Semiconductor Patents (Class 359/248)
  • Patent number: 8384980
    Abstract: A semiconductor optical modulation device includes a substrate; a first semiconductor cladding layer of a first conductivity type disposed on the substrate; an optical waveguide layer disposed on the first semiconductor cladding layer, the optical waveguide layer including a first semiconductor optical confinement layer, a second semiconductor optical confinement layer, and an insulating layer disposed between the first semiconductor optical confinement layer and the second semiconductor optical confinement layer, the insulating layer being made of aluminum oxide; a second semiconductor cladding layer of a second conductivity type disposed on the optical waveguide layer; a first electrode electrically connected to the first semiconductor cladding layer; and a second electrode electrically connected to the second semiconductor cladding layer.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: February 26, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Chie Fukuda
  • Patent number: 8378465
    Abstract: The present invention is a method and an apparatus for optical modulation, for example for use in optical communications links. In one embodiment, an apparatus for optical modulation includes a first silicon layer having one or more trenches formed therein, a dielectric layer lining the first silicon layer, and a second silicon layer disposed on the dielectric layer and filling the trenches.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: February 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Yurii A. Vlasov, Fengnian Xia
  • Patent number: 8349632
    Abstract: Provided is an organic light-emitting display device that can display a full color image by forming a simple structure of light-emitting layers and a method of manufacturing the same. The organic light-emitting display device includes a substrate; a first electrode layer formed on the substrate; a second electrode layer which is formed above the first electrode layer and faces the first electrode layer; and a light-emitting layer interposed between the first electrode layer and the second electrode layer, wherein the light-emitting layer comprises first and second light-emitting layers respectively corresponding to first and second pixels having different colors from each other, and the first light-emitting layer is commonly formed in the first and second pixels, and the second light-emitting layer is formed in the second pixel.
    Type: Grant
    Filed: June 23, 2009
    Date of Patent: January 8, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventor: Jun-Yeob Lee
  • Patent number: 8320037
    Abstract: An electro-optic device is provided. The electro-optic device includes a junction layer disposed between a first conductivity type semiconductor layer and a second conductivity type semiconductor layer to which a reverse vias voltage is applied. The first conductivity type semiconductor layer and the second conductivity type semiconductor layer have an about 2 to 4-time doping concentration difference therebetween, thus making it possible to provide the electro-optic device optimized for high speed, low power consumption and high integration.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: November 27, 2012
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jeong Woo Park, Jongbum You, Gyungock Kim
  • Patent number: 8306375
    Abstract: A first exemplary aspect of the present invention is a wavelength-tunable optical transmitter including: a semiconductor substrate (101); a wavelength-tunable light source that is formed on the semiconductor substrate (101) and includes at least a first reflector (102) of a wavelength-tunable type and a gain region (104); a semiconductor optical modulator formed on the semiconductor substrate (101); a first semiconductor optical waveguide (105c) that is formed on the semiconductor substrate (101) and smoothly connected to the wavelength-tunable light source; a second semiconductor optical waveguide (105d) that is formed on the semiconductor substrate and smoothly connected to the semiconductor optical modulator; a waveguide coupling region (108) in which the first and second semiconductor optical waveguides are collinearly coupled with a length LC that is not equal to m/2 (m: integer) times a complete coupling length LC0; and a second reflector (113) formed at an end of the waveguide coupling region (108).
    Type: Grant
    Filed: March 27, 2009
    Date of Patent: November 6, 2012
    Assignee: NEC Corporation
    Inventor: Tomoaki Kato
  • Patent number: 8300295
    Abstract: A thin film semiconductor device includes, on a substrate, a thin film transistor of which channel is N-type, and a thin film transistor of which channel is P-type, wherein a source region of the N-type thin film transistor and a source region of the P-type thin film transistor are arranged so as to be adjacent to each other at least in some region and are electrically connected to a first electrode through one contact hole formed on the some region, and a drain region of the N-type thin film transistor and a drain region of the P-type thin film transistor are arranged so as to be adjacent to each other at least in some region and are electrically connected to a second electrode through one contact hole formed on the some region.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 30, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Yasushi Hiroshima
  • Patent number: 8227796
    Abstract: A display device includes light emitting elements corresponding to respective colors disposed on a substrate. Each of the light emitting elements corresponding to the respective colors has a cavity structure in which a light emission functioning layer including a light emitting layer is held between a reflecting electrode and a semitransmitting electrode. A cavity order of at least the light emitting element adapted to resonate a light, having the shortest wavelength, of the light emitting elements corresponding to the respective colors is 1, and a cavity order of each of other light emitting elements is 0. The light emission functioning layer except for the light emitting layer is common to the light emitting elements corresponding to the respective colors.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: July 24, 2012
    Assignee: Sony Corporation
    Inventors: Reo Asaki, Jiro Yamada
  • Patent number: 8218919
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: July 10, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Publication number: 20120162743
    Abstract: An uncooled optical semiconductor device includes: a semiconductor laser outputting laser light; an electric field absorption optical modulator absorbing light depending on a voltage applied to the electric field absorption optical modulator; a monitor photodiode monitoring backlight of the semiconductor laser; an auto power control circuit feeding back current of the monitor photodiode to a bias current supplied to the semiconductor laser; and a bias circuit feeding back an average value of a light absorption current to control a bias voltage applied to the electric field absorption optical modulator. The light absorption current is generated when the electric field absorption optical modulator absorbs the laser light.
    Type: Application
    Filed: August 3, 2011
    Publication date: June 28, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventor: Norio Okada
  • Patent number: 8179585
    Abstract: In the production of optical devices or the like utilizing an intersubband transition of a coupled quantum well, a quantum well structure having strong coupling is provided. In addition, a coupled well structure of excellent productivity capable of avoiding thinning of coupling barrier layer for strengthening the coupling is provided. In the semiconductor coupled well structure of the present invention, a coupled quantum well structure disposed on the semiconductor single crystal substrate includes a coupling barrier layer 1a disposed between two or more quantum well layers 2a and 2b, wherein the coupling barrier layer 1a has an energy barrier that is smaller than an excitation level (E4 and E3) and is larger than a ground level (E2 and E1).
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: May 15, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Masanori Nagase, Ryoichi Akimoto, Hiroshi Ishikawa
  • Patent number: 8125702
    Abstract: A display has first and second spatial light modulators for modulating light from a light source. The first spatial light modulator has a plurality of elements switchable between ON and OFF states according to a pattern having a spatially-varying density. Transfer optics blur and carry light modulated by the first spatial light modulator to the second spatial light modulator to yield a light field at the second spatial light modulator. The second spatial light modulator has a plurality of elements switchable between ON and OFF states to perform temporal dithering of the light field to provide a reconstruction of the image.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: February 28, 2012
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Gregory John Ward, Gerwin Damberg, Helge Seetzen
  • Publication number: 20120033284
    Abstract: A semiconductor optical modulation device includes a substrate; a first semiconductor cladding layer of a first conductivity type disposed on the substrate; an optical waveguide layer disposed on the first semiconductor cladding layer, the optical waveguide layer including a first semiconductor optical confinement layer, a second semiconductor optical confinement layer, and an insulating layer disposed between the first semiconductor optical confinement layer and the second semiconductor optical confinement layer, the insulating layer being made of aluminum oxide; a second semiconductor cladding layer of a second conductivity type disposed on the optical waveguide layer; a first electrode electrically connected to the first semiconductor cladding layer; and a second electrode electrically connected to the second semiconductor cladding layer.
    Type: Application
    Filed: July 21, 2011
    Publication date: February 9, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Chie FUKUDA
  • Patent number: 8111440
    Abstract: A structure includes a film having a plurality of nanoapertures and a semiconductor layer in connection with the film. The nanoapertures are configured to allow the transmission of a predetermined subwavelength of light through the film via the plurality of nanoapertures. The semiconductor layer facilitates the modulation of the predetermined subwavelength of light transmitted through the film. The structure also includes a carrier generator for modulating the predetermined subwavelength of light by generating charge carriers.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: February 7, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, Alexandre M. Bratkovski
  • Patent number: 8090229
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: January 3, 2012
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 8089677
    Abstract: A dynamic optical grating device and associated method for modulating light is provided that is capable of controlling the spectral properties and propagation of light without moving mechanical components by the use of a dynamic electric and/or magnetic field. By changing the electric field and/or magnetic field, the index of refraction, the extinction coefficient, the transmittivity, and the reflectivity of the optical grating device may be controlled in order to control the spectral properties of the light reflected or transmitted by the device.
    Type: Grant
    Filed: June 8, 2008
    Date of Patent: January 3, 2012
    Assignee: The United States of America as represented by the Administrator of the National Aeuronautics and Space Administration
    Inventors: Yeonjoon Park, Sang H. Choi, Glen C. King, Sang-Hyon Chu
  • Patent number: 8063463
    Abstract: A method for encoding information that is encoded in spatial variations of the intensity of light characterized by a first wavelength in light characterized by a second wavelength, the method comprising: transmitting the first wavelength light through a photo-conducting material in which electron-hole pairs are generated by absorbing photons from the first wavelength light to generate a first density distribution of electrons homologous with the spatial variations in intensity of the first wavelength light; trapping electrons from the first electron density distributions in a trapping region to generate an electric field homologous with the density distribution in a material that modulates a characteristic of light that passes therethrough responsive to an electric field therein; transmitting a pulse of light having sufficient energy to generate electron-hole pairs in the photo-conducting material through the modulating material and thereafter through the photo-conducting layer to generate a second additional
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: November 22, 2011
    Assignee: Microsoft International Holdings B.V.
    Inventors: Amnon Manassen, Giora Yahav
  • Patent number: 8026440
    Abstract: The solar cell modular unit has a minimal number of components each of which are easily manufactured and which also have a relatively economical cost. It has a laminar substrate having an electrically conductive layer on its top surface that includes the printed electrical circuit. The middle layer is heat conductive and not electrically conductive. The bottom layer is made of thermally conductive material. A solar cell is centrally mounted on the printed circuit board. A base assembly covers the solar cell and it has a vertical tunnel extending from its top surface to the solar cell. An elongated sun shield has an aperture in its top panel that aligns with the tunnel of the base assembly. The sun shield snap-locks onto the top of the base assembly. A secondary optical element telescopically mates with the aperture in the sun shield and the tunnel of the base assembly. A primary light ray refractive member is positioned at a predetermined spaced location above the SOE.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: September 27, 2011
    Assignee: Amonix, Inc.
    Inventor: Robert Gordon
  • Patent number: 8002412
    Abstract: A projection system includes a light source module illuminating a plurality of monochromic lights, at least one optical modulator modulating the lights illuminated by the light source module according to each of color signals, a color combining prism combining the monochromic lights modulated by the optical modulator to form an image, and a projection lens projecting the image formed by the color combining prism toward a screen. A semiconductor diode including a P type semiconductor layer, an intrinsic semiconductor layer, and an N type semiconductor layer to absorb or transmit the monochromic lights according to the value of a reverse bias voltage is arranged in units of pixels.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: August 23, 2011
    Assignee: Samsung LED Co., Ltd.
    Inventor: Jae-hee Cho
  • Patent number: 7969639
    Abstract: A micro-opto-electro-mechanical systems (MOEMS) electro optical modulator (2) having an electrically tuneable optical resonator comprising an asymmetric Fabry-Perot etalon incorporating a mirror (10) resiliency biased with respect to a substrate (13) and moveable in relation thereto in response to a voltage applied there-between. The optical modulator (2) is capable of modulating electromagnetic radiation having a plurality of wavelengths. The modulator is adapted to modulate the transmission of short wave infrared radiation (SWIR), medium wave infrared radiation (MWIR) and long wave infrared radiation (LWIR) and the reflection of visible radiation. A spatial optical modulator having a plurality of said MOEMS optical modulators (2). A method of addressing said spatial optical modulator.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: June 28, 2011
    Assignee: QinetiQ Limited
    Inventors: Mark Edward McNie, Keith Loder Lewis, Andrew Maxwell Scott, Christopher William Slinger, Kevin Michael Brunson, Gilbert William Smith
  • Patent number: 7948669
    Abstract: Exemplary methods of maximizing a spur-free dynamic range (SFDR) or a gain of an electro-absorption modulator (EAM) are disclosed. At least one parameter in a set of design parameters for an EAM is varied. An SFDR of the EAM is determined in part by a first set of design parameters. A gain of the EAM is determined in part by a second set of design parameters. An output versus bias voltage transfer curve of the EAM is generated. An optimal SFDR bias voltage at which a maximum SFDR occurs for a given optical input power or an optimal gain bias voltage at which a maximum gain occurs for a given optical input power is programmatically determined based at least in part on the transfer curve.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: May 24, 2011
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas W. Karras, David L. Enlow, Paul Kit Lai Yu
  • Patent number: 7933476
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: April 26, 2011
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 7924492
    Abstract: Provided is an optical device having an edge effect with improved phase shift and propagation loss of light without decreasing the dynamic characteristics of the optical device. The optical device includes a first semiconductor layer which is doped with a first type of conductive impurities, and has a recessed groove in an upper portion thereof; a gate insulating layer covering the groove and a portion of the first semiconductor layer; and a second semiconductor layer which covers an upper surface of the gate insulating layer and is doped with a second type of conductive impurities opposite to the first type of conductive impurities.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: April 12, 2011
    Assignee: Electronics & Telecommunications Research Institute
    Inventors: Hyun-Soo Kim, Jeong-Woo Park, Bongki Mheen, Young-Ahn Leem, Gyungock Kim
  • Patent number: 7907848
    Abstract: An optical signal low energy method for coupling electrical signals on-chip between component circuits of for example a CMOS circuit array. The described coupling method employs infrared signals communicated along a nano-scale resonant semiconductor waveguide between for example PIN diode signal transducers. The coupling may employ an electrically pumped laser, an electro absorption modulator and a photodetector all for typically the 1.5 to 2.0 micrometer spectral region with each formed using for example PIN heterodiode semiconductor devices. Each of these three devices includes active semiconductor crystal material situated in a resonator within a strip waveguide. The resonator is defined by two fabricated mirrors having a tapered location one dimensional photonic crystal lattice of oxide hole or slot apertures.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: March 15, 2011
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventor: Richard A. Soref
  • Patent number: 7864396
    Abstract: A vertical cavity modulator/detector (VCMD) device and a method for modulating and detecting light are disclosed. The VCMD device contains an n-type contact layer, a transparent tuning layer, a multiple quantum well structure, a p-type contact layer, a low reflectance mirror arranged to be an input for a light that is to be modulated and a light that is to be detected, and a high reflectance mirror, wherein said n-type contact layer, said transparent tuning layer, said multiple quantum well structure and said p-type contact layer are arranged in a stack between said low reflectance mirror and said high reflectance back mirror.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: January 4, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Keyvan Sayyah, Daniel Yap
  • Publication number: 20100321755
    Abstract: An optical modulator, methods of manufacturing and operating the same, and an optical apparatus including the optical modulator are disclosed. The optical modulator includes an electro-optical converter and an optical-electric converter, stacked perpendicular to a substrate, and a gate transistor. The gate transistor gates a signal transmitted to the electro-optical converter from the optical-electric converter and allows charges generated in the optical-electric converter and charges remaining in the electro-optical converter to flow while bypassing the electro-optical converter when gating ON is performed.
    Type: Application
    Filed: March 10, 2010
    Publication date: December 23, 2010
    Applicants: SAMSUNG ELECTRONICS CO., LTD., GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Yong-chul CHO, Jae-hyung JANG, Yong-hwa PARK, Chang-soo PARK, Jong-In SONG
  • Patent number: 7830580
    Abstract: An optical modulator is provided with a stripe-shaped optical waveguide, which has an upper clad layer, a lower clad layer formed between the upper clad layer and a substrate, and an undoped core layer which is arranged between the upper clad layer and the lower clad layer and has a complex refractive index that changes corresponding to the intensity of an applied electric field, to a signal light propagating inside. On both sides of the stripe-shaped optical waveguide, conductor walls are configured by arranging a pair of parallel blocking flat boards with an insulating wall in between. Thus, the semiconductor optical modulator having a high optical modulation efficiency is provided.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: November 9, 2010
    Assignee: NEC Corporation
    Inventor: Tomoaki Kato
  • Patent number: 7772615
    Abstract: Semiconductor electrooptic medium shows behavior different from a medium based on quantum confined Stark Effect. A preferred embodiment has a type-II heterojunction, selected such, that, in zero electric field, an electron and a hole are localized on the opposite sides of the heterojunction having a negligible or very small overlap of the wave functions, and correspondingly, a zero or a very small exciton oscillator strength. Applying an electric field results in squeezing of the wave functions to the heterojunction which strongly increases the overlap of the electron and the hole wave functions, resulting in a strong increase of the exciton oscillator strength. Another embodiment of the novel electrooptic medium includes a heterojunction between a layer and a superlattice, wherein an electron and a hole in the zero electric field are localized on the opposite sides of the heterojunction, the latter being effectively a type-II heterojunction.
    Type: Grant
    Filed: August 7, 2008
    Date of Patent: August 10, 2010
    Assignee: Connector Optics
    Inventors: Nikolai Ledentsov, Vitaly Shchukin
  • Publication number: 20100142026
    Abstract: An optical modulator is provided with a stripe-shaped optical waveguide, which has an upper clad layer, a lower clad layer formed between the upper clad layer and a substrate, and an undoped core layer which is arranged between the upper clad layer and the lower clad layer and has a complex refractive index that changes corresponding to the intensity of an applied electric field, to a signal light propagating inside. On the both sides of the stripe-shaped optical waveguide, conductor walls are configured by arranging a pair of parallel blocking flat boards with an insulating wall in between.
    Type: Application
    Filed: February 6, 2008
    Publication date: June 10, 2010
    Applicant: NEC CORPORATION
    Inventor: Tomoaki Kato
  • Patent number: 7720391
    Abstract: A system and method for generating an optical return-to-zero signal. The system includes a bit separator configured to receive an electrical non-return-to-zero signal and generate a first signal and a second signal, and a driver configured to receive the first signal and the second signal and generate a driving signal. The driving signal is associated with a difference between the first signal and the second signal. Additionally, the system includes a light source configured to generate a light, and an electro-optical modulator configured to receive the light and the driving signal, modulate the light with the driving signal, and generate an optical signal. The electrical non-return-to-zero signal includes a first plurality of bits and a second plurality of bits. The first signal includes the first plurality of bits, and the second signal includes the second plurality of bits. The optical signal is an optical return-to-zero signal.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: May 18, 2010
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7711214
    Abstract: There is provided a semiconductor optical modulator capable of performing a stable operation and having an excellent voltage-current characteristic to an electric field while exhibiting the characteristic of a semiconductor optical modulator with an n-i-n structure. The semiconductor optical modulator includes a waveguide structure that is formed by sequentially growing an n-type InP clad layer (11), a semiconductor core layer (13) having an electro-optic effect, a p-InAlAs layer (15), and an n-type InP clad layer (16). An electron affinity of the p-InAlAs layer (15) is smaller than an electron affinity of the n-type InP clad layer (16). In the waveguide structure having such a configuration, a non-dope InP clad layer (12) and a non-dope InP clad layer (14) may be respectively provided between the n-type InP clad layer (11) and the semiconductor core layer (13), and between the semiconductor core layer (13) and the p-InAlAs layer (15).
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: May 4, 2010
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Ken Tsuzuki, Nobuhiro Kikuchi, Eiichi Yamada
  • Patent number: 7701629
    Abstract: Various aspects of the present invention are directed to photonic devices, such as electro-optic modulators, passive filters, and tunable filters. In one aspect of the present invention, a photonic device includes a semiconductor structure having a p-region and an n-region. A doped region is formed on or within the semiconductor structure. The doped region includes at least one generally periodic array of recesses, with the at least one generally periodic array configured to transmit electromagnetic radiation at a selected dominant wavelength. The selected dominant wavelength is tunable by varying the refractive index of the semiconductor structure.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: April 20, 2010
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Shih-Yuan Wang, Alexandre M. Bratkovski
  • Patent number: 7693363
    Abstract: The invention is a system and method for performing all-optical modulation. A semiconductor layer having a defined thickness has an insulator adjacent one surface of the semiconductor. Conductive layers are provided adjacent the semiconductor layer and the insulator. A photodetector is provided to generate an electric field across the conductive layers in response to an input optical gate signal. An input optical signal is modulated by interaction with a plasmon wave generated at the semiconductor/conductive layer interface. By defining the thickness of the semiconductor layer, a desired wavelength of light supports the plasmon waves. Operation of the all-optical modulator requires the provision of an input optical signal of a desired wavelength and the provision of a gate optical signal. An output optical signal is recovered and can be used to store, display or transmit information, for example over a fiber optic communication system, such as a telecommunication system.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: April 6, 2010
    Assignee: California Institute of Technology
    Inventors: Jennifer A. Dionne, Kenneth A. Diest, Luke Sweatlock, Harry A. Atwater
  • Patent number: 7679805
    Abstract: A quantum well modulator configured to absorb or transmit light depending on an applied voltage is provided according to various embodiments. The quantum well modulator may include a substrate, a p-type and n-type semiconductor layers as well as a quantum well layer, each of which are deposited above the substrate. The substrate may be configured to filter light incident thereon, wherein the substrate does not include a reflective surface. The flip-chip quantum well modulator may be configured to substantially absorb light received through the substrate when a first voltage is applied. The flip-chip quantum well modulator may be configured to substantially transmit light received through the substrate when a second voltage is applied.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: March 16, 2010
    Assignee: Cubic Corporation
    Inventors: Mahyar Dadkhah, Tony Maryfield, Thomas Davidson
  • Patent number: 7672034
    Abstract: A manufacturing method is provided for a light modulation device that improves utilization efficiency of light. After forming a first reflective layer using a metallic material such as Pt or the like, on a substrate, a light modulating film is formed using an electro-optic material in which refractive index changes in accordance with an applied electrical field. After that, planarization is carried out so that irregularities on an upper surface of the light modulating film are less than or equal to 1/100 of the wavelength of light incident on the light modulation device. A transparent electrode is then formed using ITO, ZnO, or the like, on the light modulating film, and a second reflective layer including a dielectric multilayer is formed.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: March 2, 2010
    Assignee: Rohm Co., Ltd.
    Inventor: Yoshikazu Fujimori
  • Patent number: 7668415
    Abstract: A MEMS-based display device is described, wherein an array of interferometric modulators are configured to reflect light through a transparent substrate. The transparent substrate is sealed to a backplate and the backplate may contain electronic circuitry fabricated on the backplane. The electronic circuitry is placed in electrical communication with the array of interferometric modulators and is configured to control the state of the array of interferometric modulators.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: February 23, 2010
    Assignee: QUALCOMM MEMS Technologies, Inc.
    Inventor: Karen Tyger
  • Patent number: 7599628
    Abstract: A method for modulating an optical signal includes the following steps: modulating the intensity of the optical signal with a nonreturn-to-zero bit signal, and modulating the phase of the optical signal with a periodic phase-shift signal creating an alternating ?-phase shift every second, third or more consecutive bit. An optical transmitter for performing the above method comprises a first modulator (2) modulating the intensity of the optical signal with a nonreturn-to-zero bit signal, and a second modulator (3) modulating the phase of the optical signal with a periodic phase-shift signal creating an alternating ?-phase shift every second, third or more consecutive bit.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: October 6, 2009
    Assignee: ALCATEL
    Inventors: Sébastien Bigo, Eric Barnasson, Gabriel Charlet
  • Patent number: 7589880
    Abstract: An apparatus and methods for manipulating light using nanoscale cometal structures are disclosed. A nanoscale optics apparatus for manipulating light includes a plurality of nanoscale cometal structures each comprising a dielectric material located between a first electrical conductor and a second electrical conductor. A method of fabricating a nanoscale optics apparatus for manipulating light includes preparing a plurality of nanoscale planar structures; coating a plurality of planar surfaces of the plurality of planar structures with a dielectric while leaving space between the plurality of planar surfaces; and coating the dielectric with an outer electrical conductor layer, wherein a portion of the outer electrical conductor layer is located between the planar structures to form coplanar structures.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: September 15, 2009
    Assignee: The Trustees of Boston College
    Inventors: Krzysztof J. Kempa, Michael J. Naughton, Zhifeng Ren, Jakub A. Rybczynski
  • Patent number: 7589882
    Abstract: A modulator for an optical transceiver is disclosed. The modulator has two quarter-wave stack mirrors composed of alternating dielectric layers with an optically absorbing layer sandwiched in between to form the vertical resonant cavity. The optically absorbing layer is made of semiconductor nanocrystals embedded in a dialectic material. The device is configured to operate near the saturation point of the absorption layer. By adjusting the biasing voltage across the absorption layer, the saturation threshold of the semiconductor nanocrystals is altered, resulting in the overall reflectivity of the resonant cavity to vary. The modulator is configured to be fabricated as the extension of the backend process of Si CMOS.
    Type: Grant
    Filed: October 11, 2007
    Date of Patent: September 15, 2009
    Inventors: Ya-Hong Xie, Bin Shi
  • Patent number: 7577367
    Abstract: Optical techniques, devices and systems for combining duobinary modulation and optical subcarrier multiplexing in optical communication applications. An analog mixer is used to mix a duobinary signal for a data channel and a local oscillator signal to produce a modulation control signal for controlling the subsequent optical subcarrier multiplexing modulation. Various optical subcarrier multiplexing modulation techniques may be used including optical single sideband modulators and optical double sideband modulators.
    Type: Grant
    Filed: June 15, 2005
    Date of Patent: August 18, 2009
    Assignee: Op Vista Incorporated
    Inventor: Winston I. Way
  • Patent number: 7567604
    Abstract: The field of the invention is that of optical devices comprising an integrated semi-conductor laser and an integrated optical isolator. These devices are used mainly in the field of digital telecommunications. More particularly, the invention applies to so-called absorption isolators whose complex index is non-reciprocal and depends on the direction of propagation of the light. Generally, integrated optical isolators of this type fulfill two functions. On the one hand, they comprise a magneto-optical layer ensuring the non-reciprocal effect and on the other hand an active zone ensuring the amplification of the laser beam, the injection of the charge carriers into the active zone being ensured by an electrical contact layer.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: July 28, 2009
    Assignee: Alcatel
    Inventors: Alain Accard, Béatrice Dagens
  • Patent number: 7561806
    Abstract: A method and system is disclosed for making timing alignment for a data transmission system, the method comprising providing a reference clock signal with a first frequency to a multiplexer through a phase shifter, generating a multiplexed signal with a second frequency by the multiplexer, wherein the second frequency follows the first frequency and is higher than the first frequency by a predetermined proportion, sending the multiplexed signal to a modulator, and phase shifting the reference clock signal by the phase shifter before the reference clock signal is provided to the multiplexer, wherein a timing of the multiplexed signal at the second frequency level can be adjusted by adjusting a timing of the reference clock signal at the lower first frequency level.
    Type: Grant
    Filed: April 1, 2006
    Date of Patent: July 14, 2009
    Assignee: FutureWei Technologies, Inc.
    Inventor: Yu Sheng Bai
  • Patent number: 7551341
    Abstract: A display has first and second spatial light modulators for modulating light from a light source. The first spatial light modulator has a plurality of elements switchable between ON and OFF states according to a pattern having a spatially-varying density. Transfer optics blur and carry light modulated by the first spatial light modulator to the second spatial light modulator to yield a light field at the second spatial light modulator. The second spatial light modulator has a plurality of elements switchable between ON and OFF states to perform temporal dithering of the light field to provide a reconstruction of the image.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: June 23, 2009
    Assignee: Dolby Laboratories Licensing Corporation
    Inventors: Gregory John Ward, Gerwin Damberg, Helge Seetzen
  • Patent number: 7548365
    Abstract: A method of operating a semiconductor device, a semiconductor device and a digital micromirror system are presented. In an embodiment, the semiconductor device comprises a grounded substrate, a memory array, and a reset driver. The memory array may be isolated from the grounded substrate with a buried layer. The set of voltages of the memory array may be shifted with respect to a reset voltage. The reset driver may drive the reset voltage and the reset driver may have at least one extended drain transistor in the grounded substrate.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: June 16, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: James D. Huffman, James Norman Hall
  • Patent number: 7532379
    Abstract: An electro-optic semiconductor device (e.g., an optical modulator) having side access and beam propagation within the device is provided. Side access for the optical input and/or output facilitates disposition of electronic circuitry and/or heat sinking structures on the top and bottom surfaces of the modulator. Internal beam propagation instead of internal waveguiding advantageously simplifies optical coupling and alignment to the modulator. Interaction length within the device is preferably enhanced by passing through the device active region at a relatively shallow angle. The internally propagating beam is reflected from a reflective face parallel to the device active region. The side faces can be perpendicular or tilted with respect to the reflective face. Tilted side faces are preferably tilted to provide external beam paths parallel to the reflective face. Internal reflection from an angled side face can be employed to provide configurations having one side port and one top or bottom port.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: May 12, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: David A. B. Miller, Jonathan E. Roth
  • Patent number: 7532382
    Abstract: The present invention provides a display element including a layered body. The layered body includes a layered portion comprising a plurality of transparent thin films with different refractive indexes, and a plurality of electrodes which are adapted to apply an electric field to each of the plurality of transparent thin films. Each of the plurality of transparent thin films comprises a material whose thickness changes according to the electric field.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: May 12, 2009
    Assignee: Konica Minolta Opto, Inc.
    Inventors: Tomoo Izumi, Akira Kosaka, Mitsuhiro Fukuda
  • Patent number: 7532384
    Abstract: A phase shifter includes at least one photonic crystal structure having alternating high and low index dielectric layers. At least two defect structures are positioned between said photonic crystal structures. The defect structure includes one or more nonlinear materials used to produce an index change, whose effect is amplified to produce a specified phase shift in the output signal of said phase shifter.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: May 12, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter Bermel, John D. Joannopoulos
  • Patent number: 7524746
    Abstract: A high-refractive index material that includes semiconductor nanocrystal compositions. The high-refractive index material has at least one semiconductor nanocrystal composition incorporated in a matrix material and has a refractive index greater than 1.5. The semiconductor nanocrystal composition has a semiconductor nanocrystal core of a II-VI, III-V, or IV-VI semiconductor material. A method of making a high-refractive index material includes incorporating, at least one semiconductor nanocrystal composition in a matrix material. An application of a high-refractive index material includes incorporating at least one semiconductor nanocrystal composition in a matrix material to form the high-refractive index material and depositing the high-refractive index material on the surface of a lighting device.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: April 28, 2009
    Assignee: Evident Technologies, Inc.
    Inventors: Michael Locascio, Jennifer Gillies, Margaret Hines
  • Patent number: 7515777
    Abstract: SiGe quantum wells where the well material has a lowest conduction band energy minimum at k=0 (the ? point of the first Brillouin zone) are provided. Quantum well structures that satisfy this condition have “Kane-like” bands at and near k=0 which can provide physical effects useful for various device applications, especially optical modulators. In the Si1-xGex material system, this condition on the band structure is satisfied for x greater than about 0.7. The quantum well barrier composition may or may not have Kane-like bands. Optical modulators and/or detectors according to the invention are suitable for inclusion in waveguide-based optical interconnects. Such interconnects can be on-chip interconnects or chip to chip interconnects.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: April 7, 2009
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yu-Hsuan Kuo, James S. Harris, Jr., David A. B. Miller
  • Publication number: 20090086302
    Abstract: An electro-optic semiconductor device (e.g., an optical modulator) having side access and beam propagation within the device is provided. Side access for the optical input and/or output facilitates disposition of electronic circuitry and/or heat sinking structures on the top and bottom surfaces of the modulator. Internal beam propagation instead of internal waveguiding advantageously simplifies optical coupling and alignment to the modulator. Interaction length within the device is preferably enhanced by passing through the device active region at a relatively shallow angle. The internally propagating beam is reflected from a reflective face parallel to the device active region. The side faces can be perpendicular or tilted with respect to the reflective face. Tilted side faces are preferably tilted to provide external beam paths parallel to the reflective face. Internal reflection from an angled side face can be employed to provide configurations having one side port and one top or bottom port.
    Type: Application
    Filed: September 19, 2006
    Publication date: April 2, 2009
    Inventors: David A.B. Miller, Jonathan E. Roth
  • Patent number: 7508573
    Abstract: A structure of an optical switch makes the optical switch capable of receiving broadband signals. And the manufacturing procedure is simplified.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: March 24, 2009
    Assignee: Atomic Energy Council - Institute of Nuclear Energy Research
    Inventors: Chih-Hung Wu, Kai-Sheng Chang, Hwa-Yuh Shih, Yen-Chang Tzeng