki Min
  • Patent number: 11858040
    Abstract: Disclosed are a method of inspecting a printing quality of a 3D printing object using a femtosecond laser beam during a 3D printing process, and an apparatus and a 3D printing system for the same. A laser beam is irradiated from a femtosecond laser source disposed coaxially with a 3D printing laser source to inspect a state of the printing object. The laser beam generated by the femtosecond laser source is separated into a pump laser beam and a probe laser beam. The printing laser beam irradiated from a 3D printing laser source or the pump laser beam is irradiated onto a printing object to generate ultrasonic waves. To measure the ultrasonic waves, a probe laser beam is irradiated onto the printing object. The probe laser beam reflected by the printing object is detected. The quality of the printing object is inspected by analyzing the reflected probe laser beam.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: January 2, 2024
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Hoon Sohn, Peipei Liu
  • Patent number: 11841299
    Abstract: Disclosed is a sampling device, a sampling system and a method of collecting samples of particulates. Also disclosed a sampling device, a sampling system and a method of generating data associated with the collection of the samples of particulates. Also disclosed is a system and method for analysing the sample data to identify the particulates in the collected samples and their one or more characteristics which may be correlated with the surrounding environment.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: December 12, 2023
    Assignee: BIOSCOUT PTY LTD
    Inventors: Lewis Alexander Collins, Henry Brindle, Saron Berhane
  • Patent number: 11841318
    Abstract: Provided is an identification apparatus wherein each spectral light beam corresponding to a predetermined wavenumber shift is projected to the imaging portion) so that a distance between a projection position of the spectral light beam corresponding to the predetermined wavenumber shift on the imaging portion and a changed projection position as a result of the different excitation wavelength is shorter than a distance at the imaging lens between an optical path of the spectral light beam corresponding to the predetermined wavenumber shift and a changed optical path as a result of the different excitation wavelength.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: December 12, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Makoto Kawaguchi, Yuki Yonetani, Shigeru Ichihara
  • Patent number: 11835464
    Abstract: Chemical composition of liquid phase samples is determined based on laser induced ablation spectroscopy of droplets. An aerosol jet comprising a carrier gas and liquid phase sample droplets, less than about 10 microns in diameter, is formed. An emissive plasma plume is generated from the sample droplets using a pulsed laser to deposit energy at a focal point in the aerosol jet. Light from the plasma plume is gathered with a concave mirror and focused into one end of a fiber optic lightguide. The lightguide can transmit spectral emissions from the plume to a spectrometer/detector which can send wavelength and intensity values to a computer. The computer is operable to determine a liquid sample composition based on the wavelength and intensity values.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: December 5, 2023
    Assignee: Applied Spectra, INC.
    Inventors: Alexander A. Bol′shakov, Chunyi Liu, Sudeep J. Pandey, Richard E. Russo
  • Patent number: 11781910
    Abstract: A hand held spectrometer is used to illuminate the object and measure the one or more spectra. The spectral data of the object can be used to determine one or more attributes of the object. In many embodiments, the spectrometer is coupled to a database of spectral information that can be used to determine the attributes of the object. The spectrometer system may comprise a hand held communication device coupled to a spectrometer, in which the user can input and receive data related to the measured object with the hand held communication device. The embodiments disclosed herein allow many users to share object data with many people, in order to provide many people with actionable intelligence in response to spectral data.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: October 10, 2023
    Assignee: VERIFOOD LTD
    Inventors: Damian Goldring, Dror Sharon, Guy Brodetzki, Amit Ruf, Menahem Kaplan, Sagee Rosen, Omer Keilaf, Uri Kinrot, Kai Engelhardt, Ittai Nir, Nitzan Waisberg, Dana Cohen Bar-On
  • Patent number: 11774344
    Abstract: The present application discloses a nanoparticle recognition device and method based on detection of scattered light with electric dipole rotation. According to the scattering model of nanoparticles, the in situ detection of particle morphology in an optical trap is realized by the methods of particle suspension control and scattered light detection and separation. Specifically, two linearly polarized laser beams are used, wherein the first laser beam suspends nanoparticles and rotates nanoparticles by adjusting the polarization direction; the polarization direction of the second linearly polarized light is unchanged, and scattered light in a specific dipole direction is excited; the change of the polarizability of the nanoparticles is deduced by monitoring the change of the light intensity of the scattered light excited by the second laser beam at the fixed position, so that particle morphology recognition is realized.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: October 3, 2023
    Assignees: ZHEJIANG LAB, ZHEJIANG UNIVERSITY
    Inventors: Cuihong Li, Yuanyuan Ma, Zhaoxiong He, Shaochong Zhu, Zhiming Chen, Huizhu Hu
  • Patent number: 11768157
    Abstract: Apparatus for laser induced ablation spectroscopy (LIBS) is disclosed. An apparatus can have a computer, a pulsed laser and a lightguide fiber bundle that is subdivided into branches. One branch can convey a first portion of the light to a first optical spectrometer and a different branch can convey a second portion of the light to another optical spectrometer. The first spectrometer can be relatively wideband to analyze a relative wide spectral segment and the other spectrometer can be high dispersion to measure minor concentrations. The apparatus can further comprise an unbranched lightguide fiber bundle to provide more light to a low sensitivity spectrometer. The apparatus can include an inductively coupled plasma mass spectrometer ICP-MS and a computer instructions operable to provide normalized LIBS/ICP-MS composition analyses.
    Type: Grant
    Filed: January 17, 2023
    Date of Patent: September 26, 2023
    Assignee: Applied Spectra, Inc.
    Inventors: Jong Hyun Yoo, Chunyi Liu, Richard E. Russo
  • Patent number: 11730530
    Abstract: The inventive device (10) can be used for tissue coagulation and/or tissue ablation. It comprises at least one electrode (16) that serves for generating a spark or plasma jet and is connectable to an electric source (20) for this purpose. The probe (11) is assigned to a measuring device (24) that emits and/or receives light in the proximity of the electrode (16) and determines the distance of the probe (11) from the tissue (36) and/or the tissue temperature and/or the composition of the influenced tissue (36). Preferably the measuring device (24) is operated synchronized with pulses or pauses of the pulse-pause-modulated radio frequency voltage (UHF) of the electrode (16) in order to simultaneously carry out the desired measurements during the operation of the instrument (11) and to feedback control the operation of the instrument (11) based on the gained measurement results.
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: August 22, 2023
    Assignee: ERBE ELEKTROMEDIZIN GMBH
    Inventors: Caglar Ataman, Klaus Fischer, Alexander Neugebauer, Sergio Vilches, Hans Zappe
  • Patent number: 11727542
    Abstract: Super resolution and color motion artifact correction in a pulsed hyperspectral, fluorescence, and laser mapping imaging system. A method includes actuating an emitter to emit pulses of electromagnetic radiation and sensing reflected electromagnetic radiation with a pixel array of an image sensor. The method includes detecting motion across two or more sequential exposure frames, compensating for the detected motion, and combining the two or more sequential exposure frames to generate an image frame. The method is such that at least a portion of the pulses of electromagnetic radiation emitted by the emitter comprises one or more of: electromagnetic radiation having a wavelength from about 513 nm to about 545 nm, from about 565 nm to about 585 nm, from about 900 nm to about 1000 nm, an excitation wavelength of electromagnetic radiation that causes a reagent to fluoresce, or a laser mapping pattern.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: August 15, 2023
    Assignee: Cilag GmbH International
    Inventors: Joshua D. Talbert, Donald M. Wichern
  • Patent number: 11726079
    Abstract: Presently disclosed is a lighting system and methods of using the lighting system for in vitro potency assay for photofrin. The lighting system includes a lamp housing, a first lens, an infrared absorbing filter, an optical filter, and a second lens. The lamp housing includes a lamp and a light-port. In operation, broad spectrum light from the lamp exits the lamp housing by passing through the light-port. The first lens then collimates the broad spectrum light that exits the lamp housing through the light-port. The infrared absorbing filter then passes a first portion of the collimated broad spectrum light to the optical filter and absorbs infrared light of the broad spectrum light. The optical filter then passes a second portion of the collimated broad spectrum light to the second lens. The second lens then disperses the second portion of the collimated light to provide uniform irradiation of a cell culture plate. A method of using the lighting system for studying a photosensitizer is also disclosed.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 15, 2023
    Assignee: Concordia Laboratories, Inc.
    Inventor: Michael Scot Roberts
  • Patent number: 11715204
    Abstract: Systems and methods for image-based biological sample constituent analysis are disclosed. For example, image data corresponding to an image having a target constituent and other constituents may be generated and utilized for analysis. The systems and processes described herein may be utilized to differentiate between portions of image data corresponding to the target constituent and other portions that do not correspond to the target constituent. Analysis of the target constituent instances may be performed to provide analytical results.
    Type: Grant
    Filed: May 2, 2022
    Date of Patent: August 1, 2023
    Assignee: Rewire Neuro, Inc.
    Inventors: John Hoehn Harkness, Grant W. Wade, William M. O'Keeffe, Robert Pascal Harkness, Colton V. King, Kristy Jo Lawton
  • Patent number: 11692876
    Abstract: An optical manufacturing process sensing and status indication system is taught that is able to utilize optical emissions from a manufacturing process to infer the state of the process. In one case, it is able to use these optical emissions to distinguish thermal phenomena on two timescales and to perform feature extraction and classification so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process. In other case, it is able to utilize these optical emissions to derive corresponding spectra and identify features within those spectra so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: July 4, 2023
    Assignee: Sigma Additive Solutions, Inc.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Martin S. Piltch, Alberto Castro
  • Patent number: 11693012
    Abstract: A screening method is provided. Cells secreting target antibodies are screened by mixing candidate cells labeled with a first fluorescent molecule, a capture antigen and a labeled antibody against a target antibody and incubating, labeling using a high content cell imager and sorting using flow cytometry so as to screen cells secreting target antibodies. The screening method disclosed in the present application can automatically complete the labeling and sorting of target candidate cells in high throughput by labeling with a fluorescent molecule in combination with high-content cell imager and flow cytometer, so as to provide sufficient quantity of cells for subsequent amplification to obtain their antibody sequences and screen affinity antibodies. This method greatly improves the screening efficiency.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: July 4, 2023
    Assignee: SUZHOU INSTITUTE OF NANO-TECH AND NANO-BIONICS (SINANO) , CHINESE ACADEMY OF SCIENCES
    Inventors: Kefeng Pu, Jiong Li, Min Jiang
  • Patent number: 11686669
    Abstract: The invention provides an optical measurement device for measuring light to be inspected. The optical measurement device comprises a light receiving module, a light splitting module, and a plurality of color filters. The light receiving module is used for converting the light to be inspected into a first parallel light. The light splitting module is used for splitting the first parallel light into a plurality of parallel lights to be inspected. Each color filter receives at least one of the plurality of parallel lights to be inspected. The plurality of parallel lights to be inspected filtered by the plurality of color filters are used to calculate tristimulus values in the CIE color space.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: June 27, 2023
    Assignee: Chroma ATE Inc.
    Inventors: Tsung-Hsien Ou, Hsin-Yueh Sung, Shih-Min Hsu, Yu-Hsuan Lin
  • Patent number: 11644454
    Abstract: The present disclosure relates to methods of verifying enhanced rock weathering using immobile trace elements found within a mineral amendment. Further disclosed are mineral amendments that enable enhanced rock weathering.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: May 9, 2023
    Assignee: Eion Corp.
    Inventors: Adam Wolf, Elliot Suk-Hyun Chang, Alan Robert Tank
  • Patent number: 11640903
    Abstract: An analysis apparatus includes a stage on which an analysis sample as an analysis target and a first adjustment sample used for adjusting a focus are provided. A laser generation unit generates a laser beam for vaporizing the analysis sample or the first adjustment sample by irradiating the sample with the laser beam. A detection unit detects a signal intensity of an element of the analysis sample or the first adjustment sample vaporized by irradiation with the laser beam. A controller determines a focus position of the laser beam with respect to a front surface position of the first adjustment sample based on the signal intensity of the first adjustment sample, and performs a control such that the focus position of the laser beam corresponds with a front surface of the analysis sample.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: May 2, 2023
    Assignee: KIOXIA CORPORATION
    Inventors: Jiahong Wu, Miki Takimoto
  • Patent number: 11630061
    Abstract: Provided herein are devices, systems, and methods for characterizing a biological sample in vivo or ex vivo in real-time using time-resolved spectroscopy. A light source generates a light pulse or continuous light wave and excites the biological sample, inducing a responsive fluorescent signal. A demultiplexer splits the signal into spectral bands and a time delay is applied to the spectral bands so as to capture data with a detector from multiple spectral bands from a single excitation pulse. The biological sample is characterized by analyzing the fluorescence intensity magnitude and/or decay of the spectral bands. The sample may comprise one or more exogenous or endogenous fluorophore. The device may be a two-piece probe with a detachable, disposable distal end. The systems may combine fluorescence spectroscopy with other optical spectroscopy or imaging modalities. The light pulse may be focused at a single focal point or scanned or patterned across an area.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: April 18, 2023
    Assignees: Black Light Surgical, Inc., Cedars-Sinai Medical Center
    Inventors: Pramod Butte, Keith Black, Jack Kavanaugh, Bartosz Bortnik, Zhaojun Nie
  • Patent number: 11607750
    Abstract: According to one embodiment, an analysis apparatus includes a stage on which to place a sample, a light source, a film thickness measurement unit, and a controller. The light source generates a laser beam to irradiate the sample with the laser beam to cause vaporization of the sample. The film thickness measurer measures a thickness of the sample at a first position where the laser beam irradiates the sample. The controller controls at least one irradiation condition of the laser beam based on the measured thickness of the sample.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: March 21, 2023
    Assignee: KIOXIA CORPORATION
    Inventors: Jiahong Wu, Yuji Yamada
  • Patent number: 11561177
    Abstract: The invention encompasses analyzers and analyzer systems that include a single molecule analyzer, methods of using the analyzer and analyzer systems to analyze samples, either for single molecules or for molecular complexes. The single molecule uses electromagnetic radiation that is translated through the sample to detect the presence or absence of a single molecule. The single molecule analyzer provided herein is useful for diagnostics because the analyzer detects single molecules with zero carryover between samples.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: January 24, 2023
    Assignee: NOVILUX, LLC
    Inventor: Richard Livingston
  • Patent number: 11555786
    Abstract: Apparatus for laser induced ablation spectroscopy (LIBS) is disclosed. An apparatus can have a computer, a pulsed laser and a lightguide fiber bundle that is subdivided into branches. One branch can convey a first portion of the light to a first optical spectrometer and a different branch can convey a second portion of the light to another optical spectrometer. The first spectrometer can be relatively wideband to analyze a relative wide spectral segment and the other spectrometer can be high dispersion to measure minor concentrations. The apparatus can have a plurality of spectrometers with distinct and/or complementary capabilities, and can include an inductively coupled plasma mass spectrometer and data and instructions in tangible media operable to obtain a synergistic composition analysis based on optical spectra and ion mass to charge ratio peaks from the mass spectrometer.
    Type: Grant
    Filed: September 6, 2022
    Date of Patent: January 17, 2023
    Assignee: Applied Spectra, Inc.
    Inventors: Jong Hyun Yoo, Chunyi Liu, Richard E. Russo
  • Patent number: 11549093
    Abstract: A measurement apparatus according to an embodiment of the present technology includes a light source, a filling portion, and a detector. The light source emits illumination light. The filling portion includes a first surface portion and a second surface portion which are provided on an optical path of the illumination light and are opposite to each other, the filling portion enabling a cavity between the first and second surface portions to be filled with liquid including a cell. The detector detects an interference fringe of the illumination light passing through the cavity, the interference fringe being caused by the liquid including the cell.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: January 10, 2023
    Assignee: SONY CORPORATION
    Inventors: Hirokazu Tatsuta, Takeshi Kunihiro, Kazuhiro Nakagawa
  • Patent number: 11541426
    Abstract: Sorting apparatus including a chute, on which objects are moved in succession by gravitational force, the chute having a cutout with a measuring region. An LIBS laser device is arranged adjacent to the cutout to carry out spectroscopic measurement on the moving objects. A separating device separates out certain objects, and a control device controls and/or adjusts the separating device as a function of the measurement results of the LIBS laser device. The chute includes at least a first portion, through which the objects can be moved first and centered normal to the conveying direction by gravitational force, and a second portion that is flat. The cutout includes the measuring region is arranged in the second portion.
    Type: Grant
    Filed: September 9, 2021
    Date of Patent: January 3, 2023
    Assignee: BINDER + CO AG
    Inventors: Reinhold Huber, Reinhard Taucher
  • Patent number: 11493744
    Abstract: For checking the confocality of a scanning and descanning microscope assembly comprising a light source providing illumination light focused into a focal area in a focal plane, a detector detecting light coming out of the focal area and having a detection aperture to be arranged in a confocal fashion with respect to the focal area, and a scanner, an auxiliary detection aperture of an auxiliary detector arranged in the focal plane is scanned with the focal area of the illumination light to record a first comparison intensity distribution of the illumination light registered by the auxiliary detector, and the detection aperture of the detector is scanned with auxiliary light that exits out of an auxiliary emission aperture of an auxiliary light source concentrically arranged with respect to the auxiliary detection aperture in the focal plane to record a second comparison intensity distribution of the auxiliary light registered by the detector.
    Type: Grant
    Filed: December 15, 2021
    Date of Patent: November 8, 2022
    Assignee: ABBERIOR INSTRUMENTS GMBH
    Inventors: Joachim Fischer, Matthias Henrich
  • Patent number: 11487098
    Abstract: The present invention refers to a method for high spatial resolution imaging comprising a phase plate or a spatial light modulator (SLM) device for STimulated Emission Depletion (STED) microscopy and Reversible Saturable OpticaL Fluorescence Transitions (RESOLFT) microscopy, where a bivortex pattern is imprinted on the said phase plate or SLM to generate a beam. The bivortex pattern allows some freedom in shaping the STED beam to improve the microscope's axial performance and optical sectioning capacity. The present invention further refers to a method for STED and RESOLFT microscopy comprising the step of modulating the optical phase of a laser using a phase plate or a spatial light modulator device with a phase mask comprising a bivortex with a tunable radius.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: November 1, 2022
    Assignee: IBMC—INSTITUTO DE BIOLOGIA MOLECULAR E CELULAR
    Inventor: António José Abrantes Guedes Da Fonseca Pereira
  • Patent number: 11435290
    Abstract: Methods for laser induced ablation spectroscopy (LIBS) are disclosed. Light from laser ablation can be gathered into a lightguide fiber bundle that is subdivided into branches. One branch can convey a first portion of the light to a broadband spectrometer operable to analyze a relatively wide spectral segment, and a different branch can convey a second portion of the light to a high dispersion spectrometer operable to measure minor concentrations and/or trace elements. Emissions can be analyzed using a plurality of spectrometers having distinct and/or complementary capabilities, and with a synergistic method using inductively coupled plasma mass spectrometry.
    Type: Grant
    Filed: July 2, 2021
    Date of Patent: September 6, 2022
    Assignee: Applied Spectra, Inc
    Inventors: Alexander A. Bol'shakov, Chunyi Liu, Jong Hyun Yoo, Sudeep J. Pandey, Richard E. Russo, Randolph S. Tribe
  • Patent number: 11426540
    Abstract: The methods described herein provide improvements to the measurement of dose content uniformity of inhaler and nasal devices. The methods involve analyzing and measuring a spray pattern of an emitted spray from an inhaler or nasal device. The spray pattern may be used to determine the dose content uniformity of an inhaler or nasal device.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 30, 2022
    Assignee: PROVERIS SCIENTIFIC CORPORATION
    Inventors: Dino John Farina, Zachary Pitluk
  • Patent number: 11428632
    Abstract: Systems and methods for three-dimensional fluorescence polarization excitation that generates maps of positions and orientation of fluorescent molecules in three or more dimensions are disclosed.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 30, 2022
    Assignee: THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES
    Inventors: Hari Shroff, Abhishek Kumar, Shalin B. Mehta, Patrick Jean-La Riviere, Rudolf Oldenbourg, Yicong Wu, Talon Chandler
  • Patent number: 11428708
    Abstract: A method includes transmitting first optical energy towards a space being scanned. The method also includes detecting one or more instances of a first material in the space using first return optical energy, where the first return optical energy is based on the transmitted first optical energy. The method further includes, for each of the one or more instances of the first material, transmitting second optical energy towards a portion of the space in which the instance of the first material was detected. The method also includes detecting one or more instances of a second material in the space using second return optical energy, where the second return optical energy is based on the transmitted second optical energy. In addition, the method includes identifying a presence of at least one type of device in the space based on instances of the first and second materials detected in the space.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: August 30, 2022
    Assignee: Raytheon Company
    Inventors: Gary A. Frazier, Randy L. Gann
  • Patent number: 11426074
    Abstract: A system includes a focus optic configured to converge an electromagnetic radiation (EMR) beam to a focal region located along an optical axis. The system also includes a detector configured to detect a signal radiation emanating from a predetermined location along the optical axis. The system additionally includes a controller configured to adjust a parameter of the EMR beam based in part on the signal radiation detected by the detector. The system also includes a window located a predetermined depth away from the focal region, between the focal region and the focus optic along the optical axis, wherein the window is configured to make contact with a surface of a tissue.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: August 30, 2022
    Assignee: Avava, Inc.
    Inventors: Jayant Bhawalkar, Charles Holland Dresser, Rajender Katkam
  • Patent number: 11415582
    Abstract: Method for detecting colon or colorectal cancer by measuring heavy metal concentrations in colon or colorectal tissue using laser-induced breakdown spectroscopy (LIBS).
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 16, 2022
    Assignees: King Fahd University of Petroleum and Minerals, Imam Abdulrahman Bin Faisal University
    Inventors: Muhammad Ashraf Gondal, Munirah A. Almessiere, Bilal A. Gondal
  • Patent number: 11378392
    Abstract: In order to provide a means to uniquely estimate the attitude in a wider range of angles to thereby realize a more accurate attitude estimate, a planar marker is provided. The planar marker includes a planar visual marker having a two-dimensional pattern code and at least two attitude inversion detection patterns Fx and Fy each consisting of a transparent cylindrical body having a pattern on the side face within the range of 180 degrees around the central axis ra and being provided so as to be orthogonal to each other on the same plane as that of planar visual marker. A marker is provided that includes at least one attitude inversion detection pattern. The attitude inversion detection pattern consists of the planar visual marker and a transparent spherical body having a pattern on a hemispherical surface and is provided on the same plane as that of the planar visual marker.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: July 5, 2022
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventor: Hideyuki Tanaka
  • Patent number: 11359966
    Abstract: A variable focus imaging lens assembly has different, calibrated settings for each of multiple different wavelength ranges. Images are captured for each wavelength range using the different settings, corrected and stacked to form an image data cube. Using multiple wavelength ranges allows a scene or object to be imaged by multispectral imagers, hyperspectral imagers and imaging spectrometers using an overall wide wavelength range.
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: June 14, 2022
    Inventors: Timothy Moggridge, Paul Joseph Prior
  • Patent number: 11327084
    Abstract: A joint point-of-care testing (POCT) analyzer, and a system comprising an analyzer and a cartridge, for measuring one or more analyte quantities per unit volume of blood and one or more formed element quantities per unit volume of blood, is described. Examples of formed elements of blood are red blood cells and white blood cells, and cell counts are determined by imaging using a two-dimensional multi-channel detector. Examples of analytes are hemoglobin and bilirubin, and hemoglobin and bilirubin concentrations are determined by spectroscopy using a one-dimensional multi-channel detector. Other examples of analytes are electrolytes, and electrolyte concentrations may be determined using biosensors incorporated in the cartridges.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: May 10, 2022
    Assignee: INVIDX CORP.
    Inventor: James Samsoondar
  • Patent number: 11326949
    Abstract: Disclosed herein are a diagnostic method using laser induced breakdown spectrum analysis and a diagnostic device for performing the same. The diagnostic device may include a laser projection module projecting a pulsed laser to a specimen, a light receiving module receiving a light generated by a plasma ablation induced at the specimen by the pulsed laser, a spectral member receiving and dividing the light generated by the plasma ablation; a sensor array including a plurality of sensors arranged to receive the divided light for each wavelength, and a controller obtaining spectrum data of the light generated by the plasma ablation from a specific exposure period, and determining whether or not the specimen is diseased based on the spectrum data of the light generated by the plasma ablation.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: May 10, 2022
    Assignee: SPECLIPSE, Inc.
    Inventors: Sung Hyun Pyun, Wan Ki Min
  • Patent number: 11321843
    Abstract: Systems and methods for image-based biological sample constituent analysis are disclosed. For example, image data corresponding to an image having a target constituent and other constituents may be generated and utilized for analysis. The systems and processes described herein may be utilized to differentiate between portions of image data corresponding to the target constituent and other portions that do not correspond to the target constituent. Analysis of the target constituent instances may be performed to provide analytical results.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: May 3, 2022
    Assignee: Rewire Neuro, Inc.
    Inventors: John Hoehn Harkness, Grant W. Wade, William M. O'Keeffe, Robert Pascal Harkness, Colton V. King, Kristy Jo Lawton
  • Patent number: 11320308
    Abstract: Disclosed is a system and method for shaped incoherent light for control (SILC). More particularly, disclosed is a method for controlling the evolution of photo-responsive systems (including chemical species, biochemical species or material compounds) using a device capable of producing shaped incoherent light for such control. The disclosed device integrates a polychromatic incoherent source in an adaptive feedback control loop.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: May 3, 2022
    Assignee: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: François Laforge, Herschel Rabitz, Howard Y. Bell, Joshua E. Collins
  • Patent number: 11311915
    Abstract: A fully automatic online aero aluminum sorting and recovery system based on LIBS (Laser Induced Breakdown Spectroscopy) technology, which belongs to the field of aero aluminum sorting and recovery technology, and is suitable for online sorting, detection and recovery of large batch of aero aluminum. The fully automatic online aero aluminum sorting system based on LIBS technology provided in the present invention consists of six portions: a sample feeding unit (1), a surface treatment unit (2), a material positioning unit (3), a LIBS analysis and detection unit (4), a transfer unit (5) and a sorting and recovery unit (6). The system according to the invention can be used to realize the automatic online detection, sorting and recovery of aero aluminum, and the system does not have requirements on the surface condition of the recovered aero aluminum samples. The sorting accuracy rate is greater than 90% and the sorting rate is not less than 1 block per second.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: April 26, 2022
    Assignee: The Boeing Company
    Inventors: Xuejing Shen, Ying Lin, Jia Liu, Rui Shen, Peng Xu, Yanbin Hu, Han Wu, Hui Wang, Jiaqing Zeng, Libin Yang, Ge Zhao, Jun Yao, Xiaoxia Shi
  • Patent number: 11201453
    Abstract: Methods for wavelength determination of widely tunable lasers and systems thereof may be implemented with solid-state laser based photonic systems based on photonic integrated circuit technology as well as discrete table top systems such as widely-tunable external cavity lasers and systems. The methods allow integrated wavelength control enabling immediate system wavelength calibration without the need for external wavelength monitoring instruments. Wavelength determination is achieved using a monolithic solid-state based optical cavity with a well-defined transmission or reflection function acting as a wavelength etalon. The solid-state etalon may be used with a wavelength shift tracking component, e.g., a non-balanced interferometer, to calibrate the entire laser emission tuning curve within one wavelength sweep.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: December 14, 2021
    Assignee: BROLIS SENSOR TECHNOLOGY, UAB
    Inventors: Augustinas Vizbaras, Ieva Simonyte, Andreas De Groote, Kristijonas Vizbaras
  • Patent number: 11193827
    Abstract: A method and apparatus for determining a level of background fluorescent light produced during photometric interrogation of a sample is provided. The method includes applying an excitation light to a sample using a laser at a plurality linewidths different from one another, the excitation light at each of the plurality of different linewidths applied at an excitation wavelength operable to cause emission of light from the sample, the light emitted from the sample including Raman scattered light and background fluorescent light; detecting light emitted from the tissue sample at each of the plurality of linewidths using a detector and producing light signals representative of the detected light; and determining a level of the background fluorescent using the light signals representative of the detected light for each of the plurality of different linewidths.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: December 7, 2021
    Assignee: CytoVeris, Inc.
    Inventor: Alan Kersey
  • Patent number: 11193829
    Abstract: A circular dichroism spectrometer which comprises a metasurface. The metasurface has a plurality of anisotropic antennas configured to simultaneously spatially separate LCP and RCP spectral components from an incoming light beam. An optical detector array is included which detects the LCP and RCP spectral components. A transparent medium is situated between the metasurface and the optical detector array.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: December 7, 2021
    Assignee: Purdue Research Foundation
    Inventors: Amr Mohammad E Shaltout, Alexander V. Kildishev, Vladimir M Shalaev, Jingjing Liu
  • Patent number: 11177630
    Abstract: Methods for wavelength determination of widely tunable lasers and systems thereof may be implemented with solid-state laser based photonic systems based on photonic integrated circuit technology as well as discrete table top systems such as widely-tunable external cavity lasers and systems. The methods allow integrated wavelength control enabling immediate system wavelength calibration without the need for external wavelength monitoring instruments. Wavelength determination is achieved using a monolithic solid-state based optical cavity with a well-defined transmission or reflection function acting as a wavelength etalon. The solid-state etalon may be used with a wavelength shift tracking component, e.g., a non-balanced interferometer, to calibrate the entire laser emission tuning curve within one wavelength sweep.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: November 16, 2021
    Assignee: Brolis Sensor Technology, UAB
    Inventors: Augustinas Vizbaras, Ieva Simonyte, Andreas De Groote, Kristijonas Vizbaras
  • Patent number: 11156556
    Abstract: An apparatus (and concomitant method) for rapid detection of a plurality of pathogens and/or chemicals, comprising a laser generating laser-induced breakdown spectra from a sample inserted into the apparatus, a receiver recording the spectra, and a data analysis component acquiring the spectra from the receiver and a display and/or data storage component displaying and/or receiving from the data analysis component which pathogens and/or chemicals are present in the sample and/or the likelihood of such presence, wherein the data analysis component comprises: predictive models for the plurality of pathogens and/or chemicals, a queue to order automated analysis by the predictive models in a predetermined order, and statistical analysis models for each of the predictive models to automatically provide likelihoods of presence of the respective pathogens and/or chemicals.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: October 26, 2021
    Inventors: Rosalie A. Multari, David A. Cremers, Ann L. Nelson
  • Patent number: 11112306
    Abstract: An optical signal analyzing apparatus enables real-time and single-shot analysis simultaneously in both time and frequency domains with spectro-temporal analysis. The apparatus includes a fiber tap coupler for receiving an input optical signal from continuous wave (CW) to ultra-short pulses (femtosecond-picosecond). An optical splitter directs part of the signal to a frequency channel and part to a time channel A photodiode in the time channel directly monitors the intensity evolution and converts it to an electrical signal. In the frequency channel, two sub-channels are provided: one for CW/quasi-CW and one for short-pulse components. A signal processor analyses the time- and frequency-domain data from the time channel and frequency channel and displays the temporal and spectral evolutions simultaneously, so that the two different pieces of information of a non-repeated dynamic event can be correlated in different domains.
    Type: Grant
    Filed: March 23, 2017
    Date of Patent: September 7, 2021
    Assignee: THE UNIVERSITY OF HONG KONG
    Inventors: Kin Yip Kenneth Wong, Xiaoming Wei, Bowen Li, Ying Yu, Chi Zhang
  • Patent number: 11085882
    Abstract: Portable instruments for analyzing elemental composition of liquid and solid phase materials by laser induced ablation spectroscopy are disclosed. The optical path of a single pulsed laser beam in the instrument is directed to a position depending on the phase of the sample material. Liquid phase samples are aerosolized before streaming to an analysis zone where they are dissociated in a plasma plume. A wide range of physical and chemical characteristics of liquid materials can be analyzed by the instruments. A large number of sites within solid phase sample structures are analyzed using a movable x-y-z stage in the instrument and the results are displayed in a chemical map.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: August 10, 2021
    Assignee: Applied Spectra, Inc.
    Inventors: Alexander A. Bol'shakov, Chunyi Liu, Sudeep J. Pandey, Richard E. Russo
  • Patent number: 11079279
    Abstract: Disclosed herein are a diagnostic method using laser induced breakdown spectrum analysis and a diagnostic device for performing the same. The diagnostic method may include projecting a pulsed laser to a suspicious specimen, obtaining first spectrum data on the light collected from the suspicious specimen, projecting the pulsed laser to a non-diseased specimen, obtaining second spectrum data on the light collected from the non-diseased specimen, and determining whether a disease is present in the suspicious specimen from a comparison value of the first spectrum data and the second spectrum data using an artificial neural network.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: August 3, 2021
    Assignee: SPECLIPSE, INC.
    Inventors: Sung Hyun Pyun, Wan Ki Min
  • Patent number: 11073431
    Abstract: An optical manufacturing process sensing and status indication system is taught that is able to utilize optical emissions from a manufacturing process to infer the state of the process. In one case, it is able to use these optical emissions to distinguish thermal phenomena on two timescales and to perform feature extraction and classification so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process. In other case, it is able to utilize these optical emissions to derive corresponding spectra and identify features within those spectra so that nominal process conditions may be uniquely distinguished from off-nominal process conditions at a given instant in time or over a sequential series of instants in time occurring over the duration of the manufacturing process.
    Type: Grant
    Filed: November 8, 2019
    Date of Patent: July 27, 2021
    Assignee: SIGMA LABS, INC.
    Inventors: Vivek R. Dave, Mark J. Cola, R. Bruce Madigan, Martin S. Piltch, Alberto Castro
  • Patent number: 11067513
    Abstract: In an example, an apparatus is described that includes a light source, a holographic optical element, a sampling apparatus, and a detector. The light source is configured to emit a beam of excitation light. The holographic optical element is arranged to convert the beam of excitation light into a plurality of beams of excitation light. The sampling apparatus is arranged to project the plurality of beams of excitation light onto a surface outside the apparatus as a two-dimensional pattern of projection points. The sampling apparatus is further arranged to collect scattered radiation emitted by the surface in response to the two-dimensional pattern of projection points. The detector detects a frequency shift in the scattered radiation.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: July 20, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Francesco Aieta, Anita Rogacs, Viktor Shkolnikov