Monochromatic (e.g., Laser) Patents (Class 356/318)
  • Patent number: 9068949
    Abstract: A system for measuring an sample includes an illumination source providing electromagnetic radiation pulses at a selected temporal frequency. A microscope focuses the radiation to interact with the sample and produce resultant electromagnetic radiation. A disperser disperses wavelengths of the resultant radiation onto optical sensors, and respective resonant amplifiers amplify signals having the selected temporal frequency. Optical detection apparatus includes the optical sensors, resonant amplifiers, and disperser. The resonant amplifiers amplify portion(s) of their inputs having a selected temporal frequency and attenuate other portion(s).
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: June 30, 2015
    Assignee: Purdue Research Foundation
    Inventors: Ji-Xin Cheng, Mikhail N. Slipchenko, Robert A. Oglesbee
  • Publication number: 20150138544
    Abstract: The method includes guiding a light beam to a first optical path, the light beam being attenuated to an attenuated light beam and detecting a first value indicative of a first intensity of the attenuated light beam. The method further includes generating a last light pulse, dissociating at least part of the gas compound molecules (optionally excited) or dissociated parts thereof (optionally excited) on the first optical path to first part atoms, molecules, ions, or radicals, and to another part using the last light pulse, the light beam being further attenuated by absorption to the first part atoms, molecules, ions, or radicals on the first optical path. The method further includes detecting a second value indicative of a second intensity of the attenuated light beam and determining, using the first and second values, the gas compound content of the gas mixture. A gas compound measuring device measures uses the method.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 21, 2015
    Applicant: VALMET POWER OY
    Inventors: Tapio Sorvajãrvi, Juha Toivonen, Juha Roppo, Jaani Silvennoinen, Sonja Enestam
  • Publication number: 20150138545
    Abstract: A handheld LIBS analyzer includes a laser source for generating a laser beam and a spectrometer subsystem for analyzing a plasma generated when the laser beam strikes a sample. A nose section includes an end plate with an aperture for the laser beam, a purge cavity behind the aperture fluidly connected to a source of purge gas, and a shield covering the purge cavity. A vent removes purge gas from the purge cavity when the end plate is placed on the sample.
    Type: Application
    Filed: January 29, 2015
    Publication date: May 21, 2015
    Inventors: David R. Day, Konstantin Derman, John Francis Egan, Paul Edward Soucy
  • Patent number: 9036146
    Abstract: An analysis system includes a laser source generating a laser beam for creating a plasma at a location on a sample. A spectrometer is responsive to photons emitted by the sample at said location and has an output. At least one nozzle is configured to deliver inert gas from a source locally to the location on the sample. A controller is responsive to a trigger signal and is configured to activate the laser source generating a series of laser pulses, open a valve to purge the location locally on the sample, and close the valve after one or more laser pulses.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: May 19, 2015
    Assignee: SciAps, Inc.
    Inventor: David Day
  • Publication number: 20150103334
    Abstract: A novel device, method and systems disclosed managing the thermal challenges of LIBS laser components and a spectrometer in a handheld structure as well the use of simplified light signal collection which includes a bare fiber optic to collect the emitted light in close proximity to (or in contact with) the test material. In one example embodiment of the handheld LIBS device, a burst pulse frequency is 4 kHz is used resulting in a time between pulses of about 250 ?s which is a factor of 10 above that of other devices in the prior art. In a related embodiment, an active Q-switched laser module is used along with a compact spectrometer module using a transmission grating to improve LIBS measurement while substantially reducing the size of the handheld analyzer.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Frederick Quant, Kenneth R. Farmer, Phillip V. Tan, Christopher B. Stipe, Steven G. Buckley, Erik Stockinger, Daniel Jensen
  • Patent number: 9007579
    Abstract: An optical device for measuring luminescence includes a pulse generator for generating a periodic modulation signal having rectangular pulses, a pulse duration of the pulse being variably adjustable, an illumination device and/or means for illuminating an object under investigation with excitation radiation modulated in a pulse-like manner depending on the modulation signal, and a time-of-flight camera for phase-sensitive detection of a luminescence response emitted by the object under investigation in response to the excitation radiation. The modulation signal is supplied as reference signal to the time-of-flight camera.
    Type: Grant
    Filed: April 4, 2009
    Date of Patent: April 14, 2015
    Assignee: Carl Zeiss Microscopy GmbH
    Inventor: Peter Westphal
  • Patent number: 8994946
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 31, 2015
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Nathaniel Joseph McCaffrey, Stephen Turner, Ravi Saxena
  • Publication number: 20150085282
    Abstract: A light measuring arrangement maintains the initial filtering function of an optical filter having a dye dispersed therein. The light measuring arrangement includes a measuring unit configured to measure an intensity of light emitted from a measurement target at a predetermined wavelength. The light measuring arrangement also includes the optical filter unit having the dye. The light measuring arrangement also includes a dye diffusion restricting unit configured to restrict diffusion of the dye from the optical filter unit. The optical filter unit constitutes part of an optical path for the light traveling from the measurement target to the light measuring unit.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 26, 2015
    Applicants: USHIO DENKI KABUSHIKI KAISHA, KYUSHU UNIVERSITY, NATIONAL UNIVERSITY CORPORATION
    Inventors: Hiroaki YOSHIOKA, Yuji OKI, Kinichi MORITA
  • Publication number: 20150085281
    Abstract: The objective of the present invention is to reduce the dispersion of a powdered substance, which is the target substance, during the analysis period in an analyzing device that analyzes the target substance by analyzing the light originated from the substance which is in the plasma state. The present invention relates to an analyzing device including a plasma generation means which generates plasma in the space and maintains plasma using the energy of EM radiation emitted from a radiation antenna; and an optical analysis means which analyzes a target substance by analyzing the plasma light generated from target substance of plasma state in the plasma area during the plasma maintenance period where the plasma is maintained by the plasma generation means using the energy of EM radiation. The plasma generation means emits the EM radiation from the radiation antenna in continuous waves during the plasma maintenance period.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 26, 2015
    Applicant: IMAGINEERING, INC.
    Inventors: Yuji Ikeda, Ryoji Tsuruoka
  • Publication number: 20150077747
    Abstract: A sensor comprises a pair of mirrors (11, 12) opposed along an optical axis and shaped to provide an optical cavity with stable resonance in at least one mode and having a cavity length of at most 50 ?m. An actuator system is arranged to move the mirrors relative to each other along the length of the optical cavity for tuning the wavelength of the mode of said cavity. A chemical sample is introduced inside the optical cavity using a sample introduction system (21). An EM radiation source (20) illuminates the cavity and a detector (25) detects the EM radiation emitted from, transmitted through, or reflected from the optical cavity.
    Type: Application
    Filed: May 3, 2013
    Publication date: March 19, 2015
    Applicant: ISIS INNOVATION LIMITED
    Inventors: Jason Michael Smith, Claire Vallance
  • Patent number: 8982344
    Abstract: Technologies are generally described for systems and methods for detecting chiral properties of materials and separating materials based on their chiral properties. A chiral vector is constructed from anisotropy properties of a polarization-dependent output signal from a sample. Different types of molecules from the sample can be differentiated based on a magnitude of the chiral vector. Chiral properties of the sample can be detected based on an angle of the chiral vector. The output signal can be a fluorescent emission from the sample and can be used to detect chiral properties of a substantially opaque sample.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: March 17, 2015
    Assignee: University of Calcutta
    Inventors: Anjan Kr. Dasgupta, Sarita Roy
  • Patent number: 8970841
    Abstract: An Advanced Laser Fluorometer (ALF) can combine spectrally and temporally resolved measurements of laser-stimulated emission (LSE) for characterization of dissolved and particulate matter, including fluorescence constituents, in liquids. Spectral deconvolution (SDC) analysis of LSE spectral measurements can accurately retrieve information about individual fluorescent bands, such as can be attributed to chlorophyll-a (Chl-a), phycobiliprotein (PBP) pigments, or chromophoric dissolved organic matter (CDOM), among others. Improved physiological assessments of photosynthesizing organisms can use SDC analysis and temporal LSE measurements to assess variable fluorescence corrected for SDC-retrieved background fluorescence. Fluorescence assessments of Chl-a concentration based on LSE spectral measurements can be improved using photo-physiological information from temporal measurements.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 3, 2015
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: Alexander Chekalyuk
  • Patent number: 8969752
    Abstract: The present invention provides a laser processing method comprising the steps of attaching a protective tape 25 to a front face 3 of a wafer 1a, irradiating a substrate 15 with laser light L while employing a rear face of the wafer 1a as a laser light entrance surface and locating a light-converging point P within the substrate 15 so as to form a molten processed region 13 due to multiphoton absorption, causing the molten processed region 13 to form a cutting start region 8 inside by a predetermined distance from the laser light entrance surface along a line 5 along which the object is intended to be cut in the wafer 1a, attaching an expandable tape 23 to the rear face 21 of the wafer 1a, and expanding the expandable tape 23 so as to separate a plurality of chip parts 24 produced upon cutting the wafer 1a from the cutting start region 8 acting as a start point from each other.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: March 3, 2015
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Kenshi Fukumitsu, Fumitsugu Fukuyo, Naoki Uchiyama
  • Patent number: 8948852
    Abstract: A method for tomographic imaging of diffuse medium includes directing waves into a diffusive medium, solving a surface-bounded inversion problem by forward field calculations through decomposition of contributions from the multiple reflections from an arbitrary surface within the diffusive medium or outside the diffusive medium into a sum of different orders of reflection up to an arbitrary order, and using contact or non-contact measurements of waves outside said diffusive medium to generate a tomographic image.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: February 3, 2015
    Assignee: VisEn Medical, Inc.
    Inventors: Jorge Ripoll Lorenzo, Vasilis Ntziachristos, Karen Madden
  • Patent number: 8942927
    Abstract: A system and method for measuring elemental concentrations of a material from a sample containing several elements by LIES analysis is provided. The material is heated to generate plasma and its chemical composition is determined from spectral analysis of its radiation. The spectral lines of interest are identified among those emitted by constituents of each element composing sample, and their intensities are measured. The chemical composition of the plasma is calculated. The absorption coefficient according to wavelength is calculated for the spectral zones of the lines of interest. The spectral radiance of the plasma is calculated for the same spectral zones and then a comparison of the intensity and shape of the spectrum thus calculated with those of the spectrum measured is performed. These calculations and this comparison are repeated iteratively in order to adjust the temperature, electron density, relative values of the elemental concentrations and width of the plasma.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: January 27, 2015
    Assignee: Centre National de la Recherche Scientifique —CNRS—
    Inventor: Jörg Hermann
  • Patent number: 8935127
    Abstract: A method for recording pulse signals which allows the reconstruction of a time reference. The time of every pulse signal event can be determined by counting sampling result bits preceding the respective sampling result bit using the known sampling frequency. For this purpose, every period of the sampling frequency is associated with a bit representing the respective sampling result and the sampling result bits are stored one by one and per channel in data blocks. The sampling frequency is preferably higher than a pixel clock, a sampling result bit associated with a flank of the pixel clock being marked. The pixel clock can thus be synchronized with the individual events exactly per sampling period. The invention further relates to the field of fluorescence correlation spectroscopy using confocal microscopes or laser scanning microscopes.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: January 13, 2015
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Mirko Liedtke, Frank Klemm, Manfred Loth
  • Publication number: 20140368819
    Abstract: The present invention relates to methods of detecting parasites, viruses, bacteria and drugs in human and animal blood and cerebral spinal fluid (CSF), using laser-induced breakdown spectroscopy (LIBS). The method includes developing and using algorithmic detection models for detecting compounds, bacteria, viruses and parasites in blood or CSF. The models are developed from a sample of blood or fluid, knowingly having one or more of the compounds or bacteria, viruses, or parasites. Spectra are generated by a LIBS instrument from the sample, and are grouped into either classification spectra or verification spectra. Algorithmic models are developed from the classification spectra; these models are verified with the verification spectra. A second sample of different blood or CSF may then be assessed using the algorithmic models. Spectra generated from this second sample are applied to the models to determine the presence or absence of compounds or bacteria, viruses and parasites of interest.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 18, 2014
    Inventors: Rosalie A. Multari, David A. Cremers
  • Publication number: 20140362375
    Abstract: To implement an analysis result provision system that can acquire an analysis result of a target substance without transferring the substance when the substance is analyzed using plasma light information occurred from plasma area where the substance is turned to plasma state, a provision system of analysis result includes an analytical terminal that turns a target substance to plasma state and acquires plasma light information occurred from plasma area, and a host computer. The host computer includes host side communication part that acquires plasma light information via telecommunication line, and information analysis part that analyzes the target substance using plasma light information acquired by the host side communication part. The host side communication part transmits the analysis result of the target substance to the sender of the plasma light information. The analysis result is obtained by the analysis of the information analysis part using plasma light information.
    Type: Application
    Filed: December 26, 2012
    Publication date: December 11, 2014
    Inventor: Yuji Ikeda
  • Patent number: 8902422
    Abstract: A method is described for providing a continuous flow of a target material past a laser to enable repeated firings of the laser beam at the material in a controlled and uniform fashion. The objective is to provide a means to characterize the target material using laser induced breakdown spectroscopy. The method can be employed in a laboratory or field environment providing improved methods for characterizing in real time the properties of bulk materials.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: December 2, 2014
    Assignee: Chesner Engineering, PC
    Inventors: Warren H. Chesner, Matteo Forgione, Henry G Justus
  • Publication number: 20140340677
    Abstract: A spectroscope used for a microspectroscopic system includes: a collimating optical system that causes signal light to be substantially collimated light; spectroscopic optical systems and each of which includes at least one of each of spectral elements and in which a wavelength band for spectral separation varies depending on an incident angle of the signal light; at least one of each of optical receivers that detect the signal light spectrally separated by the spectroscopic optical systems; a mechanism that varies the incident angles of the signal light on the spectral elements; and a controller unit that determines the incident angles of the signal light on the spectral elements in accordance with the wavelength band for spectrally separating the signal light and controls the mechanism so as to attain the incident angles.
    Type: Application
    Filed: July 31, 2014
    Publication date: November 20, 2014
    Inventors: Ryoichi SATAKA, Hisao OSAWA
  • Patent number: 8891073
    Abstract: In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: November 18, 2014
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Andrew J. Effenberger, Jr., Jill R. Scott, Timothy R. McJunkin
  • Publication number: 20140336971
    Abstract: Disclosed herein is a quantitative analyzing method of a copper indium gallium selenide (CIGS) film, the method including: obtaining spectra by irradiating a laser on the plurality of CIGS films having different component compositions, selecting a first spectral line and a second spectral line among the spectra of target elements to be analyzed and obtaining a correlation plot between a measured intensity of the first spectral line and a measured intensity of the second spectral line, correcting the measured intensity of the first spectral line and the measured intensity of the second spectral line using results obtained by curve fitting the correlation plot, obtaining a linear calibration curve using the corrected intensity of the first spectral line and the corrected intensity of the second spectral line; and comparing the linear calibration curve with LIBS analysis of a target sample to be analyzed.
    Type: Application
    Filed: December 30, 2013
    Publication date: November 13, 2014
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sungho JEONG, Jeong Hwan IN, Chan Kyu KIM, Seokhee LEE, Hakjae LEE
  • Publication number: 20140327907
    Abstract: Disclosed herein is a component quantitative analyzing method depending on a depth of a CIGS film, the method including: generating plasma by irradiating a laser beam on the CIGS film and obtaining spectra generated from the plasma, selecting spectral lines having similar characteristics among spectra of specific elements of the CIGS film, and measuring component composition using a value obtained by summing intensities of the selected spectral lines.
    Type: Application
    Filed: December 30, 2013
    Publication date: November 6, 2014
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sungho JEONG, Chan Kyu KIM, Seokhee LEE, Jeong Hwan IN, Hakjae LEE
  • Patent number: 8867038
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: October 21, 2014
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Nathaniel Joseph McCaffrey, Stephen Turner, Ravi Saxena, Scott Edward Helgesen
  • Publication number: 20140268134
    Abstract: A method for reducing thermal effects in laser ablation optical emission spectrometry includes creating discrete ablation spots along an analysis line on a target surface. At least one of the following is also carried out. First, the ablation spots are positioned so that a pair of successive ablation spots are spaced apart from one another along the analysis line and are separated from one another by another ablation spot. Second, when the analysis line comprises generally parallel, adjacent analysis line segments, the ablation spots are positioned so that (A) a pair of successive ablation spots are on different analysis line segments, and (B) the successive ablation spots are positioned to be at different longitudinal positions along the analysis line segments when the different analysis line segments are adjacent to one another. As a result, a linear scan of isolated ablation spots can be generated.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventor: Ciaran John Patrick O'Connor
  • Patent number: 8830563
    Abstract: The invention makes it possible to adjust the light intensity of a laser scanning microscope laser beam in an economical manner and with high accuracy. A separate acousto-optic component can be omitted in that a light modulation section such as an electroabsorption modulator (EAM) or a semiconductor amplifier (SOA) is arranged directly at the laser diode, advisably at one of its front sides. It is nevertheless possible to control the light intensity economically and with high accuracy because the important parameters of the laser beam remain unchanged when the optical output power is changed by the light modulation section. The light modulation section is preferably formed integral with the laser diode in at least one material layer.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: September 9, 2014
    Assignee: Carl Zeiss MicroImaging GmbH
    Inventors: Dieter Huhse, Stefan Wilhelm
  • Patent number: 8826519
    Abstract: The present invention relates to a method and system for repairing and refurbishing a microplate reader of the Flipr type which has a water cooled argon laser light source. The old laser is removed and replaced with a high power (300 to 500 mW) air cooled solid state laser as a replacement place on its own support and focused and wired to replace the old laser. The new product operates at lower power consumption yet provides accurate measurements.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: September 9, 2014
    Inventor: Thomas Leen
  • Patent number: 8830469
    Abstract: A method and a sensor for detecting a target gas by laser spectroscopy using a laser or a laser diode having a monochrome emission wavelength that can be modulated by varying the operating temperature or the operating current. The wavelength range of the target gas comprises a first modulation of the laser or the laser diode over a first large modulation width, in addition to at least two absorption lines of a reference gas and at least one absorption line of the target gas. The absorption lines are used to calibrate the wavelength scale of the laser or the laser diode in relation to the varied operating temperature or operating current, a second modulation of the laser or the laser diode being performed over a second small modulation width, with the at least one absorption line of the target gas, for detecting the target gas.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: September 9, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jia Chen, Andreas Hangauer, Rainer Strzoda
  • Patent number: 8817261
    Abstract: Laser pulses are applied to surface plasmon resonant articles such as gold nanoparticles within a microscopy sample to generate a four-wave mixing signal that is detected as the output of the microscopy process.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: August 26, 2014
    Assignee: University College Cardiff Consultants Ltd.
    Inventors: Paola Borri, Wolfgang Langbein, Francesco Masia
  • Patent number: 8815500
    Abstract: A method for reducing resources for selecting seed to be produced in commercial quantities or for research is disclosed. Samples of seed which are candidates for selection are collected and given an identifier. Specific tissue or structure from candidate seed is removed. A test or analysis is performed on the candidate seed or the removed tissue or structure. Results of the test or analysis are recorded and correlated to the seed's identifier. The results are evaluated and a decision is made whether to select a candidate seed for commercial production or for research. Time, space, and labor associated with growing plants in an experimental plot or greenhouse and taking tissue samples from growing plants is saved.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: August 26, 2014
    Assignee: Pioneer Hi-Bred International, Inc.
    Inventor: Jason Cope
  • Patent number: 8812088
    Abstract: A method for tomographic imaging of diffuse medium includes directing waves into a diffusive medium, solving a surface-bounded inversion problem by forward field calculations through decomposition of contributions from the multiple reflections from an arbitrary surface within the diffusive medium or outside the diffusive medium into a sum of different orders of reflection up to an arbitrary order, and using contact or non-contact measurements of waves outside said diffusive medium to generate a tomographic image.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: August 19, 2014
    Assignee: VisEn Medical, Inc.
    Inventors: Jorge Ripoll Lorenzo, Vasilis Ntziachristos, Karen Madden
  • Publication number: 20140204375
    Abstract: An analysis system includes a laser source generating a laser beam for creating a plasma at a location on a sample. A spectrometer is responsive to photons emitted by the sample at said location and has an output. At least one nozzle is configured to deliver inert gas from a source locally to the location on the sample. A controller is responsive to a trigger signal and is configured to activate the laser source generating a series of laser pulses, open a valve to purge the location locally on the sample, and close the valve after one or more laser pulses.
    Type: Application
    Filed: January 21, 2013
    Publication date: July 24, 2014
    Applicant: SCIAPS, INC
    Inventor: David Day
  • Publication number: 20140204376
    Abstract: An analysis system (e.g., LIBS) includes a laser source generating a laser beam, a movable optic configured to move said laser beam to multiple locations on a sample, and a spectrometer responsive to photons emitted by the sample at those locations and having an output. A controller is responsive to a trigger signal and is configured in a moving spot cycle to adjust the moveable optic, activate the laser source sequentially generating photons at multiple locations on the sample, and process the spectrometer output at each location.
    Type: Application
    Filed: January 21, 2013
    Publication date: July 24, 2014
    Applicant: SCIAPS, INC.
    Inventor: David Day
  • Publication number: 20140204377
    Abstract: A handheld LIBS spectrometer includes an optics stage movably mounted to a housing and including a laser focusing lens and a detection lens. One or more motors advance and retract the optics stage, move the optics stage left and right, and/or move the optics stage up and down. A laser source in the housing is oriented to direct a laser beam to the laser focusing lens. A spectrometer subsystem in the housing is configured to receive electromagnetic radiation from the detection lens and to provide an output. A controller subsystem is responsive to the output of the spectrometer subsystem and is configured to control the laser source and motors. In this way, auto-calibration, auto-clean, and auto-focus, and/or moving spot functionality is possible.
    Type: Application
    Filed: February 13, 2014
    Publication date: July 24, 2014
    Applicant: SciAps, Inc.
    Inventors: David R. Day, Konstantin Derman, John Francis Egan, Paul Edward Soucy
  • Patent number: 8786840
    Abstract: A method and device for remotely monitoring an area using a low peak power optical pump comprising one or more pumping sources, one or more lasers; and an optical response analyzer. Each pumping source creates a pumping energy. The lasers each comprise a high reflectivity mirror, a laser media, an output coupler, and an output lens. Each laser media is made of a material that emits a lasing power when exposed to pumping energy. Each laser media is optically connected to and positioned between a corresponding high reflectivity mirror and output coupler along a pumping axis. Each output coupler is optically connected to a corresponding output lens along the pumping axis. The high reflectivity mirror of each laser is optically connected to an optical pumping source from the one or more optical pumping sources via an optical connection comprising one or more first optical fibers.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: July 22, 2014
    Assignee: U.S. Department of Energy
    Inventors: Steven D. Woodruff, Dustin L. Mcintyre, Jinesh C. Jain
  • Patent number: 8788021
    Abstract: Analysis of live beings is facilitated. According to an example embodiment of the present invention, a light-directing arrangement such as an endoscope is mounted to a live being. Optics in the light-directing arrangement are implemented to pass source light (e.g., laser excitation light) into the live being, and to pass light from the live being for detection thereof. The light from the live being may include, for example, photons emitted in response to the laser excitation light (i.e., fluoresced). The detected light is then used to detect a characteristic of the live being.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: July 22, 2014
    Assignee: The Board of Trustees of the Leland Stanford Junior Univerity
    Inventors: Benjamin A. Flusberg, Eric David Cocker, Juergen Claus Jung, Mark Jacob Schnitzer
  • Patent number: 8773521
    Abstract: The distal end of an inserted portion, having a simple structure, is reduced in diameter, loss of light incident from a body cavity is reduced, and light from two different directions is observed simultaneously and in a separated fashion.
    Type: Grant
    Filed: November 22, 2007
    Date of Patent: July 8, 2014
    Assignee: Olympus Corporation
    Inventors: Toshiaki Watanabe, Ryo Karasawa
  • Publication number: 20140176940
    Abstract: A system and method for reliably testing for toxic substances is described. Based on spectrographic means, the system embodies one or more types of spectrometers, designed for the detection of toxic elements such as lead, and alternatively designed for the detection of toxic compounds such as asbestos. By restricting the broad functionality common to a typical spectrometer, dramatic cost reductions can be made permitting the device to be cost-effectively manufactured and made available to the typical consumer. The device is can be portable and incorporates safety systems to inhibit improper use.
    Type: Application
    Filed: March 19, 2013
    Publication date: June 26, 2014
    Inventors: Glenn M. FISHBINE, Nancy DeGidio, Arnie W. Kwong
  • Patent number: 8760645
    Abstract: A method of normalizing an analyzer response value of a fluorescence analyzer is provided. The method includes measuring an excitation spectrum of the analyzer and measuring an emission sensitivity spectrum of the analyzer. Next, a normalization factor based at least in part upon the excitation spectrum of the analyzer and the emission sensitivity spectrum of the analyzer is determined. The sample is then analyzed to obtain an uncorrected analyzer response value. A normalized analyzer response value is calculated based at least in part upon the uncorrected analyzer response value and the normalization factor.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: June 24, 2014
    Assignee: IDEXX Laboratories Inc.
    Inventors: Garland Christian Misener, James Edward Milan, Robert W. Lachapelle
  • Publication number: 20140168645
    Abstract: Disclosed herein is a quantitative analysis method for measuring a target element in a specimen using laser-induced plasma spectrum. More particularly, the present invention relates to a method for analyzing a composition ratio of a target element by calculating peak intensities when peaks overlap each other in a spectrum, and a method for selecting a peak of a wavelength at which the highest precision and reproducibility are secured through linearity of a correlation plot of the peak intensities and a value by dividing a standard deviation value of calibration curve data (peak intensity ratios) by a slope when an internal standard method is used for quantitative analysis of a target element.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sungho JEONG, Jeonghwan IN, Chan Kyu KIM, Seokhee LEE
  • Patent number: 8742340
    Abstract: Disclosed herein are methods for determining and replicate unknown ratios of original target liquid blends, such as hydrocarbon fuel blends or contaminants, by using an in-process fluorescence-monitored procedure. The methods rely on trial-and-error mixing of the fuel ingredients into a single container. At the end of the trial-and-error procedure, the formed blend becomes an exact replica of the target fuel blend. The methods can also be used to build calibration curves without employing sets of previously prepared standard solutions.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: June 3, 2014
    Assignee: Saudi Arabian Oil Company
    Inventors: Ezzat Mahmoud Hegazi, Abdullah H. Al-Grainees
  • Patent number: 8742334
    Abstract: A spinning cell device is described for fast and convenient standardization and analysis of constituents and isotopes in solid samples by laser ablation inductively coupled plasma (LA-ICP) spectrometry. The method and apparatus for performing the method require the sample under test and a standard to be spun during ablation allowing the quasi-simultaneous ablation of both materials. The aerosols resulting from the ablation of sample and standard are mixed in the ablation cell allowing quantification of the ablated metals by the method of standard addition or isotope dilution. The relative proportion of standard verses sample ablated can be changed by altering the trajectory of the laser beam. The ablated aerosol is swept into an inductively coupled plasma by a carrier gas and analyzed by mass spectrometry.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: June 3, 2014
    Assignee: The United States of America, as represented by the Secretary of Commerce, the National Institute of Standards and Technology
    Inventors: John L. Molloy, Naomi Bier, Fanny Claverie, Julien F. C. Malherbe
  • Patent number: 8715572
    Abstract: Systems and methods for the detection, analysis, and collection of rare cellular events, wherein rare cellular events are defined by events comprising less than 5% of a total number of cells in a sample. The systems and methods generally include: (1) a flow cell dimensioned so as to permit a flow of a sample through the flow cell at a flow rate greater than 300,000 cells per second; (2) a laser positioned to emit a laser beam directed to the flow cell; (3) one or more deflector components disposed between the laser and the flow cell, wherein the deflector component is configured to affect a position of the laser beam relative to the sample flow; (4) one or more fluorescence emission detectors; and (5) one or more processor configured to detect rare cellular events based on fluorescence emission from cell-binding surface markers introduced into the sample prior to the sample being flowed through the flow cell.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: May 6, 2014
    Assignee: Abbott Laboratories
    Inventors: Jiong Wu, Mahesh Junnarkar, Giacomo Vacca
  • Patent number: 8696992
    Abstract: Disclosed is a highly reliable optical fiber measurement device and measurement method having a simple and compact structure.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: April 15, 2014
    Assignee: Universal Bio Research Co., Ltd.
    Inventor: Hideji Tajima
  • Patent number: 8699022
    Abstract: This disclosure relates to a method for analyzing a sample of material. The method includes (a) converting a portion of the sample into a plasma multiple times; (b) recording a spectrum of electromagnetic radiation emitted in response to each of the sample conversions to define a sequence of spectra for the sample, in which each member of the sequence corresponds to the spectrum recorded in response to a different one of the sample conversions; (c) using an electronic processor to compare the sequence of spectra for the sample to a sequence of spectra for each of at least one reference sample in a reference library; and (d) using the electronic processor to determine information about the sample based on the comparison to the reference samples in the library.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: April 15, 2014
    Assignee: Materialytics, LLC
    Inventors: Catherine E. McManus, James W. Dowe, III, Tristan M. Likes, James W. Dowe, IV
  • Patent number: 8687189
    Abstract: The present invention relates to the detection of materials using laser induced breakdown spectroscopy (LIBS). This invention discloses methods to draw the analyte of interest in a homogeneous matrix and subsequent analysis of these matrices, wherein the said matrices are preferably arranged in an array format. This invention is particularly applicable to analysis of Liquid samples arranged in an array format.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: April 1, 2014
    Assignee: Ajjer, LLC
    Inventors: Anoop Agrawal, Juan Carlos L. Tonazzi
  • Patent number: 8687055
    Abstract: A spectral imaging system for collecting spectral information of a two dimensional heterogeneous objects while in motion relative to the imaging system without the use of a spectrograph, filters or any dispersive optics. The system includes a pulsed light source tunable in wavelength for producing short pulses of wavelength tuned light at a plurality of selected narrow band wavelengths within a spectral range and one or more optical components for conveying or directing the short pulses of light to a two dimensional region that is substantially stationary with respect to the imaging system and through which the two dimensional target is moving. The system also includes a many pixel camera synchronized with the tunable pulsed light source.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: April 1, 2014
    Inventor: Eli Margalith
  • Patent number: 8675192
    Abstract: The present invention relates to a device and method for the high speed quantitative measurement of biomolecular targets on the surface or in the body of a planar medium for biological analysis.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: March 18, 2014
    Assignee: Commissariat a l'Energie Atomique et Aux Energies Alternatives
    Inventors: Nicolas Ugolin, Denis Menut, Julien Le Meur, Nadine Coulon, Sylvie Chevillard, Emilie Bosc, Jean-Marc Joseph Desaulniers
  • Patent number: 8675193
    Abstract: Methods and systems for real time feedback and control of near-field material processing are disclosed, including generating electromagnetic radiation from a USP laser coupled to a central processing unit; coupling the electromagnetic radiation to an acousto-optic modulator; coupling the electromagnetic radiation to a beam delivery system; coupling the electromagnetic radiation to a beam delivery fiber; using the electromagnetic radiation to generate a plasma on a target mounted to an adjustable stage coupled to the central processing unit; coupling the electromagnetic radiation from the plasma to a plasma spectrum collection system; coupling the electromagnetic radiation to a spectrum analysis unit; coupling the electromagnetic radiation to a detector; and coupling the detector to the central processing unit; wherein the central processing unit uses the output from the detector as feedback in making adjustments to the USP laser and the adjustable stage. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: March 18, 2014
    Inventors: Jian Liu, Huan Huang
  • Patent number: 8649011
    Abstract: An analytical assembly within a unified device structure for integration into an analytical system. The analytical assembly is scalable and includes a plurality of analytical devices, each of which includes a reaction cell, an optical sensor, and at least one optical element positioned in optical communication with both the reaction cell and the sensor and which delivers optical signals from the cell to the sensor. Additional elements are optionally integrated into the analytical assembly. Methods for forming and operating the analytical system are also disclosed.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: February 11, 2014
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Nathaniel Joseph McCaffrey, Stephen Turner, Ravi Saxena, Scott Edward Helgesen